

Journal of Operation and Automation in Power Engineering

Vol. 10, No. 2, Aug. 2022, Pages: 143-154

http://joape.uma.ac.ir

Received: 19 Jul . 2021

Revised: 28 Sep. 2021

Accepted: 14 Oct . 2021

Corresponding author:

E-mail: r_younesie@yahoo.com (R. Younesi)

DOI: 10.22098/joape.2022.9656.1675

Research Paper

© 2022 University of Mohaghegh Ardabili. All rights reserved.

A Low-Cost Multi-Sized HEVC Core Transform Using Time-Multiplexed DCT

Architectures

R. Younesi1,*, M. J. R. Fatemi 1, M. Rastgarpour 2

1Department of Electrical Engineering, Faculty of Engineering, Islamic Azad University, Saveh Branch, Saveh, Iran
2Department of Computer Engineering, Faculty of Engineering, Islamic Azad University, Saveh Branch, Saveh, Iran

Abstract- High Efficiency Video Coding (HEVC) is one of the latest coding standards targeting high-resolution video

contents. Due to the high complexity of the existing hardware implementation, this paper presents the low-cost and

efficient DCT architectures for HEVC, which are able to perform DCT operation of multiple transform sizes in a single

unified architecture. Our objective is to reuse the hardware resources in a DCT architectures using configurable

constant multipliers as well as reducing the hardware cost and trading off between hardware complexity and efficiency.

We propose three different shift-and-add units with different hardware cost and throughput. The main advantage of the

proposed architectures over the existing architectures is a lower hardware and it can also perform DCT transform of

different transform units which is available in HEVC standard. The experimental results over 90-nm technology show

that the proposed 2D-DCT architecture #1 archives the lowest hardware cost amongst the rest of the architectures with

around 57% reduction in gate count, on average. The unfolded 2D-DCT architectures #2 and #3 offer the moderate

reduction in gate count around 47%, on average, with a moderate throughput. Apart from architectures #1, #2, and #3,

we also develop a reusable architecture by adding an extra (𝑁/2)-point DCT alongside the main DCT.

Keyword: DCT; HEVC; Low-Cost; Multi-Sized; Time-multiplexed

1. INTRODUCTION

High Efficiency Video Coding (HEVC) is one of the

recent video coding standards, which is widely used in

transmission of high definition (HD), and ultra-high

definition (UHD) video contents. This emerging video

coding was jointly developed by the ISO/IEC Moving

Picture Experts Group (MPEG) and ITU-T Video

Coding Experts Group (VCEG) and currently has a

widespread application in multimedia streaming,

broadcast television, multimedia content storage, and

mobile communication. The promising feature of the

HEVC standard relates to the fact that it offers more

than 50% improvement in coding efficiency over its

predecessor H.264/MPEG-4 AVC with relatively the

same video quality [1]. This higher data compression

ratio reduces storage requirements and enables the

streaming of higher resolution videos over a limited

wireless network. However, HEVC suffers from the

higher cost of design complexity by about 40 - 70%,

resulting in a higher resource utilization which is not

tolerated, especially for resource-constraint IoT devices

[2]. This higher complexity mainly pertains to the core

transform of HEVC standard in which a Discrete Cosine

Transform (DCT) with multiple block sizes is

employed. The DCT is a fundamental yet complicated

transform that is widely used in different applications of

image and video processing [3]–[6], wireless capsule

endoscopy [7], and steganography [8]. Unlike its

predecessor, the HEVC uses DCT with different

transform sizes ranging from 4×4 to 32×32 block sizes.

It was found that separate implementation of DCTs of

different sizes increases the area utilization remarkably

compared to the unified implementation [9]. In order to

rectify the higher design complexity of HEVC and

enable its simple implementation, two common

approaches can be taken into account. The first and the

straightforward way is the use of integer approximation

of the transform kernel, where the matrix's elements of

different sizes are provided by Ref. [10]. The second

way is to exploit the commonality in the arithmetic units

so as to share the hardware resources as far as possible.

In such a case, a unified architecture is developed which

is able to perform DCT of different transform sizes.

Accordingly, many works till date are being dedicated to

develop approximated and integer implementations of

multi-sized DCTs so as to alleviate the computational

complexity of DCT of different sizes [11]–[15]. The

http://joape/

R. Younesi, M. J. R. Fatemi, M. Rastgarpour: A Low-Cost Multi-sized HEVC Core Transform… 144

most common strategy in the recent efforts is the

factorization strategy which is based on the partial-

butterfly factorization scenario. In this scenario, an 𝑁-

point DCT is recursively decomposed into an (𝑁/2)-

point lower point DCT (i.e., even part) and an (𝑁/

2)×(𝑁/2) matrix multiplication (i.e., odd part). The

matrix multiplication can be realized by multiple

constant multiplication (MCM) problem, where some

arithmetic elements are shared between 𝑘 constant

multipliers, producing 𝑘 multiplication outputs in

parallel. Therefore, the integer elements of transform

matrix are implemented using simple shift and add units

(SAU) rather than fixed-point multipliers.

