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Abstract- An optimal day-ahead operation of a microgrid based on coastal energy hub is presented in this paper. The 

proposed CEH included wind turbine, photovoltaic unit, combined cooling, heat and power, and seawater desalination. 

The purpose of the optimization is minimization of the operational and environmental costs considering several 

technical limitations. The CEH includes an ice storage conditioner together with an energy storage system, i.e. thermal 

energy storage system. Particularly, the impacts of an innovative rechargeable and emerging ESS that is solar-powered 

compressed air energy storage is scrutinized, on the efficiency and operational and pollution costs of the CEH. It is 

clear that there is an intrinsic deviation between predicted and actual uncertainty variables in MG. This paper presents 

a bi-level stochastic optimal operation model based on risk averse strategy of information gap decision theory to 

overcome this information gap and to help Microgrid operator. To reduce the complexity of the proposed model, 

Karush-Kuhn-Tucker method is used for converting the bi-level problem into a single level. The Augmented Epsilon 

Constraint method is used to deals with multi objective optimization problem to harvest the maximum horizon of the 

uncertainties of the parameters. The proposed model implemented the Time of Use program as a price-based demand 

response program. Finally, the efficacy of the SPCAES for minimizing the operational cost and pollutions in the day-

ahead operation is depicted by implementation of the presented model on the typical CEH. 

Keyword: Augmented Epsilon Constraint method; Compressed Air Energy Storage; Combined Cooling, Heat and 

Power; Coastal Energy Hub; Ice Storage Conditioner; Information Gap Decision Theory; Microgrid. 

 

NOMENCLATURE  

Sets 

𝑇 Set of hours. 

𝑀 Set of objective functions. 

𝐿 Set of Pareto solutions. 

Λ𝑤𝑠      Robustness zone set defined for electricity price. 

Λ𝐿𝐷      Robustness zone set defined for energy demand. 

Λ𝑅𝐸𝑁      Robustness zone set defined for renewable 

generation. 

𝐷𝑉1 First level decision variables. 

𝐷𝑉2 Second level decision variables. 

Variables 

𝐶𝑝𝑒(𝑡) Cost of net electricity buying at hour 𝑡  ($). 

𝐶𝑝𝑔(𝑡) Natural gas purchasing cost at hour 𝑡  ($). 

𝐶𝑜𝑒(𝑡) Carbon emission at hour 𝑡  ($). 

 

𝑃𝐺𝑅𝐷(𝑡) Amount of the active electrical power traded with 

the main grid, positive for buying and negative 

for exporting at hour 𝑡 (kW). 

𝑃𝑔𝑎𝑠
𝑃𝐺𝑈(𝑡) Amount of the natural gas bought from gas 

network used via PGU at hour 𝑡 (kW). 

𝑃𝑔𝑎𝑠
𝐴𝐵(𝑡) Amount of the natural gas bought from gas 

network used via AB at hour 𝑡 (kW). 

𝑃𝑔𝑎𝑠
𝐶𝐴𝐸𝑆(𝑡) Amount of the natural gas bought from gas 

network used via CAES at hour 𝑡 (kW). 

𝑃𝑒
𝑃𝐺𝑈(𝑡) Amount of the active electrical power produced 

via PGU at hour 𝑡 (kW). 

𝐻𝐻𝑅𝑈(𝑡) Amount of the thermal power produced via HRU 

at hour 𝑡 (kW). 

𝐻𝐴𝐵(𝑡) Amount of the thermal power produced via AB at 

hour 𝑡 (kW). 

𝑃𝐶𝐴𝐸𝑆
𝑑𝑖𝑠 (𝑡) Amount of the active electrical power produced 

via CAES at hour 𝑡 (kW). 

𝑃𝐶𝐴𝐸𝑆
𝑐ℎ (𝑡) Amount of the active electrical power received 

via CAES at hour 𝑡 (kW). 

𝑃𝐸𝐿𝐸(𝑡) Amount of active electrical power received from 

the main grid after transformer at hour 𝑡 (kW). 

𝑃𝑊𝑇(𝑡) Amount of the active electrical power produced 

via WT at hour 𝑡 (kW). 

𝑃𝑃𝑉(𝑡) Amount of the active electrical power produced 

via PV at hour 𝑡 (kW). 
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𝑃𝐿(𝑡) Amount of the electrical demand at hour 𝑡 (kW). 

𝐻𝐿(𝑡) Amount of the thermal demand at hour 𝑡 (kW). 

𝐶𝐿(t) Amount of the cooling demand at hour 𝑡 (kW). 

𝑃𝐼𝑆𝐶(𝑡) Amount of the active electrical power received 

through ISC unit at hour 𝑡 (kW). 

𝑃𝑑𝑒𝑠(𝑡) Amount of the active electrical power received 

through SWD unit at hour 𝑡 (kW). 

𝑈𝐸𝑆𝑆
𝑐ℎ (𝑡) Status of ESS in charging mode at hour 𝑡 (1 for 

importing mode; if not 0). 

𝑈𝐸𝑆𝑆
𝑑𝑖𝑠 (𝑡) Status of ESS in discharging mode at hour 𝑡 (1 

for exporting mode; if not 0). 

𝑃𝑇𝐸𝑆𝑆
𝑐ℎ (𝑡) Amount of the thermal power received via TESS 

at hour 𝑡 (kW). 

𝑃𝑇𝐸𝑆𝑆
𝑑𝑖𝑠 (𝑡) Amount of the thermal power produced through 

TESS at hour 𝑡 (kW). 

𝐶𝐴𝐶(𝑡) Amount of the cooling power produced via AC at 

hour 𝑡 (kW). 

𝐶𝐼𝑆𝐶
𝑑𝑖𝑠(𝑡) Amount of the cooling power produced through 

ISC at hour 𝑡 (kW). 

𝑃𝐸𝑆𝑆
𝑐ℎ (𝑡) Amount of the active electrical power received 

through ESS at hour 𝑡 (kW). 

𝑃𝐸𝑆𝑆
𝑑𝑖𝑠 (𝑡) Amount of the active electrical power produced 

via ESS at hour 𝑡 (kW). 

𝐸𝐸𝑆𝑆(𝑡) ESS stored energy at hour 𝑡 (kWh). 

𝑓𝑖(𝑥) 𝑖th objective function. 

𝛾       Electricity price uncertainty horizon. 

ℒ Energy demand uncertainty horizon. 

𝜔 Renewable generation uncertainty horizon. 

𝜃𝐿𝐷(𝑡) Energy demand at hour 𝑡 (kW). 

𝜃𝑊𝑆(𝑡) Electricity price at hour 𝑡 ($/kWh). 

𝜃𝑅𝐸𝑁(𝑡) Renewable generation at hour 𝑡 (kW). 

𝛿𝑡
1 , 𝛿𝑡

1 Coefficients of Lagrangian. 

Λ̂ Robustness functions of IGDT method. 

Parameters 

∆𝑡 Time interval of scheduling equal to one hour. 

𝜌𝑒(𝑡) Price of electricity for selling and purchasing at 

hour 𝑡 ($/kWh). 

𝜌𝑔(𝑡) Price of gas at hour 𝑡 ($/kWh). 

𝜑𝑖𝑛 Emission coefficient for electrical power 

generation (kg/kWh). 

𝜑𝑔 Emission coefficient of natural gas (kg/kWh). 

𝜃  Carbon dioxide processing cost ($/kg).  

𝜂𝑒
𝑃𝐺𝑈  Efficiency of the electricity generation by PGU. 

