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Abstract- The scheduling of electricity distribution networks has changed dramatically by integrating renewable 

energy sources (RES) as well as energy storage systems (ESS). The sizing and placement of these resources have 

significant technical and economic impacts on the network. Whereas the utilization of these resources in the 

active distribution network (ADN) has several advantages, accordingly, the undesirable effects of these 

resources on ADN need to be analyzed and recovered. In this paper, a hybrid ADN, including wind, PV, and 

ESS, is investigated in 33 buses IEEE standard system. First of all, optimal energy management and sizing of the 

RES and ESS are the purposes. Secondly, as demand response (DR) is another substantial option in ADNs for 

regulating production and demand, an incentive-based DR program is applied for peak shaving. Forasmuch as 

this method has uncertainty, due to its dependence on customer consumption patterns, the use of inappropriate 

incentives will not be able to stimulate customers to reduce their consumption at peak times. Accordingly, the 

climatic condition uncertainty, which is another factor of variability on the production side, is minimized in this 

paper by relying on the Monte Carlo estimation method. Besides, the optimization problem, which is formulated 

as optimal programming, is solved to calculate the optimal size and place of each RESs and ESS conditions 

regarding power loss, voltage profile, and cost optimization. Furthermore, a geometric, energy source and 

network capacity, and cost constraints, are considered. The results confirm the effectiveness of proposed energy 

management and cost reduction in the studied test system. 

Keyword: Active distribution network, Demand response, Energy storage system, Renewable energy resource, 

Demand management 

 

1. INTRODUCTION 

All life on earth depends upon some way energy. 

The demand for electric power is rapidly increasing 

across the world. In general, today, energy is 

supplied through renewable resources and non-

renewable resources. Electricity, though rather high-

priced, is the cleanest and, one may say, the most 

crucial one among all kinds of energy resources. 

Looking at it the other way, fossil fuels, as a part of 

non-renewable resources, have a detrimental impact 

on the environment, as perceived by climatologists 

all over the world. Besides, it's costly to extract, 

process, and transport them to the consumer. Also, 

the deficiency of these resources has raised their 

prices. For the reason that higher energy 

consumption means more high-priced energy 

generation, there is a crucial need for some dominant 

energy consumption modifications [1,2]. Whereas 

more renewable energy sources are required in 

future energy systems, by immediately increasing 

the penetration of renewable energy in the power 

network, electricity networks tend to a significant 

transition from stable passive distribution networks 

with unidirectional electricity transmission to active 

distribution networks with bidirectional electricity 

transmission. 

Reference [3] provides a complete overview of 

the issues related to energy storage resources in 

active networks. In this paper, location, 

measurement, economic and social effects, energy 

security, planning, and implementation of energy 

storage resources in the network, are investigated. In  

Ref. [4], the sizing and placement of battery in 

power systems and wind turbines are evaluated to 

reduce the cost and system losses. Different 

strategies for loss reduction and cost optimization 

are investigated, although other essential objective 
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functions and restrictions are not considered yet. The 

results indicate that the participation of the cost 

function in the objective function significantly alters 

the results of the placement and sizing of wind 

turbines and energy storage resources. 

In Ref. [5], the optimal location of energy storage 

systems in active distribution networks is 

accomplished using the bee colony algorithm. The 

simulation is performed using the DIGSILENT, 

which the results of the honey colony optimization 

compared with the PSO algorithm. The results 

indicate improved voltage profiles, reduced power 

losses, and enhanced performance of the active 

distribution network. In References [6-8], the control 

of the loads and resources of the DER energy 

distributor have investigated the interaction of an 

active distribution network and the electricity 

market. Due to the flexibility of Active distribution 

networks, they are introduced into three types of 

integrated load, energy generator, and also as an 

additional service to the electricity market. The 

connection between grids is carried out by the MC 

grid controller or the EMS Energy Management 

System. Proper design of the system is essential for 

ensuring the stability, reliability, and economical 

operation of the grid. In Ref. [9], an overview of 

advanced methods for modeling the uncertainty in 

the distribution network design is applied. The 

advantages and disadvantages of each method, are 

also stated. Investigations indicate that the proper 

choice of the procedure is proportional to the type of 

input variables of the uncertainties and the planning 

problem. The proper installation of a rooftop 

photovoltaic system in active distribution networks 

can improve the voltage profile, decrease energy 

losses, and improve reliability. In reference [10], the 

location, measurement, and charge/discharge of the 

daily energy storage system in active distribution 

networks are investigated by integrating the 

photovoltaic system. Simulations are done in 

MATLAB and DIGSILENT software. The results 

express that the over-voltage and energy losses are 

reduced by using the stated method, environmental 

pollution is diminished, and economic profitability is 

increased. 