In this paper, we mainly focus on developing the low-

cost and low-complexity SAUs embedded in DCT

architecture by exploiting the commonality in the

arithmetic unis as well as sharing the hardware

resources to trade-off between area consumption and

throughput. Accordingly, we propose three different

SAUs, presenting different area overhead and thro-

ughput. By leveraging time-multiplexing technique, the

proposed SAUs can be embedded in the DCT unit to

provide an area-efficient HEVC core transform. The

exiting architectures based on partial-butterfly factoriz-

ation only exploit the hardware sharing in even block

and the rest of the blocks including odd block cannot be

shared any more. However, the proposed architectures

can increase the hardware sharing by employing

configurable multipliers in the odd blocks of DCT,

thereby lowering the hardware cost and area

consumption. The main advantage of the proposed

architectures over the existing architectures is lower

hardware cost in terms of gate count and it can also

perform DCT transform of different transform units

which is available in HEVC standard. The major

contributions of this paper are as follows.

1) We propose three different SAUs by leveraging

time-multiplexing technique so as to increase the

hardware reusability while trading-off between

hardware complexity and throughput.

2) Three low-cost 1D-DCT architectures are

presented based on the proposed SAUs, each of

which outperformers one another, in terms of area

consumption, throughput, and processing frames

per second (fps).

3) We develop two 2D-DCT architectures based on

the folded and fully-parallel structures. The former

one derives an area-efficient architecture, whereas

the latter one which benefits from higher

throughput, at the cost of additional 1D-DCT

block.

The rest of paper is organized as follows: Section 2

provides a literature review. Section 3 presents a brief

review on integer-approximated DCT architectures. The

proposed 1D-DCT and 2D-DCT architectures are

provided in Section 4. The experimental results are

provided in Section 5 and finally a comprehensive

conclusion is drawn in the last section.

2. LITERATURE REVIEW

In order to reduce hardware complexity, two different

approaches toward implementing DCT architecture for

HEVC application can be seen from the literature: 1)

Fixed-point implementations [2], [16], [17] and 2)

Integer approximations of the DCT [11]–[13], [15],

[18], [19]. The fixed-point implementations of multi-

sized DCT are presented in Refs. [2], [16], [17], [20],

[21]. Authors of [16] proposed an architecture that

exploits the relationship between Walsh Hadamard

transform (WHT) [22] and DCT. However, this

architecture requires a large number of rotation units

and incurs high design overhead since it uses the

precomputed WHT results from the prediction units. To

rectify the above limitation, authors of [2] proposed an

approximate version that can dynamically skip some

rotations based on the content of input signal. In other

work [20], [23], authors proposed a multi-sized DCT

architecture which used Chen’s algorithm [24] as well

as WHT based matrix decomposition method to reduce

the hardware complexity. To eliminate the rotation units,

they replaced all the coefficients using an approximation

technique by employing dyadic values. Another fixed

point approximation of DCT coefficients is also

introduced in Ref. [21] which improves hardware cost

with minimal degradation in coding performance.

Recently, an efficient variable-sized fixed-point DCT

architecture is proposed by Ref. [17] that investigates

the existing DCT factorization in order to identify which

one minimizes the amount of hardware resources. On

the other hand, [11]–[15] deal with the integer DCT

approximation defined in the HEVC standard. Meher et

al. [13] proposed a variable-sized integer architecture

using partial-butterfly factorization strategy. Darij et al.

[14] proposed an efficient architecture of HEVC core

transform for computing 4, 8, 16, and 32-point DCT by

using the Canonical Signed Digit (CSD) representation

and Common Sub-expression Elimination (CSE)

technique to reduce the number of adder and shifter

blocks.