𝜂ℎ
𝐴𝐵 Heat generation efficiency of AB. 

𝜂ℎ
𝑃𝐺𝑈  Heat generation efficiency of PGU. 

𝜂𝐻𝑅𝑈 Heat generation efficiency of HRU. 

𝜂𝑇𝑅𝐴  Transformer efficiency. 

𝐾𝐼𝑆𝐶  Performance factor of ISC. 

𝐾𝐴𝐶  Performance factor of AC. 

𝐾𝑑𝑒𝑠 Performance coefficient of SWD (𝑚3/𝑘𝑊).  

𝑊𝑑 Water demand (𝑚3). 

𝑃𝑃𝐺𝑈
𝑚𝑖𝑛 Minimum admissible real electrical power 

produced via PGU (kW). 

𝑃𝑃𝐺𝑈
𝑚𝑎𝑥 Maximum admissible real electrical power 

produced via PGU (kW). 

𝐻𝐻𝑅𝑈
𝑚𝑖𝑛  Minimum admissible thermal power produced via 

HRU (kW). 

𝐻𝐻𝑅𝑈
𝑚𝑎𝑥 Maximum admissible thermal power produced 

via HRU (kW). 

𝐻𝐴𝐵
𝑚𝑖𝑛 Minimum permissible thermal power produced 

via AB (kW). 

𝐻𝐴𝐵
𝑚𝑎𝑥     Maximum permissible thermal power produced 

via AB (kW). 

𝐻𝐴𝐶
𝑚𝑖𝑛 Minimum permissible cooling power produced 

via AC (kW). 

𝐻𝐴𝐶
𝑚𝑎𝑥 Maximum permissible cooling power produced 

via AC (kW). 

𝑃𝑑𝑒𝑠
𝑚𝑖𝑛 Minimum allowable electrical power consumed 

by SWD (kW). 

𝑃𝑑𝑒𝑠
𝑚𝑎𝑥 Maximum allowable electrical power consumed 

by SWD (kW). 

𝑃𝑚𝑖𝑛
𝐸𝐿𝐸 Minimum active electrical power received from 

the main grid at hour 𝑡 (kW). 

𝑃𝑚𝑎𝑥
𝐸𝐿𝐸 Maximum active electrical power received from 

the main grid at hour 𝑡 (kW). 

𝑃𝐸𝑆𝑆
𝑐ℎ−𝑚𝑎𝑥 Maximum real power imported by ESS (kW). 

𝑃𝐸𝑆𝑆
𝑑𝑖𝑠−𝑚𝑎𝑥 Maximum real power exported by ESS (kW). 

𝜂𝐸𝑆𝑆
𝑐ℎ  Charging efficiency of ESS. 

𝜂𝐸𝑆𝑆
𝑑𝑖𝑠  Discharging efficiency of ESS. 

𝐸𝐸𝑆𝑆
𝑚𝑖𝑛 Minimum stored energy in ESS (kWh). 

𝐸𝐸𝑆𝑆
𝑚𝑎𝑥 Maximum stored energy in ESS (kWh). 

𝜋 Cost deviation factor of IGDT method. 

𝐶𝑜𝑠𝑡𝐸𝑥𝑝 Expected cost calculated regarding forecasted 

amounts ($). 

Abbreviations 

AB Auxiliary Boiler. 
AUGMECON Augmented ε-constraint. 

BESS Battery Energy Storage System. 

CAES Compressed Air Energy Storage. 

CCHP Combined Cooling, Heating and Power. 

CEH Coastal Energy Hub. 

EH Energy Hub. 

DG Distributed Generation. 

ESS Energy Storage System. 

FC Fuel Cell. 

GAMS General Algebraic Modelling System. 

GT Gas Turbine. 

ISC Ice Storage Conditioner. 

KKT Karush-Kuhn-Tucker. 

MILP Mix Integer linear Problem. 

MG Microgrid. 

MGO Microgrid Operator. 

MOOP Multi Objective Optimization Problem. 

MOO Multi Objective Optimization. 

OS Opportunities Seeker. 

PV Photovoltaic 

RA Risk Averse.  

SPCAES Solar-Powered Compressed Air Energy Storage. 

SOOP Single Objective Optimization Problem. 

SWD Seawater Desalination. 

ToU Time of Use. 

TESS Thermal Energy Storage System. 

WT Wind Turbine. 

1. INTRODUCTION 

1.1. Motivation and incitement 

The need to improve procedures and processes in 

renewable energies generation and fulfil competitive 

environmental friendly technologies is an ongoing 

challenge for researchers around the world. If the 

growth in consumption of various energy carriers is not 

properly managed, it may lead to increase emissions and 

to waste natural resources [1]. Optimal dispatching of 

energy resources among various consumptions is in line 

with the bids to preserve energy resources for future. A 
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solution is utilizing dispersed energy resources by 

saving available infrastructures. More precisely, one of 

the promising solutions is integration in energy 

exploitation. In fact, energy integrated system is taken 

into account in numerous area of expertise in scheduling 

field [2, 3]. For integrating, transferring, and saving 

energy and energy convertibility, a small system named 

EH is used that is dealt with different energy carriers.  

One of the most important concerns in the coastal 

area is to obtain freshwater. Therefore, the EH is usually 

equipped with SWD apparatus which is named CEH [4]. 

Day-ahead operation can bring about many unforeseen 

problems for MGO due to the implementation of the 

different devices and technologies such as DGs and 

ESSs in the CEH. In this paper, a framework is 

presented to overwhelm various difficulties affecting the 

optimal operation of proposed CEH. 

The generations, demands, and prices in the operation 

of MGs face with severe uncertainties. Moreover, it can 

be noted that probabilistic methods need precise 

information about the probability density function of 

uncertain input data. There are four basic methods for 

uncertainty modelling including: (a) scenario based 

stochastic decision making; (b) fuzzy decision making; 

(c) robust optimization and interval based decision 

making; and (d) information gap decision theory [5]. 

The nature of scenario based stochastic optimization is 

multi-stage stochastic optimization and the 

combinatorial growth of computation burden. The fuzzy 

optimization needs a membership function and solving 

the problem for multiple values of cuts and is 

computationally expensive. The interval optimization or 

robust optimization method requires exact uncertainty 

set to which uncertain inputs belong. In addition, the 

interval optimization usually needs two optimizations 

for each objective function. The robust optimization 

methods usually require solving bi-level optimization, 

which is usually difficult to solve. IGDT method needs 

an uncertainty set but in contrast to other techniques, 

this uncertainty set is not needed to be exactly known 

[5]. The IGDT method receives the indeterminate 

uncertainty set and tries to make the objective function 

resilient against the uncertainty of input parameters. 

Therefore, this paper uses IGDT method to model 

uncertainties. 