Using partitioning strategy to solve the voltage 

fluctuation problem, decentralized modeling for 

controlling the voltage of renewable resources, and 

applying the sensitivity matrices of some of the 

topics discussed in Ref. [11]. The results of 

simulations in 34 and 69 distribution test systems 

show the convincing performance of the proposed 

method. In Ref. [12], two centralized and 

decentralized control methods are provided for 

controlling active networks connected to the 

principal network in the electricity market. In the 

first method, the local DER controller receives 

commands from the MC, and in the decentralized 

model, the local DER controller is used to maximize 

the decision function's target. The purpose of this 

paper is to maximize the profit of the grid by 

participating in the electricity market that is not 

studied other objectives and network operation 

limits. Additionally, a more flexible and compatible 

demand response program is required. A new 

voltage control method for radial active distribution 

networks is proposed to the effective voltage 

regulation with high penetration of distributed 

generation in Ref. [13]. This method has a low 

computational load and reduces active power losses. 

Ref. [14] proposed an economic strategy to reduce 

costs based on a 24-hour forecast that the EMS 

predicts using the neural network to generate output 

and load. Besides, optimal load distribution is 

calculated based on economic analysis using the 

meta-optimization method. 

The higher penetration of renewable energy 

sources results in reverse power flows, voltage, and 

critical issues in distribution networks. In Ref. [15], 

the problem of planning a medium voltage network 

with the influence of renewable resources is 

investigated. In this paper, the optimal location of 

the energy storage resources and the sub-loader tap 

changers are implemented, simultaneously. The use 

of a second-order programming model and a 

nonlinear model of a sub-chip loader transformer 

yield significant results. In Ref. [16], a review of 

optimal locating strategies and energy storage 

systems sizing in active distribution networks is 

carried out. Technologies and benefits of using 

energy storage systems, new methods for optimal 

allocation, and control strategies are investigated. In 

Ref. [17], long-term planning is done to optimize the 

design of distributed generations and installed 

batteries. Furthermore, short-term planning 

optimizes the performance of the generation units of 

production and batteries. The reactive power for 

DGs and batteries is considered, and the battery 

charge depth is optimized as a design variable for 

batteries. A probabilistic planning model with 
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uncertainty and the development of a multi-objective 

optimization method for the proposed model in 

active distribution networks are given in Ref. [18]. 

In Ref. [19], the integration of the ESS, based on 

ADN management methods, is prepared to improve 

the network performance. In this paper, the size of 

ESS and its placement to reduce constraints and 

ameliorate the utilization of active distribution 

networks are investigated. On account of the 

advantages of using energy storage systems in 

distribution networks, a statistical programming 

method for voltage regulation with a high 

penetration level of renewable resources is studied in 

Ref. [20]. 

Based on what is mentioned above, there is a 

crucial need for optimal allocation and operation 

scheduling of renewable energy resources, as well as 

energy storage systems in active distribution 

networks. Besides, by rapidly increasing sustainable 

energy resources penetration into the grid, the 

definition of new constraints and objective functions 

seems necessary that is not considered yet. 

Furthermore, as the demand response program 

includes uncertainty, and by developing active 

networks, utilizing a flexible and appropriate 

demand response program is imperative to 

investigate its impact on ADNs. Furthermore, a 

practical and potent strategy is obliged to assess the 

optimal allocation of resources, besides energy 

scheduling and manageable demand response with 

strict and existent restrictions at the same time. 

The purpose of this paper is the placement and 

sizing of the wind and solar resources with battery 

energy storage in the 33-IEEE standard to reduce the 

investment and operational costs of the energy 

storage system. A novel stochastic method is utilized 

to predict the wind power output applying Monte 

Carlo scenarios. The output results of the voltage 

profile and overall cost of the system are indicated 

the proper performance of the proposed strategy 

despite all strict constraints such as geometric 

constraints, voltage stability index, voltage 

deviation, and capacity constraints of RES along 

with demand response management constraints.. 

2. LOAD AND ENERGY RESOURCES 

MODELING  

Wind and solar energy are being extensively used in 

distribution networks among various sources of 

distributed generation. Accurate modeling and 

predicting the wind speed and solar radiation are 

very complicated. In this paper, firstly, the wind 

speed is predicted based on the Weibull method, and 

then its output power is calculated. For these 

calculations, the hourly values of wind speed and 

radiation are considered. The meteorological 

statistical data is utilized to model wind and solar 

power systems in which is explained in the results 

and discussion section. Also, to address the existent 

uncertainties in the system's loads the probability 

density function (PDF) method is employed. 