Journal of Operation and Automation in Power Engineering, Vol. 10, No. 2, Aug. 2022 145

3. AN INTEGER-APPROXIMATED 1D-DCT FOR

HEVC

An 𝑁-point 1D-DCT operation can be expressed as (1),

where 𝑖 = 0, 1, . . , 𝑁 − 1, 𝑥𝑖 is an input vector, 𝑌𝑖 is the

output coefficients, and 𝑐𝑖𝑗 is the elements of the DCT

transform matrix 𝐶 which is defined by (2). Here, 𝑑 is

equal to 1 and √2 for 𝑖 = 0 and 𝑖 > 0 respectively.
1

0

N

i ij j

j

Y c x
−

=

= (1)

1
cos ()

2
ij

d
c j i

NN

 
= + 

 
 (2)

According to Eq. (2), 𝑐𝑖𝑗 represents an 𝑁 × 𝑁

transform matrix with real-valued elements. Realizing

infinite precision real-valued transform matrix elements

incurs a significant area overhead and power

consumption of final implementation. Furthermore, to

avoid encoder-decoder mismatch and drift caused by

manufacturers realizing DCTs with different floating

point representations, the core transform matrices of

HEVC decoder are defined as the approximation to the

real-valued DCT matrix [9]. Using a matrix

representation, one can alternatively define DCT

computation of Eq. (1) as [𝑌𝑁]𝑇 = [𝑇𝑁] ∗ [𝑋𝑁]𝑇, where

𝑇𝑁 is an 𝑁 × 𝑁 transform matrix, 𝑋𝑁 and 𝑌𝑁 are 𝑁-point

input samples and output coefficients, respectively. The

core transform matrix 𝑇𝑁 for different 𝑁-point DCTs on

the basis of integer approximation is defined by HEVC

core transform [9]. According to the core transform

specified in [9], the 4-point and 8-point transform

kernels can be defined as Eqns. (3) and (4).

4

64 64 64 64

83 36 -36 -83

64 -64 -64 64

36 -83 83 -36

T

 
 
 =
 
 
 

 (3)

8

64 64 64 64 64 64 64 64

89 75 50 18 -18 -50 -75 -89

83 36 -36 -83 -83 -36 36 83

75 -18 -89 -50 50 89 18 -75

64 -64 -64 64
T =

 64 -64 -64 64

50 -89 18 75 -75 -18 89 -50

36 -83 83 -36 -36 83 -83 36

18 -50 75 -89 89 -75 50 -18

 
 
 
 
 
 
 
 
 
 
 
  

 (4)

Using the partial-butterfly strategy, an 𝑁-point DCT

kernel matrix can be decomposed into an (𝑁/2)-point

even and (𝑁/2)-point odd parts, where the even part can

be further decomposed into the lower point DCTs. In

this strategy, the (𝑁/2)-point even parts represent the

DCT computation of the (𝑁/2)-point, while the odd part

can be realized by multiplication of an (𝑁/2)×(𝑁/2)

matrix. Accordingly, the 8-point 1D-DCT which is

defined as [𝑌8]𝑇 = [𝑇8] ∗ [𝑋8]𝑇 can be decomposed as

expressed in Eq. (5), where 𝑇4 is a transform matrix of

4-point DCT as defined by Eq. (3), 𝑂4 represents the

matrix multiplication used in 4-point odd block as Eq.

(7), and 𝑎𝑖 and 𝑏𝑖 are the even and odd outputs of

butterfly block, which are defined according to Eq. (6).

It is worth pointing out that the 𝑇N/2 and 𝑂N/2 matrices

can be specified by using the even and odd rows of the

first half of the basis vectors in matrix 𝑇N, respectively,

as derived by Eq. (8).

0 2 4 6 4 0 1 2 3

1 3 5 7 4 0 1 2 3

[, , ,] [, , ,]

[, , ,] [, , ,]

y y y y T a a a a

y y y y O b b b b

= 

= 
 (5)

 () () (- 1)

 () () - (- 1)

a i x i x N i

b i x i x N i

= + +

= +
 (6)

4

89 75 50 18

75 -18 -89 -50

50 -89 18 75

18 -50 75 -89

O

 
 
 =
 
 
 

 (7)

/2

/2

(,) (2 ,)

(,) (2 1,)

N N

N N

T i j T i j

O i j T i j

= 

=  +
 (8)

Similarly, the larger 𝑁-point DCTs can be computed

by incorporating a lower (𝑁/2)-point DCT, an (𝑁/2)-

point odd block, and 𝑁-point butterfly structure. Direct

realization of algorithm presented in Eqns. (5)-(7) is

referred to as reference algorithm in the rest of paper.

4. PROPOSED 1D-DCT ARCHITECTURE USING

LOW-COST SHIFT-AND-ADD UNITS

In order to lower the complexity of an 𝑁-point 1D-DCT

architecture, we mainly focus on developing the low-

cost odd blocks of lower points, as the even blocks can

be further decomposed into the lower point odd and

even blocks. An 𝑁-point odd block consists of a matrix

multiplication with integer elements as expressed by Eq.