1.2. Literature review 

Studying the power flow of the energy systems with 

single/multi energy carrier shows that several researches 

have been done for the optimal operation of EH [6] as 

well as power flow of the systems with several energy 

carrier. In order to investigate the optimum operation of 

the systems with multi energy carrier, a non-linear 

technique was introduced in Ref. [7]. The day-ahead 

optimal utilization of EH was studied in Ref. [8] taking 

into account the economic dispatch of both renewable 

and non-renewable generations but it do not consider 

the uncertain behaviour related to renewable 

generations. In Ref. [9], a coordinated control based on 

multi-step method is suggested for MG day-ahead 

operation in which environmental and economic aspects 

are considered. The new method presented in Ref. [10] 

models the EH for MG in static mode and claims that it 

avoids a number of limitations inherent in the original 

EH model. Furthermore, an inclusive linearized model 

was proposed in Ref. [11] with the goal of optimal 

design and operation of EHs hubs taking into account 

the reliability constraints. During the optimization 

procedure, maximum-permissible loss of load 

probability as well as adequacy indices are examined for 

a single contingency while various factors limiting 

reliability are introduced to achieve the satisfactory 

reliability level required for various load categories. The 

study reported in Ref. [12] proposed a general 

optimization framework based on the EH approach 

along with a hierarchical control architecture for 

systems that involve several carriers of the energy such 

as electricity, heat, natural gas, etc. In another 

development, a mathematical formulation was presented 

[13] to optimally plan an EH under a number of 

operation constraints. Parameters for deterministic 

conditions including electricity cost, wind power, and 

the demand of electrical hub were considered by means 

of two objective functions. In fact, the objective 

functions involved the issues and costs pertaining to the 

reliability, investment, operation, and pollution. The 

coordinated operation and optimal dispatch strategies 

were also among the issues investigated in a multiple 

energy system at the MG level [14]. The novel sub-EH 

structure including power hubs as well as heating and 

cooling hubs have also been propounded in an attempt 

to enhance the operational flexibility of EH. In Ref. 

[15], an optimized model for expansion planning was 

also presented for a multiple-energy-system EH in 

which the EH served for joining different energy 

infrastructures to provide demands that are electricity, 

heating, and natural gas. Furthermore, a suburban EH 

was designed in Ref. [16] which took electric energy, 

natural gas, and solar energy as input and was able to 

provide electrical as well as heating and cooling needs 

as its output. An inclusive demand response (DR) 

program was employed involving load shifting and 

restricting as well as modelling of flexible thermal load 

for operational flexibility enhancing the of the hub. In 
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Ref.  [17], a suburban EH employed was suggested for a 

smart home which employing a 

cogeneration technology, it could combine power and  

heat, and featured hybrid plug-in electric vehicles. The 

objective function for optimized operation of the hub is 

minimizing the cost of customer payment. The study 

reported in Ref. [18] presented a strong optimization 

problem for the EH operation.  The solution to EH 

operation problem involves determining the energy 

carriers to be procured and put away so as to satisfy 

energy requests while keeping the cost function as low 

as possible. In Ref. [19], an optimal planning method 

was developed on the EH model for a small system with 

multi carriers energy aiming to minimize the operational 

and investment costs taking into account the variables 

involved in choosing energy converters, energy storage, 

and the possible interrelations between them. 

On the other hand, numerous studies have addressed 

that energy generations and energy demands in the EH-

based MGs have a stochastic behaviour. An real time 

economic dispatch of EH was proposed in Ref. [20] as a 

model elucidated by a robust method based on genetic 

algorithm. The EH planning for a day-ahead duration in 

Ref. [21] included demand response program, different 

energy storage types, e.g. ISC and renewable 

generations. A hybrid interval-stochastic model was 

dealt with for robust programming of EH in Ref. [22] 

where based on parameters such as thermal energy 

market, thermal demand response program, and 

electrical demand response program, a flexible energy 

management scheme was implemented with the aim of 

moderating the cost of operation. In Ref. [23], the 

flexible energy management scheme in an MG is treated 

where a two-stage stochastic formwork is introduced for 

planning coordinated distributed battery ESSs based on 

EH and in the presence of non-dispatchable renewable 

energy resources and electric vehicles. A stochastic 

model of EH is proposed in Ref. [24] to represent a 

model of the varied energy generation power system 

where the proposed power flow joined matrix model for 

the EH of the system and involved features of energy 

converters and interrelationships among them. Ref. [25] 

presents a new island-mode operation method for EHs 

where in case of the happening of a fault or critical 

event, EH is disconnected from the upstream grid. Ref. 

[26] proposes a tri-objective optimal performance of a 

smart EH in the presence of customer's participation to 

optimally redesign the demand profile in the day-ahead 

energy market. Minimizing the operation costs and the 

emission pollution as well as maximizing the customer 

satisfaction level are considered as the objectives of this 

problem. In Ref. [27], the optimal scheduling problem 

of an EH is modelled as a tri-objective optimization 

problem in which the operation cost, the emission 

pollution, and the deviation of the electrical load profile 

from its desired value is minimized. In Ref. [28], a 

renewable based grid-photovoltaic-boiler-battery-fuel 

cell hybrid energy system has been scheduled according 

to the uncertainty modelling of upstream net price and 

employment of demand response program. One of the 

effective ways to repeal the generations uncertainty is to 

utilize ESSs e.g. BESS. A technique is presented in Ref. 

[29] for stochastic operation and configuration of a 

multiple EH that features multi-type energy storage 

devices including BESS as well as various sources of 

energy and generation. Furthermore, a two-stage robust 

planning-operation co-optimization method was 

introduced in Ref. [30] for EH which took into account 

a range of uncertainties involved in the use of renewable 

energy resources and also those related to multi-load 

demands, the problem of sizing, and an accurate 

economic model of BESS with its lifetime loss cost. 

Despite the studies on BESS as reviewed above, its 

large scale application is restricted by constraints such 

as the initial investment cost and also environmental 

concerns and relevant recycling cost [31].  

Another ESS technology that has the potential to be 

employed in areas with rich water resources is pumped-

hydro energy storage even though this technology is 

also limited by problems associated with finding 

suitable storage sites as well as environmental concerns 

[31]. Regarding the need for efficient performance with 

fewer construction constraints and less harmful 

ecological effects, CAES is among the most viable 

ESSs to solve the problems resulting from the 

introduction and ever-increasing penetration of 

renewable energy technologies in the power system 

[31]. CAES is introduced as an efficient and fast 

response storage with an essential role in managing the 

energy, shaving peaks, enhancing power quality, etc. 

[32]. In Ref. [33], an MG was studied involving CAES, 

thermal units, and WT in trading electricity reserve with 

a risk index. Furthermore, a novel precise model  is 

introduced in Ref. [34] as a stochastic strong technique 

to yield the most expected revenue of the CAES and to 

model the uncertainty of electricity trading with a set of 

scenarios in the stochastic technique. The MG economic 

and technical investigation, such as FC, CAES, PV, GT, 

and BESS was carried out in Ref. [35]. Solar thermal 

can be integrated with CAES is a novel method denoted 

as SPCAES, which can improve the effectiveness of the 

conventional CAES [36]. 

https://www.sciencedirect.com/topics/engineering/cogeneration
https://www.sciencedirect.com/topics/engineering/combined-heat-and-power
https://www.sciencedirect.com/topics/engineering/plug-in-hybrid-electric-vehicle
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Providing reliable clean fresh water sources for 

various uses of human societies has always been a major 

world problem particularly in the area suffering from 

water shortage [37]. A model for optimization of an MG 

operation was presented in Ref. [38] for desalinating  

seawater where the impacts of the electric cooling and 

heating ratios were investigated with the objective of 

reducing the life cycle costs of the device. In Ref. [4] a 

coastal MG for SWD was proposed through optimal use 

of the coastal renewable energy sources available in an 

attempt to supply the local community with fresh water. 

Studies performed for energy management of the EH 

can be classified from different perspectives, including 

the model type, objective functions, solution method, 

DG types, and the ESS types. Table 1 reviews some 

recent studies regarding the above-mentioned 

perspectives. This table also presents the novelties of the 

current work compared to other works. 