Furthermore, to amend PDF for the related period of 

one year, 4 days have been opted as representatives 

of each season of that year. Each particular day, 

which is the representative of a season, is divided 

into 24-hour segments, each of which has a PDF for 

the corresponding load at that hour. Additionally, the 

electrical pricing is based on the Queensland, 

Australia electric price in 2015. The average 

electrical prices for a day from every season are 

anticipated in a way that every 24-hour price 

represents a relevant season (4×24). 

2.1. Statistical method for wind speed 

estimation  

Wind energy is an intermittent resource which its 

output varies directly depending on the wind speed. 

Even though wind energy output can be predicted 

with a high degree of accuracy through the use of 

wind energy forecasting, there is always some 

uncertainty about future wind output simply because 

weather systems are not utterly predictable. 

Uncertainty of wind speed can be modelled from the 

probability distribution function of wind power. 

Prior research [21, 22] has revealed that the wind 

speed at a given location most nearly follows a 

Weibull distribution over time. This function is given 

as Eq. (1).  
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The Weibull PDF is given by Eq. (2) for later use 

in conjunction with the wind power probability 

function. 
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Where V  is wind speed random variable,   is 

wind speed, c  is a scale factor at a related location, 

and k  is shape factor at a related location. 

It should be noted that the statistical properties of 
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wind speed must be considered to achieve an 

accurate model for wind speed. Wind speed varies 

from year to year and changes seasonally. For 

example, the mean wind speed is high in winter and 

low in summer. Therefore, using statistical methods 

to simulate the wind speed should be more effective 

than Weibull simulation. By considering that in 

Weibull simulation, each simulated value is 

independent of all other simulations, Monte Carlo 

[23, 24] approach and statistical properties of wind 

speed like autocorrelation are considered to achieve 

an accurate model for wind speed. The advantages of 

this method are using historical wind data speed of 

Queensland-Australia for 20 years, not using 

predefined distribution for the wind speed. 

2.2. Wind turbine (WT) modeling 

A wind turbine extracts the energy from moving air 

masses to convert it into electric energy. Wind power 

acts on the rotor blades into torque, and 

subsequently, the rotational energy is used within a 

generator for electricity production. The power 

generated from the wind turbine can be expressed by 

Eq. (3) [25, 26]. 
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(3) 

where rP  is the rated power of the WT, Cut inV − is 

the cut-in wind speed, rV is the rated wind speed, 

Cut out
V

−  is the cut-out wind speed, and k  is the 

Weibull shape parameter. If the number of wind 

turbines is wind
N , the overall produced power is

( ) ( )
wind wind wind

P t N p t=  . 

2.3.  PV system modeling 

The output power of the photovoltaic system is a 

function of solar radiation, panel area, temperature, 

and solar absorption capacity of the solar panel, 

which is expressed by Eq. (4) [27]. 

[1 (( (0.0256 )) )]
N pv amb ref

ref

pv out t

G
P P K T G T

G−−
=   + +  −  

 

(4) 

The sun radiation amount and ambient 

temperature in the standard conditions are 

considered as 21000
ref

wG
m

= , and 25
ref

o CT = , 

respectively. Also, G , amb
T  and t

K , denote the sun 

radiation rays amount, temperature around the cell, 

and temperature coefficient for the maximum power, 

respectively. 

2.4.  Non-dominated sorting genetic 

algorithm II (NSGA-II) 

The planning problem of energy systems is a 

nonlinear and complex problem with many 

constraints. The high penetration level of renewable 

energy systems influences this problem and 

increases its computational burden. Solving this 

enormous problem without the use of optimization 

algorithms remains complicated and time-

consuming. Moreover, there is no doubt that a 

satisfactory answer doesn't reach the exact optimal 

solution. In this work, NSGA-II proposed to solve 

the planning problem to find a fast and reliable 

solution. This algorithm, to reduce the computational 

complexity of GA and other similar multi-objective 

evolutionary algorithms, is proposed by Deb in 

references [28, 29]. 