1.3. Contributions and organization 

Optimal operation of the CCHP based CEH and possible 

effects of SPCAES and ISC on its performance is a gap 

in the current research avenue which is addressed in this 

study. The study probes into the SPCASE, ISC, and 

SWD with considering uncertainty of parameters with 

the overall aim of achieving an optimal mode of 

operation for an CEH that includes generations such as 

WT, PV, CCHP, and AB and a storage that is TESS. A 

two level RA-IGDT [39] algorithm with risk averse 

strategy is proposed and KKT converts it into a single 

level to reduce complexity. Finally, AUGMECON 

technique is utilized to harvest Pareto optimal solutions 

pertaining to uncertainty zones. The objectives of the 

study are as follows: 

• Modeling of optimal operation in an CCHP based 

CEH that includes a SPCASE and ISC, 

• Using SWD to supply freshwater demanded by an 

MG,  

• Applying RA-IGDT method with risk averse 

strategy to involve uncertainties and using 

AUGMECON method to obtain Pareto solutions, 

and 

• Minimization of operational and environmental 

costs of the total system. 

Rest of the paper is organized as follows: An MOOP 

is formulated in Section 2. Section 3 addresses the 

uncertainties involved in demand and generation 

profiles. The proposed solution algorithm is introduced 

in Section 4. Simulation results are presented and 

discussed in Section 5 and finally, Section 6 concludes 

of this research report. 

2. ARCHITECTURE AND FORMULATION OF 

THE PROBLEM 

2.1. CEH architecture 

The investigated system was a CEH-based typical MG 

involving CCHP, AB, SPCAES, PV, WT, ISC, and 

TESS. Fig. 1 depicts the architecture of the proposed 

CEH. The CCHP was made up of a number of 

components including a power generation unit (PGU), a 

heat recovery unit (HRU), and an absorption chiller 

(AC). ISC which is extensively employed to meet 

cooling demands [14], can shift electricity consumption 

at peak times when there is a tension in the power 

supply to the hours of off-peak and thereby, mitigate the 

supply tension [14]. The ISC used in the study consists 

of a single-duty chiller, which can operate in the mode 

of making ice, along with the relevant ice storage tank  

Table 1. Recent studies on energy management of EH 

Ref. 
Type of the model 

Objective function 
Solution method DGs 

Type of ESS 
Dete Sto Math. Heu. Disp. Non-Dis 

[6] -  Operation cost and emission Simplex GA CHP, AB PV BESS, TESS 

[7] -  Operation cost and emission Simplex - CHP, AB PV BESS, TESS, EV 
[8]  - Operation cost Simplex - MT, FC, DE WT, PV BESS 

[9]   - Operation cost and emission Simplex - DE WT, PV BESS 

[10]  - Operation cost Simplex - CHP - BESS, TESS 
[11]  - Operation cost Simplex - General form - General form 

[12]  - Operation cost Simplex - General form - General form 

[13]  - Operation cost Simplex - CHP, AB WT BESS, TESS 
[14]  - Operation cost and emission Simplex - CCHP, AB WT, PV BESS, TESS, ISC 

[15]  - Operation cost, reliability, emission Simplex - CHP, AB - - 

[16]  - Operation cost Simplex - CHP, AB PV EV 
[17]  - Operation cost Simplex - CHP - EV 

[18] -  Operation cost Simplex - CHP, AB, FC - BESS, TESS 
[19]  - Operation cost Simplex - CCHP, AB - BESS, TESS 

[20] -  Operation cost - GA CHP, AB WT - 

[22] -  Operation cost Simplex - CHP, AB WT BESS, TESS 
[23] -  Operation cost Simplex - General form  BESS, EV 

[24]  - Operation cost Simplex - GT WT, PV BESS 

[29] -  Operation cost Simplex - CHP, AB WT, PV BESS, TESS 
[30] -  Operation cost Simplex - CHP, AB WT, PV BESS, TESS 

[35]  - Operation cost and emission Simplex - GT, FC PV CAES, BESS, TESS 

Current paper -  Operation cost and emission Simplex - CCHP, AB WT, PV SPCAES, ISC, TESS 
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in way that ice is stored to be melt through peak hours. 

The ISC is designed in a way that it cannot operate at 

ice-creating and ice-melting conditions simultaneously. 

The CCHP acts in a following hybrid demand operation 

mode [40]. The studied system consists of three kinds of 

demands of energy including thermal, electrical, and 

cooling demands, as well as water demand. A SWD 

system was considered in the proposed CEH to supply 

freshwater demanded by consumers. The operator of 

MG was assumed to receive all required information. 

The energy planning was performed for day-ahead 

within one hour. SPCAES structure is depicted in Fig. 2. 

The operation procedure of a traditional CAES plant 

is much similar to that of the power plants with a gas 

turbine barring the cycles of the compression and 

expansion that are functionally separated by the CAES 

procedure into two distinct processes that do not 

coincide. Compression and combustion cycles 

decoupling improves the performance of the CAES 

plant, making it possible to generate three times more 

energy in comparison with a natural gas power plant 

with simple-cycle that consumes the same volume of 

fuel [36]. The off-peak power is used to compress air in 

the CAES and thereby, to economize on the energy cost. 

Before being stored in an underground cavern, the 

compressed air is then cooled down to the nearby 

ambient temperature via intercoolers. During the 

generation phase (peak periods), the pre-compressed air 

derived from the storage cavern is preheated using a 

recuperator before it is mixed with the fuel, e.g. natural 

gas or oil, and is burned in a combustion chamber and 

then, it is supplied into a multi-stage coupled turbine–

generator [36]. likewise, a conventional CAES, 

SPCAES stores the compacted air, too. However, it 

integrates the heat recuperator output together with a 

solar collector within the discharge process and hence 

improves the efficiency of the plant. As illustrated in 

Fig. 1, the natural gas is fed into the system at three 

stages. The first portion flows into the PGU for heat and 

electricity generation. The second portion of the natural 

gas is burnt by AB for heat generation, and the last 

portion is used to supply the SPCAES. Therefore, the 

natural gas dispatch can be defined as follows. 

CAES
gas

AB
gas

PGU
gasgas PPPP ++=  (1) 

The natural gas PGU
gasP   is used by gas turbine in order 

to produce electrical power PGU
eP and heat HRUH  as 

follows: 

PGU
e

PGU
gas

PGU
e PP =  (2) 

HRUPGU
gas

PGU
h HP =  (3) 

Therefore, from Eq. (2) and Eq. (3), it can be written:  

PGU
eh

PGU
eHRU P

H


=  
(4) 

Where, PGU
h

PGU
e

PGU
eh  = . The natural gas AB

gasP  is 

consumed by AB in order to produce heat HAB as 

follows: 

ABAB
gas

AB
h HP =  (5) 

Upstream grid trades electrical power with CEH via a 

transformer. When CEH cannot supply the electrical 

power it needs, it provides needed electrical power from 

the upstream grid. Alternatively, in cases of electricity 

excess, the hub trades the redundant electricity with the 

upstream grid. 

ELEGRDTRA PP =  (6) 

The capacity of the chiller to make ice is described as 

follows:  

dis
ISC

ISCISC PKP =  (7) 

The heat HHRU  from PGU is entered into the HRU as 

the heating hub gathers the output heat of HRU  

HRUHRU H   and the heat produced by AB. The 

collected heat is then transferred to the AC to serve as 

the cooling energy. 