3.  PROBLEM FORMULATIONS 

Right now, the power system is undergoing 

significant transformations. The continuous 

replacement of conventional energy sources by large 

scale renewables as well as increased deployment of 

different loads such as electric transportation 

systems are the major agents of these 

transformations. Therefore, General restructured 

grids face major technical and economic challenges 

that must be solved flexibly. Considering the direct 

link of distribution networks with the consumers and 

high-level penetration of renewables sources in this 

system, the challenges such as power losses, voltage 

profile, and stability along with demand-side 

management are critical for ADN. 

In this paper, the existing wind and solar 

potentials of the region are first extracted using 

forecasts made by Monte-Carlo statistical strategy. 

According to the problem constraint, 25 percentage 

of the load demand has to be supplied by renewable 

energy sources. But given the periodic nature of 

wind power and the time limitation of solar power 

generation, integrating these resources with energy 

storage systems is essential.  

After determining the power capacity of these 

resources, the flexible demand response strategy is 

applied to peak-load shaving and cost reduction of 

the system. Determining the proper placement of 

RES and BESS plays a key role in loss reduction and 

improving the voltage profile of the grid. Hence, the 

optimal placement of sources is the next step of this 
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paper. Various technical, economic, and geometric 

constraints have been applied to scheduling the 

contribution of solar and wind resources. Also, 

power losses, voltage profile and voltage stability 

constraints in the optimal placement step by NSGA-

II algorithm are added. The theoretical issues are 

discussed and finally, the results of simulations are 

extracted and investigated as follows. 

3.1. Objective functions 

The classic problem of electric networks is the 

economic load dispatch of generating resources to 

achieve the least operating costs. Besides, there is a 

need to expand the limited economic optimization 

problem to include constraints on system operation 

to guarantee the security of the network, through 

preventing the collapse of the system due to 

unanticipated conditions. Due to the rapidly 

increasing integration of RES, the problem of load 

dispatch has changed, and the objective function and 

constraints of the problem modification are required. 

1) Power Loss Reduction 

In this paper, active network power loss reduction 

is considered as an objective function, which is 

expressed mathematically as (5). 

( )
1

1
1 1 1

min
se t bN N N

t

i loss
se t i

f P
−

= = =
=     (5) 

t

i loss
P is power loss at line i and time t. Also, Nb is the 

number of buses. Nse is the number of seasons of 

each year (1 to 4). 

2) Voltage Stability Index (VSI) 

VSI is an index that demonstrates the stability of 

the active distribution system [30]. By rapidly 

increasing the penetration of renewable energy 

resources, VSI has become a crucial index to 

evaluate network loading and avoid voltage collapse. 

Hence, in the presence of a tremendous amount of 

energy resources, it is imperative to consider this 

index as an objective function. Eq. (6) represents the 

mathematical formulation for the voltage stability 

index as a second objective function. To support the 

security and stability of the distribution system, the 

VSI rate should be greater than zero. Otherwise, the 

distribution system is under critical instability 

situations. 
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f VSI f
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= =  
 (6)  

Where Pi, Qi, Ri, and Xi are the real power, 

reactive power, resistance, and reactance of the 

branch i that connect bus m1 to m2, respectively. 

Also, Pm2 and Qm2 are real and reactive loads at bus 

m2; Vm1 and Vm2 are sequentially the voltage 

quantities of the buses m1 and m2. Besides, VSIm2 and 

VSImi are the VSI for bus m2 and the whole system, 

respectively (mi = 2, 3, 4 . . . Nb). '

2
f is the total 

value of the Voltage Stability Index during the 

planning horizon that desired to be maximized. 

Consequently, 
2

f is utilized to minimize the 

objective function.  

3) Planning Total Cost 

The economic objective function in this section 

includes the installation and maintenance cost of the 

renewable distributed generation and energy storage 

units. Also, energy purchasing costs are considered. 

Total cost is formulated as Eq. (7). 

3

4 24 4 24
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1 1 1 1 1 1

1 1
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min ( ( ) ( )
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MESS MDG

N N

n se h n se h

n n
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i i

C Cf C C

DR C
= = = = = =

= =

+ += +

+ + 

 
 (7) 

Here, yrN is the year of the planning horizon, 

ESSn is the number of energy storage, and DGn is the 

number of distributed generation. invESSC and 

invDGC  are the energy storage system and DG 

investment cost. Also, MDGC and MESSC are the cost 

of distributed generation and energy storage system 

maintenance, respectively. Besides, Cost n,se,hDR and 

Purchase n,se,hC are the demand response and the 

purchased energy costs in the nth year, season se, 

and hour h. 

3.2.  Network Constraints and Demand 

Response Management 

In addition to the proposed ADN planning 

framework and objective functions, we should 

consider a set of limitations in operating the 

distribution network. These indispensable constraints 

in the ADN planning process are as follows: 

3.2.1. Position of RES 

Bus 1 is the substation or slack bus, so the position 
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of the RES should not be used at bus 1. 

2 position buses
RES n                                          (8) 

3.2.2. Voltage Magnitudes 

The voltage magnitude of every bus at every hour of 

the planning horizon must be in an acceptable range. 

maxmin

t t
iV V V    (9) 

3.3.  Constraints of RES 

To solve the optimization problem, the following 

constraints must be considered for RES. 

3.3.1. Kirchhoff law or system power 

balance 

According to Kirchhoff law or system power 

balance, the generated power and consumption 

power should be equal in order that the power 

system be stable.  

( ) ( ) ( )

( ) ( )

WT WT PV PV d

load c

N P t N P t P t

P t P t

 +  +

= +
 (10)    

Where NWT(t), NPV(t) are the number of WTs, and 

the number of PVs, respectively. PWT(t), PPV(t) are 

the rated power of WT, and PVs. Pc(t) and Pd(t) are 

the charge and discharge power and Pload (t) is the 

load power. 

Energy storage is used for balancing generation 

and consumption power. The new state of charge for 

the battery bank is given as Eq. (11). 

   ( ) ( 1) ( ) ( ) /c c d dSOC t SOC t P t P t = − + −  (11)    

In the above relations, SOC(t) and SOC(t-1) are 

the battery bank state of charge at the times t and t-1, 

respectively, c is the efficiency of the charging 

batteries, and d is the efficiency of the discharging 

batteries.  

The initial state of charge at the beginning of the 

simulation is considered as Eq. (12). 

max(0) b bSOC SOC E=   (12) 

SOCb is 0.2, and Ebmax is the maximum capacity 

of the batteries, SOC(0) is the initial state of charge. 

3.3.2. Energy storage constrains 

The constraint in the following equations is imposed 

for charge and discharge to prevent a reduction in 

the lifetime of each battery. 

maxmax
( )

bb
SOC t SOC E=   

(13) 

min min
( )

b b
SOC t SOC E=   

(14) 

Where SOCb is considered 0.2, Ebmax, and Ebmin are 

the maximum and minimum capacity of the ESS. 

To prevent simultaneous charge and discharge of 

the ESS, these constraints considered, which M is 

the large positive number that must be greater than 

the capacity of the batteries.  

( ) ( )cP t M ieec t   (15) 

( ) ( )dP t M ieed t   (16) 

( ) ( ) 1  

  {0,1}

ieec t ieed t

ieec and ieed

+ 


 (17) 

Where, ieec and ieed are the charge and discharge 

status of the battery bank at the time t, respectively. 

3.3.3. Economic constraints 

Cost limitation of PV panels, wind turbines, and 

energy storage are considered, which the installation 

cost of components should not exceed assuming 

maximum available budget. 

int_ int_

int_

pv pv wind wind

bat bat bg

C N C N

C N C

 + 

+  
 (18) 

Cint-pv, Cint-wind and Cint-bat are the unit installation 

cost of a PV panel, WT, and ESS. Cbg is the 

maximum available budget. 

3.3.4. Geometric constraints  

The limited available ground area for the installation 

of the wind turbines and PV panels is considered a 

concern for wind and PV energy production. Ab and 

Sb are the primary ground area occupied by a wind 

turbine and PV, respectively. Amax and Smax are the 

available area for wind turbine and PV, respectively: 

maxwind bN A A   (19) 

maxPV bN S S   (20) 

3.3.5. Capacity constraints of ADNs 

Due to the simultaneous exploitation of existing PV 

and Wind power, consistently, the minimum number 

of these energy resources must be considered. Also, 

because of geometric and cost restrictions, the 

maximum number of renewable resources must be 

indicated. 

min maxk
PV PV PVN N N   (21) 

min maxk
WT WT WTN N N   (22) 

min

PVN , 
max

PVN , 
min

WTN  and 
max

WTN  are the minimum 

and the maximum number of the WTs and PVs, 

which calculated by the Eqs. (23-26). 
24
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Where α, β, γ, and λ are the scaling factors. ( )
L

P t ,

( )
PV

P t  and ( )
WT

P t are load, PV, and wind turbine 

output powers at time t, respectively.  