ACACAC CKH =  (8) 

SWD process consumes electricity and produces 

fresh water. The energy is mainly drawn by the water 

pump and the high pressure pump. The relationship 

between water production Wd and electricity 

consumption can be calculated as: 

ddesdes WKP =  (9) 
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Fig. 1. The structure of CEH 

 

Fig. 2. The SPCASE structure 
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Unknown values of Interval 

(uncertainty set)

Forecasted Value

IGDT Agents

IGDT IGDT 

 
Fig. 3. Illustration of information gap uncertainty 

2.2. Mathematical Formulation 

The objective function along with the grid and 

generation unit constraints are presented as follows: 

A. Objective Functions 

The suggested objective functions, i.e. the MG 

operation cost and emissions in the day-ahead, are given 

by the following equations, the first objective function 

included two components, namely the net costs of the 

electricity and gas to be purchased. The second 

objective function consisted of carbon emission. 
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B. Constraints of ESS and generation units  

The restrictions taken into account for the presented 

optimization problem are delineated as follows: 

• Energy balance at CEH 

The electrical power is balanced in electrical hub as: 

L des

( ) ( ) ( ) ( ) ( )

 P ( ) ( ) ( ) P ( )          t T

ELE PV WT PGU dis
e CAES

ISC ch
CAES

P t P t P t P t P t

t P t P t t

+ + + +

= + + +  

 
(14) 

Additionally, the heat balance is given by: 

L ch
TESS 

( ) ( ) ( )

H ( ) ( ) P    t T

HRU HRU AB dis
TESS

AC

H t H t P t

t H t

  + + =

+ +  

 
(15) 

The cooling energy balance is given as: 

Tt      )t(C)t(C)t(C Ldis
ISC

AC =+  (16) 

• Operational constraints of ESS 

The following constraints are taken into account for 

ESSs operation in CEH [40, 41] as the generic models. 

It is noteworthy that in the following model the ESS are 

referred to SPCAES, TESS, and ISC. 

Tt      (t)UP(t)P0 ch
ESS

max-ch
ESS

ch
ESS   (17) 

Tt      (t)UP(t)P0 dis
ESS

max-dis
ESS

dis
ESS   (18) 

Tt     1 U(t)U ch
ESS

dis
ESS +  (19) 

ch
ESS

( )
( ) ( 1) ( ) ( )              t T, t 1

dis
chESS

ESS ESS ESSdis
ESS

P t
E t E t P t 


= − − +      

(20) 

Tt                E)t(EE max
ESSESS

min
ESS   (21) 

      (24)E)0(E ESSESS =  (22) 

• Generation constraints for PGU and HRU 

The thermal and electrical generated by CCHP in CEH 

must meet the some constraints as follows [40, 42]: 

Tt                           P (t)P P max
PGU

PGU
e

min
PGU   (23) 

Tt                      H)t(HH max
HRU

HRUmin
HRU   (24) 

• Operation constraints for the AB, AC, and SWD 

The generated thermal power of AB, AC, and SWD 

must satisfy the following minimum and maximum 

constraints [40]:  

Tt                         H)t(HH max
AB

ABmin
AB   (25) 

Tt                         H)t(HH max
AC

ACmin
AC   (26) 

Tt                         P)t(PP max
des

desmin
des   (27) 

• The transformer power constraints 

The transformers real power output is limited by the 

constraint as follows:  

Tt      P)t(PP ELE
max

ELEELE
min   (28) 

3. UNCERTAINTY MODELLING  

Section 2 considers all of the parameters as 

deterministic. However, some variables pertaining to 

MG, including electrical/thermal/cooling (energy) and 

water demands, WT and PV generation, and electricity 

price suffer from uncertainty. It causes some difficulties 

for MGO to make optimal decisions. Therefore, the 

deterministic formulation introduced in the last 

subsection are rewritten in a stochastic space based 

IGDT method to better manage these uncertainties. 

3.1. IGDT technique 

IGDT improves the uncertainty horizon, offering a 

solution and affording certain expectation in terms of 

the objective [43]. IGDT method has two main 

strategies that are RA and OS. In RA-IGDT strategy, the 

decision maker (MGO) tries to increase the robustness 

of objective function (operation cost) against the 

uncertainty. The uncertainty is an undesired 

phenomenon in this case and it is associated with the 

values lower/higher (dependent on uncertain 

parameters) than the predicted ones [5]. In OS-IGDT 

strategy, the decision maker is optimistic about the 

uncertain parameters. In other words, the uncertainty 
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deviates in such a way that total costs reduce compared 

to the base case (deterministic case). The OS-IGDT tries 

to increase this chance [5]. The uncertainty is a desired 

phenomenon in this strategy and it is associated with 

higher/lower (dependent on uncertain parameters) 

values than the predicted ones. This paper uses the RA-

IGDT method for uncertainty modelling.  

 It can be noted that MGO should manage the 

uncertainties related to the electricity price and energy 

and water demand, and the other variables, until it is not 

faced with unplanned conditions in day-ahead optimal 

operation. Regarding to Fig. 3, it is seen that operation 

based on RA-IGDT method can meet the planned goals 

while the uncertain parameters fall within their 

maximum permitted boundaries. This paper uses RA-

IGDT based on risk-averse strategy that MGO can make 

decisions with high degree of the robustness in the 

aspect of the uncertainty variables. Here, the robustness 

concept is to secure a target value for objective function 

despite variations in the amounts of uncertain variables. 

Normally, a larger uncertainty horizon results in higher 

level of robustness. Indeed, variance between the 

forecasted and actual values of uncertain variables 

makes the foundation of the RA-IGDT decisions. This 

method doesn’t need assumed probability distributions 

for uncertainties, consequently, it is a suitable 

alternative for MGO in the highly uncertain situations or 

shortage in historical data. Ref. [43] has introduced 

various RA-IGDT uncertainty models. However, the 

commonly used envelope-bound uncertainty model is 

considered in the current work to model uncertainty 

related to the renewable generation, price of electricity, 

and the energy and water demand based on (28)- (30), 

respectively. 
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  Tt        )t(P   )t(P)t( WTPVREN =  (32) 

The RA-IGDT technique want to make the most of 

the robustness of the operation, while it guarantee a 

target cost [43]. To put it more simply, the IDGT 

models the uncertainty and optimally solves the 

proposed simultaneously: 

2
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(33) 

The RA-IGDT method considers with two categories 

of decision variables that are MGO’s decision variable 

as given in Eq. (34) and those related to the uncertain 

parameters as given in Equation (34). 
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  Tt     )t(),t(),t(2DV RENLDWS =   (35) 

Equations (33)-(35) are formulated as a bi-level 

problem as follows: 

3.2. Two level RA-IGDT optimization problem 

The RA-IGDT-based two level problem is written as 

Eq. (36): 

),,(Max 1DV    (36) 

Subject to: 

)1(CostCost ExpMax +  (37) 

    ++= Tt oepgpe2DV
Max )t(C)t(C)t(CMaxCost  (38) 
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(40) 
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)t(ˆ

)t(ˆ)t(
REN

RENREN


−

− 



  

(41) 

Solving the first level including (36) and (37) 

determines day-ahead operation decisions while 

guarantees maximum uncertainty horizons and harvest 

cost targeted by MGO. In the other hands, (38) – (41) 

representing the second level formulation model the 

worst situation in terms of the uncertain parameters 

bounded by the models of envelope-bound as expressed 

in Eqns. (39)-(41), respectively. 

3.3. Single level problem 

Commercial software has difficulties with manipulating 

and solving bi-level problems. Consequently, the paper 

converts two level problem to a single level problem by 

KKT. The paper assumes that the decision variables of 

the first level (DV1) are constant in the second level. 