3.4.  Demand Response Management 

The electric power system today requires the right 

balance of demand and supply. Also, smooth and 

stable delivery, as well as environmentally friendly 

produced electricity, is essential to avoid climate 

change. Furthermore, electricity consumption should 

be reduced or shifted to eliminate environmental 

emissions, decrease costs, ensure safe electricity 

supply, and enable more integration of renewable 

intermittencies. Security of supply and rising 

demand are two factors impelling demand-side 

management and demand response is the method for 

reducing or shifting electricity consumption at the 

demand side, and there are many varieties within the 

concept. According to IEEE expression, demand-

side management is a profile of measures to improve 

the energy system at the side of consumption. It 

ranges from improving energy efficiency by using 

better materials, over smart energy tariffs with 

incentives for specific consumption patterns, up to 

sophisticated real-time control of distributed energy 

resources [15]. There are different models for 

demand response programs, direct load control, and 

price response control are two defined options. Load 

control enables customers to sign a contract about 

the reduction that could be controlled automatically 

without any further action from them. Price response 

control requires a higher degree of customer 

participation, but that degree depends on the model. 

This demand elasticity (E) of electricity price (EP) 

[3] is described by (27). 























=

EP

P

P

EP
E L

L0

0  (27) 

Where 0EP  and 0LP  are initial electricity price 

and load demand, respectively. EP and LP  

illustrate the variation in electricity price and load 

demand from their initial values, respectively. The 

price-responsive load's response is characterized 

based on the load pattern with the electricity price 

fluctuation. Inflexible loads cannot shift from one 

time to another with the price change and they are 

also sensitive to a single period only and are 

denominate as self-elasticity. Moreover, some 

flexible loads, that can shift from peak hours to off-

peak periods have a sensibility to a multi-period, can 

be described as cross elasticity. Accordingly, the 

price-responsive loads' operation for 24 hours can be 

epitomized by the price elasticity matrix (PEM), 

which is a 24×24 matrix with self-elasticity 

coefficients as diagonal elements and cross elasticity 

coefficients as off-diagonal elements [16]. In DRP, 

the price-responsive customers change their 

electricity demand according to (28). 
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Where A is the incentive value and ( )hEP  is the 

price of electricity at the hth hour. 

4. SIMULATION RESULTS AND 

DISCUSSION  

The simulations are performed in two stages. In the 

first step, considering the region's solar and wind 

power potential, location and cost constraints, the 

number and capacity needed to supply roughly 25% 

of demand load power by renewable sources and 

BESS are determined. The optimal number of 

renewables is also obtained for four seasons. In the 

second step, the optimal placement of renewable 

sources and BESS is assigned according to the 

voltage profile index, voltage stability index, and 

system power losses. 

Step 1: In this study, weather and geographical 

information of Queensland-Australia are utilized to 

investigate the scheduling of a hybrid system. This 

area is desirable to extend the WT system because it 

receives the highest amount of wind power 

throughout the year. Also, the solar irradiation 

potential of there is suitable for active distribution 

networks. The profile of a typical daily load is 

shown in Figure 1. Also, techno-economical 

parameters of microgrid components and the PEM 

are tabulated in Table 1 and Table 2, respectively.  

Figure 2 displays the wind speed in Queensland-

Australia for a year. The results and comparison of 

the Monte Carlo and Weibull simulation versus 

measured data at Queensland-Australia are evaluated 
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in Figures 3 and 4. As depicted in Figure 3, the 

probability density of the Monte Carlo simulation 

results gives a competent fit to measured data. By 

comparing Figures 3 and 4, the validity of the Monte 

Carlo simulation is proven. A slight deviation is at 

the top of the Weibull simulation curve, which is 

more than the Monte Carlo simulation. 

 
Fig. 1. Daily load profile 

 
Fig. 2. Mean wind speed for one year 

 
Fig.3. Monte Carlo simulation result 

 
Fig. 4. Weibull simulation results 

 
Fig. 5. Mean wind power generation in each season 

As wind speed is dependent on weather 

conditions, the wind power generation of 4 days in 

each season is considered and shown in Figure 5. 

This variability stems from the fact of wind patterns 

variation not only by region but also by the time of 

the year. 