Consequently, linear Equations (38) – (41) are optimally 

solved and the supreme value of the objective function 

are harvested in either the superior limits (39) and (40) 

or inferior limits of the robust intervals (41). That’s to 

say, for the Equations (39)-(41),  if 𝑃𝐺𝑅𝐷(𝑡) ≥ 0, the 

maximum cost is happened during purchasing 

maximum electrical power with the topmost price at the 

electrical power market at each hour 𝑡 . Conversely, 

Equations (39)-(41) express that under the condition of 

0)t(PGRD  , minimum profit is when MGO sells its 
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electrical power to the electricity market with the 

minimum price. Indeed, the worst case is when 

lowest/highest electrical power is exported to/ 

purchased from the electrical power market, i.e. when 

the MO is faced with a peak electrical demand and 

while the renewable generations are minimum. 

Obviously, purchasing at highest price and sold at 

lowest price in the electrical power market make the 

highest cost for MGO. These impressions are 

mathematically written as follows: 







−

+
=

0)t(P)t(ˆ)1(

0)t(P)t(ˆ)1(
)t(

GRDWS

GRDWS
WS




  

(42) 

Tt         )t(ˆ)1()t( LDLD +=   (43) 

Tt         )t(ˆ)1()t( RENREN +=   (44) 

The second level formulation can be replaced with its 

KKT optimality circumstances due to its problem is 

linear, continuous, and convex [44], these conditions are 

formulated in the following equations: 

Tt         0)t(P 2
t

1
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GRD =+−   (45) 
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t =−−   (46) 
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Tt                                                     0, 2
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1
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Tt        )t(ˆ  )1()t( LDLD +=   (49) 

Tt        )t(ˆ  )1()t( RENREN +=   (50) 

If 0)t(PGRD   , given (42), )t(WS equals 

)t(ˆ)1( WS +  Thus, the second term in Eq. (46) is not 

equal to zero and consequently 𝛿𝑡
1 is zero. With Eq. 

(45), the value of 2
t   is obtained as follows: 

Tt                                          )t(PGRD2
t −=  (51) 

With substituting Eq. (51) in Eq. (50), the first term 

of (42) can rewrite as: 

ˆ( ) ( ( ) (1 ) ( )) 0                    t TGRD WS WSP t t t   − +  =    (52) 

Also, the second term of Eq. (50) is reformulated as: 

Tt       0))t(ˆ)1()t(()t(P WSWSGRD =−−   (53) 

Finally, using the equivalent of Eq. (42) as acquired 

via Eq. (52) and Eq. (53) reorganizes the proposed bi-

level optimization problem as Eq. (54): 
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Tt      (t)ˆ)1()t( RENREN +=   (63) 

(13) - (26)  (64) 

Indeed, MGO based on its policy for operation 

determines the cost deviation factor (  ) and 

consequently controls the amount of robustness in the 

problem. It can be noted that, non-equality constraints 

are usually preferred over the equality constraints in 

commercial solvers, therefore the equality constraints 

(52) and (53) were substituted with the non-equality 

limitations (60) and (61), respectively. To conclude, the 

technique proposed by [45] liners (60) and (61). 

4. PROPOSED MODEL AND SOLUTION 

ALGORITHM 

The suggested model for the optimum operation is 

MILP, which is a mathematical optimization with mix 

variables that are integer (binary) and continues. It also 

has linear objective function and constraints other than 

the integer constraints [46]. The binary variables are 

considered to avoid the simultaneously running of 

importing/ exporting mechanism of ESSs. The continues 

variables include the electrical power output of CCHP, 

the heating power output of ABs, the electrical power 

exchanged with the upstream grid and SPCASE, the 

thermal power traded with TESS, and the cooling power 

fed by ISC at each hour. Variables multiplication, 

exponential or logarithm form, inverse form, etc. are the 

nonlinear terms of the problem [46]. However, the 

proposed model does not involve any nonlinear relations 

in the objective function together with the constraints. It 

can be noted that MOOP cannot harvest a single optimal 

solution when it simultaneously considers all objective 

functions. Consequently, MOOPs use the concept of 

Pareto fronts to derive optimal solutions. Indeed, the 

optimization based on Pareto fronts optimizes an 

objective function while reduces the performance of at 

least one of the other objective functions [47, 48]. In 

this type of optimization, a decision maker should be 

used until the best compromised solution is derived 

among the Pareto solutions. The following subsection of 

paper introduces AUGMECON technique to optimize 

the proposed problem founded on RA-IGDT method. 

https://en.wikipedia.org/wiki/Mathematical_optimization
https://en.wikipedia.org/wiki/Linear_function_(calculus)
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start

Defining the input data, including 

upstream grid data, CCHP data, AB 

data, AC data, SPCAES data, ISC 

data, and gas price 

Setting up the CPLEX software

Minimizing (65) 

Subject to (66)- (70)

Is termination condition met?
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Selecting the best compromised solution among 

Pareto solutions by fuzzy decision maker (71) - (73) 

End 

Generate new 

solutions 
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Uncertainty modeling by IGDT 

Formulating proposed MOOP as a 

SOOP given by (65) via AUGMECON  

Defining uncertain input data, 

including hourly predicted the stochastic 
parameters that are wind generation, solar 

generation, electrical demand, thermal demand, 
cooling demand, water demand and electricity 

price.

  Formulating the limits of predicted 

value at each hour by (57)-(59) 

 
Fig.4. Flowchart of employing the proposed model 
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Fig. 5. Structure of the suggested model 

4.1. AUGMECON technique 

AUGMECON is a practiced optimization technique 

which only wants to maximize the uncertainty limit of 

the electrical energy price, i.e.  which acts as the 

foremost objective function. Therefore, in the electrical 

power and water demand (  ), and the renewable 

generation ( ), the uncertain limits are divided into Int-

equal intervals by means of )1Int()1Int( ++  grid 

points. Accordingly, for obtaining Pareto optimal 

solutions, )1Int()1Int( ++ problems must be optimally 

solved. More information are obtainable in Ref. [49]. 

The MOOP format of Eqns. (54) – (64) based on  the 

AUGMECON is: 

))
S
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S

((Max
minmaxminmax −

+
−
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0       SLS =−   (66) 
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(67) 

0       SLS =−   (68) 
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L
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 −
−=


  

(69) 

(54)- (64) (70) 

Where, 𝜀  is assumed as minor quantity commonly 

stuck between 10-4 and 10-7,

 

S  and S   represent 

relaxed variables, and max   and min   signify the 

highest and lowest limits of the uncertainty in the 

electrical energy and water demand, respectively. Also,

 
max  and min   signify the highest and lowest limits of 

the uncertainty in the stochastic renewable generation, 

respectively. Lexicographic method [50], is utilized in 

this paper to acquire the range of  and   . To obtain 

the Pareto optimal solutions, the amount of b is varied 

and the resulted single objective optimization problems 

(65) – (70) are solved. To reach a denser Pareto set, the 

amount of intervals ( Int ) are augmented while this rises 

the burden time. Therefore, considering a trade-off 

between Pareto set compactness and the time essential 

for calculations, 4 intervals are taken into account in the 

presented work, i.e. 25 grid points. ExpCost is computed 

by solving (10) subject to Eqns. (11)-(28) barring 

uncertainties such that 0===   . Fig. 4 illustrates 

the flowchart for MOOP based on AUGMECON-IGDT 

(54) – (64). In order to solve the proposed model, the 

CPLEX solver—a tool in the GAMS software which 

has been founded on the Simplex mathematical 

technique as a deterministic technique is utilized since it 

has a good potential in solving MILP problems [51]. 