Table 1. The grid data 

wind Battery 

r
P  15 kw 

maxb
E  700 kwh 

Invwind
C  28000   $/unit 

minb
E  13/2 kwh 

Available area 

for wind 
80 m2 

Invbat
C  580 $/unit 

PV  
batt

  85% 

Invpv
C  3600 $/unit 

c
  90% 

PV

N
P  2 kw 

Available area 

for PV 
1.7 m2 

d
  85% 

Budget available 5000000$ 

Table 2. Price elasticity matrix 

 Low Off-peak peak Off-peak peak 

Low -0.08 0.03 0.034 0.03 0.034 

Off-peak 0.03 -0.11 0.04 0.03 0.04 

peak 0.034 0.04 -0.19 0.04 0.01 

Off-peak 0.03 0.03 0.04 -0.11 0.04 

peak 0.034 0.04 0.01 0.04 -0.19 

In turn, the amount of power generated by wind 

farms can change considerably from season to 

season. This issue is also right for the solar system. 

Therefore, similar diagrams for the solar system are 

presented in Figure 6. Moreover, Figure 7 illustrates 

the seasonal mean hourly electricity prices for 

Queensland-Australia in 2015, which were rendered 

by the Australian Energy Market Operator (AEMO) 

[31]. 

 
Fig. 6. Mean PV power generation in each season 

 
Fig. 7. Seasonal mean hourly electricity price 
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For the application of the methodology, MATLAB 

codes are employed. The simulation consists of two 

sections, planning and operation parts. At first, 

distributed generations and energy storage systems are 

allocated based on their restrictions, and then the 

EDPR program is applied to every particle, 

simultaneously. Finally, objective functions are 

calculated, and the Pareto front is extracted based on 

the NSGA program. The power management strategy 

for a hybrid ADN system is performed to maintain 

power supplying to the load demand. NSGA-II 

algorithm is applied to obtain the best configuration of 

the system and for sizing the components. The 

objective function is the minimization of the total cost. 

The solution deals with the optimum component size 

of the grid. By considering the results of simulations, 

the minimum number of WT and PV are considered 

10 and 50, and the maximum number is 329 and 1617, 

respectively. The impact of budget and geometric 

constraints into a microgrid size optimization is 

analyzed in two scenarios. 

Scenario 1: cost minimization with considering the 

budget and geometric constraints. 

Scenario 2: cost minimization by considering all 

constraints and EDRP. 

The optimization is performed separately for one 

sample day each in the season of the year, for 

considering both the load and seasonality variability of 

wind speed and solar radiation. In this scheduling 

problem, because of choosing four days, which 

represent four seasons in a year, there is no continuity 

between days. So, energy interchange between ESS 

and the load-generation system must be settled in each 

day. 

The results determine that the NSGA-II algorithm 

provides optimum wind, PV, and ESS ratings. The 

best-founded solution and associated costs for the 

planning horizon of the ADN are presented in Tables 3 

and 4. Hence, by extending the number of renewable 

sources, investment, maintenance, and energy 

purchasing from DGs' operators' costs have risen. On 

the contrary, the power loss cost has diminished, and 

the VSI has amended. The optimization results for the 

sample days are reported in Figure 8 and Figure 9 for 

scenario one and scenario 2, respectively. Figure 8 

presents the generation scheduling for sample day (fall 

season of last year in the planning horizon) without a 

demand response program, and figure 9 shows the 

generation scheduling on the same day with the EDPR 

program. Figure 10 exposes the flexibility of loads in 

the demand response program that has shifted from 

peak hours to off-peak times.  

Comparison the results of Table 3, illustrates the 

energy profiles during the spring season, which the use 

of 104 wind turbines, 1870 solar panels, and two ESSs 

are proposed. During this season, the wind speed is 

very high, which is also present during the night when 

the PV system is not generating electricity. The PV 

power plant produced energy in the most hour of the 

day (6-19 0’clock) because spring days are long. The 

PV generation provides up to 42% of the total energy 

requested by the loads. The use of only wind turbines 

and solar panels provides the total energy of the load, 

and ESS provides 3% of total energy. ESS charges in 

the day that PV produces. It discharges in the night 

that in these hours' wind speed is the lower. It means in 

spring, ESS charging and discharging are lower, and it 

increases its life duration. The results for the summer 

season are approximately similar to those obtained for 

spring. The wind speed conditions in this season are 

not favorable, so, the number of wind turbines is 

increased to 147. Nevertheless, the summer radiation 

is the most favorable weather conditions. Thereby, 4 

ESS units are used to store energy during the day and 

discharge during the night. During the fall season, the 

optimization solution recommends using 338 wind 

turbines, 2408 panels, and 4 ESS units. Because of the 

low energy production of the solar panels during 

cloudy days in fall, the number of recommended wind 

turbines is the highest for this season. Wind power 

produces 53% of the total generation. Besides, in fall, 

days start getting smaller, and PV produces 40% of 

generation. So, two ESS units are used. Moreover, 7% 

of total energy is consumed by charging ESS during 

the day that PV and wind generate power. Also, 

discharging happens in the night when PV does not 

provide power. During the winter, 113 wind turbines 

are sufficient for satisfying load consumption. Also, 

1870 PV panels and 4 ESS units must be installed. 

Accordingly, ESS units counterbalance low PV 

production similar to the fall, but wind generation is 

more than the fall generation. 