The simulation is executed on a PC with Intel Core i7, 

2.5GHz CPU with 12 GB of RAM. The application 

flowchart of the suggested model is illustrated in Fig. 4. 

4.2. Best compromised solution 

In the end, a set of Pareto optimal solutions is offered to 

MGO who should select a final decision. There are 

several approaches such as Fuzzy Membership Function 

[40], AHP [52], TOPSIS [53], etc. which can help MGO 

to obtain the best decision. Yet, the preference of the 

MGO is the important criteria to choose the final 

optimal solution. The best compromised solution in the 

current paper was found by using a fuzzy-based 

technique as follows [54]: 
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    )(MAXo opt lo  ==  
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Fig. 5 illustrates the arrangement of the problem 

formulation together with the solving procedure of the 

proposed model. 

5. SIMULATION RESULTS 

As depicted in Fig. 1, The presented algorithm for 

solving the optimization problem formulated in the 

study is applied to MG based on CEH.  

5.1. Data of MG 

The forecasted demand profile of the MG that are 

electrical, cooling, thermal, and water demands are 

shown by Fig. 6. Also, the predicted the day-ahead price 

of electrical energy as ToU and price of natural gas are 

illustrated in Fig. 7. Fig. 8. depicts the predicted WT, 

PV, and solar generations during day-ahead. 
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(a) electrical, thermal, and cooling demands [55] 

 
(b) water demand 

Fig. 6. The forecasted hourly demands of CEH 

 
Fig. 7. Predicted day-ahead prices of electricity and natural gas 

 
Fig. 8. Predicted renewable generations (WT, PV, solar collector) 

 

Fig. 9. Pareto front obtained by the AUGMECON method 

Table 2. Parameters of the CEH 

CCHP, AB, AC , and SWD 

Parameter Val. Parameter Val. Parameter Val. 

𝜂𝑒
𝑃𝐺𝑈 0.42 𝑃𝑃𝐺𝑈 

𝑚𝑖𝑛 (kW) 140 𝐻𝐻𝑅𝑈
𝑚𝑎𝑥 (kW) 2200 

𝜂ℎ
𝑃𝐺𝑈 0.48 𝑃𝑃𝐺𝑈

𝑚𝑎𝑥 (𝑘𝑊) 1600 𝐻𝐴𝐵
𝑚𝑖𝑛 (kW) 0 

𝜂𝐻𝑅𝑈 0.82 𝐻𝐻𝑅𝑈 
𝑚𝑖𝑛 (kW) 155 𝐻𝐴𝐵

𝑚𝑎𝑥 (𝑘𝑊) 3000 

𝐻𝐴𝐶
𝑚𝑖𝑛 (kW) 0 𝐻𝐴𝐶

𝑚𝑎𝑥 (𝑘𝑊) 300 𝐾𝐴𝐶  0.9 

𝐾𝑑𝑒𝑠 2.66  

ESS (CAES, SPCAES, TESS, and ISC) 

Parameter Val. Parameter Val. Parameter Val. 

𝑃𝐸𝑆𝑆
𝑐ℎ−𝑚𝑎𝑥(kW) 700 𝜂𝐸𝑆𝑆

𝑐ℎ  0.90 𝐸𝐸𝑆𝑆
𝑚𝑖𝑛(kWh) 0 

𝑃𝐸𝑆𝑆
𝑑𝑖𝑠−𝑚𝑎𝑥 (𝑘𝑊) 700 𝜂𝐸𝑆𝑆

𝑑𝑖𝑠  0.95 𝐸𝐸𝑆𝑆
𝑚𝑎𝑥(kWh) 2500 

𝐾𝐼𝑆𝐶  0.9  

Grid [59] 

Parameter Val. Parameter Value Parameter Value 

𝜂𝑇𝑅𝐴 0.99 𝑃𝑚𝑎𝑥
𝐸𝐿𝐸  (kW) 2000 𝑃𝑚𝑖𝑛

𝐸𝐿𝐸  (kW) 0 

Other parameters 

Parameter Val. Parameter Val. Parameter Val. 

𝜃($/kg) 0.013 𝜑𝑔(kg/kWh) 0.26 
𝜑𝑖𝑛(𝑘𝑔
/𝑘𝑊ℎ) 

0.28 

Table 3. Bounds of objective functions in AUGMECON technique 

Uncertainty limit       

Lowest 0 0 0 

Highest 0.82 0.78 0.85 

CEH and grid  parameters are shown in Table 2. It can 

be noted that to set the EH equipment parameters 

reported in Table. 2, the commercial specifications of 

the equipment were evaluated and the acceptable rating 

for equipment used by the proposed case study was 

customized according to these specifications [56-58]. 

5.2. Outcomes 

• Optimal calculation of the uncertainty limit in 

the energy demand, renewable generations, 

water demand, and price of electricity 

This simulation wants to optimally determine 

uncertainty limit of the energy demand, renewable 

generations, water demand and price of electricity by 

RA-IGDT technique to find the lowest cost for 

utilization of MGO. These uncertainty limits (horizons) 

are simultaneously maximized as an MOOP. In this 

simulation, MGO tracked the policy of selecting the 

suitable robust operational decisions pertaining to 

energy and water demand, electricity price, renewable 

generations uncertainties considering a target cost. The 

Pareto optimal solutions of , , and    for target cost 

of 6989.27$ and ExpCost of 5934.67$ are shown in Fig. 9. 

Table 3 presents limitations of objective functions 

achieved by Lexicographic optimization method that 

engaged by the AUGMECON technique to accomplish 

the optimization procedure. Regarding Fig. 9, the best 

compromised solution which is achieved by the fuzzy-

based method is ( )79.0and,59.0,57.0 ===  . The 

next simulations were done based on the best 

compromised solution stated in Fig. 9.  

• Optimal operation of MG in various scenarios  

In order to assess the effects of SPCAES and ISC on the 

operation of CEH, four cases were taken into account: 

• Case 1: MG operation barring ISC and any kinds of 

CAES; 

• Case 2: MG operation with ISC and barring any 

kinds of CAES; 

• Case 3: MG operation with conventional CAES 

and ISC; and 

• Case 4: MG operation with SPCAES and ISC. 

Sub-EHs play a crucial role in multi energy collection 

and allocation and thus, there should always be a 

balanced flow of energy at each sub-energy hub. The 

best dispatch outcomes of energy flow under the four 

cases of the study at power, heating, and cooling hubs 

are shown in Figs. 10-12, respectively. In these figures 

the upper and lower parts of the vertical axis show the 

energy fed into and flowed out from the sub-energy 

hubs, respectively. Also, in the Figs. 10-12, the positive 
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and negative signs show discharging and charging 

modes of ESSs, respectively. Fig. 10 (a) exemplifies the 

optimum management of the power flow at electrical 

hub in Case 1. The electrical demand is supplied by the 

upstream grid and WT at most of the time. Although 

during hours 10 to 12 when the generation of WT is low 

and the price of electricity is high, the majority of the 

electrical demand was fed by PGU and a smaller 

amount of the electrical power was purchased from the 

upstream grid. Furthermore, during the hours 10 to 16, 

the generation of PV has an efficient role for providing 

electrical demand. Due to the reduced generation by WT 

during hours 20 to 22, the upstream grid and PGU take 

care of the most portion the of electrical demand. The 

power flow results in Case 2 are presented in Fig. 10 (b) 

showing a similar trend to that of Case 1. However, the 

ISC is charged during the low electricity price hours and 

increase the electrical demand in these hours while it 

discharges at hours 10 to 12 when price of the electricity 

is high to feed the cooling demand. The outcomes of 

Case 3 are depicted in Fig. 10 (c) presenting that the 

total cost of CEH is decreased at the presence of CAES.  