 
Fig. 8. Production and consumption in the desired ADN 
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Fig. 9. Production and consumption in the desired ADN with 

DRP 

 
Fig. 10. Load demand for 10% value of PEM 

 

Table 3. Optimal component size and total cost for the first 

scenario 

 Scenario 1 

 Spring Summer Fall Winter 

Number of WT 104 147 338 113 

Number of PV 1870 1870 2408 1870 

BESS 2 4 4 4 

Cost (×103$) 24080999 27145231 29741531 26415467 

Table 4. Optimal component size and total cost for second 

scenario 

 
Scenario 2 

Spring Summer Fall Winter 

Number of WT 104 147 329 111 

Number of PV 1617 1617 1617 1617 

BESS 2 2 4 4 

Cost (×103$) 21889736 24863739 24658187 23838120 

Since, due to the lack of adequate sun radiation, 

the most unfavorable condition occurs in fall, we 

opted this season to evaluate in the subsequent step. 

Step 2: In the second step of the simulation, based 

on the NSGA II multiple solutions, the optimal 

locating of the sources is determined according to 

the system power loss, cost, and voltage stability. In 

this step, five combination cases of PV, WT, and 

batteries are selected from the NSGA II optimal 

placement programs' outputs.  

The results of the simulations are presented in 

Table 5. Additionally, the optimal number and 

location of PV, WT, and BESS with power losses 

and total cost, are demonstrated in this table. By 

increasing the number of DGs, and their optimal 

allocation, the power losses and demand 

management costs are reduced. Figure 11 illustrates 

the power loss diagram of each bus by changing the 

position of the sources. Moreover, Figure 12 

displays the voltage deviations that points, Case 5 

has the lowest, and Case 1 has the highest VSI 

amount. Similarly, voltage profiles for 5 case studies 

are shown in Figure 13. 

 
Fig. 11. Power loss index in 5 case studies 

 
Fig. 12. Voltage stability index in 5 case studies 

 
Fig. 13. Voltage profiles for 5 case studies 

Furthermore, Figure 14 represents the NSGA II 

algorithms Pareto front for objective functions. A 

detailed look at the Figure reveals the variation 

between objective functions that gives an overview 

to the planners to determine an effective solution 

among feasible response. 
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Table 5. Placement, power losses, and DM cost of 5 case 

studies 

C
ase S

tu
d
ies 

Wind Energy PV Energy 
Battery Energy 

Storage 
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Case 1 0 --- 0 --- 0 --- 20/31 56106 

Case 2 2 18, 29 2 7, 27 2 24, 30 19/81 55622 

Case 3 3 
18, 29, 

30 
2 10, 27 2 24, 30 19/51 54196 

Case 4 3 
18, 29, 

30 
3 

13, 27, 

30 
2 28, 30 18/43 53974 

Case 5 3 
18, 29, 

30 
3 

13, 24, 

30 
3 

27 ,28, 

30 
18/15 51807 

 
Fig. 14. NSGA II feasible response space of objective 

functions. (a) For all three objective functions, and (b) For 

total cost and loss 

5. CONCLUSION  

The penetration of renewable energy sources in 

ADN with its advantages in the field of 

environmental pollution and reduction of 

dependence on fossil fuel sources offers significant 

challenges for energy networks. These issues need to 

be addressed by appropriately locating and sizing of 

RES along with ESS due to their alternate nature of 

solar and wind energy resources. Meanwhile, with 

the development of information technology 

infrastructures and their applications in power grids, 

the issue of load management also plays an essential 

role in the generation schedule. In this paper, the 

problem of optimal placement and sizing of the wind 

and solar resources with battery energy storage in 

the 33-IEEE standard bus is implemented based on a 

flexible demand response program with the NSGA-

II Algorithm. A novel stochastic method to the 

prediction of wind power using Monte Carlo 

scenarios is presented. The outputs of the voltage 

profile and overall cost of the system indicated the 

proper performance of the proposed strategy despite 

all strict constraints such as geometric constraints, 

voltage stability index, voltage deviation, capacity 

constraints of RES, and demand response 

management constraints. 
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