 
(a) Case 1 

 
(b) Case 2 

 
(c) Case 3 

 
(d) Case 4 

Fig. 10. Optimal dispatch outcomes of the power flow at electrical 

hubs under the four cases considered in the study 

Table 4. Results comparison in four case studies 

Case 

study 

Total Cost 

($) 

Components of the objective function 

Electricity 
purchase Cost 

($) 

Natural gas 
purchase  cost 

($) 

Emission Cost 

($) 

Case 1 6989.547 5550.487 1064.786 368.3537 
Case 2 6905.423 5384.635 1137.694 294.2027 

Case 3 6882.587 5491.463 843.8265 578.2458 

Case 4 6735.362 5586.886 611.7078 648.8911 

 
(a) Case 1 

 
(b) Case 2 

 
(c) Case 3 

 
(d) Case 4 

Fig. 11. Optimal dispatch outcomes of thermal flow at thermal 

hub under the four cases considered in the study 

During low electricity price hours, CAES is charged 

and it is discharged within hours 10 to 12 and 20 to 22 

when the electricity is expensive. Without a doubt, the 

electricity is sold by CEH to the upstream grid during 

hours 10 to 12 and 20 to 22 as a result of the attendance 

of CAES. Fig. 10 (d) (Case 4) illustrates that during the 

sunny hours the more electrical power is discharged by 

SPCAES compared to traditional CAES and hence, 

CEH is able to trade more electrical power to the 

upstream grid, thereby reducing the total cost of CEH.  

 
(a) Case 1 

 
(b) Case 2 

 
(c) Case 3 

 
(d) Case 4 

Fig. 12. Optimal dispatch outcomes of cooling flow at cooling hub 

under the four cases considered in the study 
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The optimum management of the thermal flow at the 

thermal hub in Case 1 is exemplified in Fig. 11 (a) 

revealing that in the majority of hours the thermal 

demand is provided by the AB. Nevertheless, when 

price of electricity is high and the PGU runs to supply 

the electrical demand, HRU has to provide the thermal 

demand and the participation of AB is decreased. 

Moreover, the total cost in the thermal hub is reduced by 

the charging/discharging TESS in appropriate hours. 

Fig. 11 (b) (Case 2) reveals that the ISC discharging 

during hours 10 to 12 and 20 to 22 reduces the role of 

the AC to supply the cooling demand. Regarding Fig. 

11 (b) to Fig. 11(d), it can be noted that when ISC, 

CAES, and SPCAES are used in Case 2, 3, and 3, 

respectively, electrical power balance changes in 

electrical hub, therefore, the PGU generation and 

consequently HRU generations change. Then the 

thermal power exchanged by TESS and generated by 

AB also change. Fig. 12 (a) illustrates the optimum 

dispatch of the cooling flow at the cooling hub in Case 

1. It can be noted that at all hours, the cooling demand is 

supplied with AC. Employing the ISC in Cases 2-4 

(Figs. 12 (b), (c), and (d)) led to the ISC discharging 

within hours 10 to 12 and 20 to 22 resulting in the 

reduction of the total cost.  

5.3. Comparative study 

Based on the Case 3 and Case 4 in Figs. 10-12, it can be 

deduced that SPCAES and CAES are charged when 

there is excess electricity or the price of electricity is 

high and if not, they are discharged. Likewise, when the 

heat supply is excess, the TESS stores the heat and 

releases it when there is not enough heat supply to meet 

demands. During the off-peak time, the ISC starts 

making and storing ice. On the other hand, during high 

electricity or when there is a shortage of the cold supply, 

the ice melts to meet the cooling demand. This process 

 

Fig. 13. The electricity and gas cost at each hour for the four 

case studies 
l 

Fig. 14. SoC of storages at each hour in Case study 4  

(a) TESS , (b) CAES , (c) ISC , (d) water tank 

explains why the electricity/heat/cold energy storage 

devices have a pivotal role in load balance and shifting. 

Fig. 13 shows the objective function at every hours of 

various case studies. Based on Fig. 13, it is observed 

that employing ISC at low electricity price hours has 

increased the operational (purchasing electricity and 

natural gas) cost; Nevertheless, ISC has effectively 

reduced the operational cost within high electricity price 

hours for Case 2 compared to that in Case 1. Utilizing 

the other storage that is CAES in Case 3, created a like 

tendency in the off-peak and peak hours. Fig. 13 shows 

that employing SPCAES in Case 4 did not vary the 

operational cost at night time and within the cloudy 

hours. Nonetheless, concerning the increasing 

generation of electrical power in sunny hours by 

SPCAES and thus, exporting electrical power to the 

upstream grid, the Case 4 had the minimum operational 

cost during high electricity price hours. Table 4 shows 

the results of total cost in the four cases. Considering 

CAES in Case 3 causes purchasing more electrical 

power from upstream grid and purchasing less natural 

gas compared to Case 2. With adding CAES, MGO 

buys more electrical power from upstream grid and 

power generation with PGU reduces. Therefore, PGU 

consumes less natural gas for its generation compared to 

Case 2. On the other hands, with purchasing more 

electrical power from upstream grid, emission tax paid 

by MGO is increased in Case 3 compared to Case 2. 

The comparison of total costs in Case studies show the 

potential of ESSs such as SPCAES, CAES, and ISC to 

reduce total costs considerably.  

The optimal dispatch results clearly show a number 

of advantages for the MG. Firstly, the MG is able to 

accomplish the harmonized operation of multi energy 

carriers where the cascading use of energy reduces the 

costs and at the same time, improves the energy 

efficiency. The MG has the potential to promote the 

widespread use of renewable energy resources that 

decrease the greenhouse gas emissions. Furthermore, 

through employing various energy storage devices, the 

MG can control the fluctuations of renewable energy 

resources and maintain the balance in the load demand. 

Finally, integration of renewable energy sources makes 

it possible to lessen the tension between demand and 

energy supply particularly during peak hours. The 

various states of ESSs, i.e. charging/discharging 

processes, in Case 4 are detailed in Fig. 14. 

6. CONCLUSIONS 

The EH architecture proposed in this study introduces a 

generic method for minimizing the costs of transferring, 
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conversion, and saving energies as well as the optimal 

dispatch in an MG with multiple energy carrier 

infrastructures for the day-ahead. The under study EH 

has been equipped by CCHP, WT, PV, ISC as well as a 

TESS. This paper tries to evaluate the effects of CAES 

and SPCAES on the efficiency of the EH operation and 

environmental costs. A bi-level RA-IGDT was taken 

into account to protect the MGO from natural risks in 

the information gap present between the predicted and 

actual uncertainty variables. As uncertainty variables 

compete to expand their enveloped-bounds, 

AUGMECON method was used to address the 

complicated RA-IGDT. Compared to the Case 1, the 

total costs of operation reduced by 1.3%, 1.67%, and 

2.33% in Cases 2, 3, and 4, respectively. While this 

generic energy flow modelling technique and analysing 

method can be generalized to deal with more complex 

energy systems, the suggested CEH architecture is 

presently only applicable to analyse the steady-state 

energy flow of the MG. The random nature of 

renewable energy sources and the dynamic nature of the 

equipment used to trap the energy are the issues that 

need further investigation. A particularly important 

research issue is expanding the energy flow modelling 

technique and the analysis method to analyse the 

dynamic energy flow of the MG.  
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