(5). A careful analysis of odd matrix (𝑂i) reveals that

some integer elements can be reused when calculating

that of the other odd outputs. This hardware sharing

which targets the reusability of the entire circuit of an

element offers the best hardware cost, at the expense of

higher latency. In such a case, the multiplexers are

employed in such a way that the input samples are time-

multiplexed when feeding into the constant

multiplication section.

The alternative or complementary approach is to

share the constituent elements of arithmetic units in

R. Younesi, M. J. R. Fatemi, M. Rastgarpour: A Low-Cost Multi-sized HEVC Core Transform… 146

terms of shift and add units to increase hardware sharing

as well as reducing the hardware cost. In such a case,

multiple constant multipliers are unified by sharing the

adder and shift blocks in a time-multiplexed way. The

time multiplexing technique is a way of scheduling

arithmetic operations in a consecutive manner. This

strategy uses the minimum required hardware resources,

at the expense of higher latency. In this way, a

configurable hardware can be achieved resulting in a

more flexible and integrated architecture. In this paper,

we have utilized the time-multiplexing technique to

design SAU blocks of DCT in order to minimize

number of required arithmetic units as well as lowering

the hardware cost and increasing the hardware sharing.

For doing so, we exploit the redundancy in the adder

and shifter blocks required for constant multiplications

by using the reconfigurable constant multipliers. In fact,

the additions required for different constants are time-

multiplexed to reuse the same adders in the final circuit.

The configurable multipliers use the multiplexers (Mux)

and a control signal to share the same adder and shift

blocks. Fig. 1 shows a configurable multiplier, where an

input signal 𝑥 is multiplied by a set of constants

{𝐶1, 𝐶1, … , 𝐶𝑁} according to the value of control signal

𝑠𝑒𝑙. By selecting the proper value of 𝑠𝑒𝑙, the multipliers

can be configured based on a specific constant. An

example of configurable multiplier is depicted in Fig. 2

(b) in which the input signal is multiplied by 11 and 21

constants. It can be seen from Fig. 1(a) that the

configurable constant multiplier consists of two adders,

three shift blocks, and one multiplexer. It is worth

noting that the configurable constant multiplication is

derived by integrating different constant multiplications

with an objective of minimizing area consumption.

There is another alternative constant multiplier called

parallel constant multiplication which in contrast to the

configurable constant multiplication, reduces the latency

of hardware by increasing number of arithmetic units.

Unlike the configurable constant multiplication, the

parallel multiplication architecture no longer needs

multiplexers, at the expense of higher number of adder

and shift blocks. As a result, the area consumption and

hardware cost of the configurable constant multiplica-

tion is expected to be lower than the parallel one owing

to the hardware reusability when realizing DCT

architectures.

1 ADD
12,27,

29,10

M
U

X

sel1

1

c)

2

SUB

M
U

X

sel25

2

1

Mux-MCM

log2N
{𝑐1, 𝑐1, … , 𝑐𝑁} sel

x 𝑐𝑖𝑥 1 5 11,21

M
U

X

sel

4

1

1

2

a) b)

4

Fig. 1. a) Structure of configurable multiplier; b) example of

configurable multiplication with 11 and 21 constants; c)

configurable multiplier with 12,27,29,10 constants

4.1. Proposed Shift-and-add Units (SAUs)

Multi-sized processing in DCT means the ability to

perform DCT operation on different size of DCT block

in a single unified hardware. DCT in HEVC codec uses

different size of DCT block ranging from 4*4 to 32*32

square blocks and the separate implementation of DCT

targeting a specific block size is not an efficient way

from a hardware point of view. A simple but effective

approach is to integrate all the hardware required for

processing different block of DCT into a single

hardware by using the hardware sharing strategy. In

such a case, the hardware resources are shared and the

hardware cost is reduced accordingly. Due to the

prominent feature of the configurable constant

multiplication in terms of hardware cost and complexity,

we present three different architectures of SAU

embedded in our proposed N-point 1D-DCT architect-

ures as shown in Fig. 2.

We have presented three different SAU block, which

are embedded in the proposed DCT architecture. The

first one is the area-efficient architectures that employs

only one configurable multiplier with N/2 constants. In

this architecture, we have shared the arithmetic units of

all the available constants in SAU to increase the

hardware sharing as well as lowering the hardware cost.

The second architectures increases the hardware

efficiency and throughput by increasing the number of

processing elements (i.e., configurable multipliers). This

architecture incurs higher hardware cost but it operates

in higher throughput and can support higher video

resolution. The third design has the same number of

multiplier, but with less number of constants in each

multiplier, at the expense of adding extra mux unit. The

last design further increases the hardware throughput

and the hardware cost. These three architectures offer

different hardware cost and hardware efficiency for

HEVC application. Fig. 2(a) shows the simplest form of

SAU (i.e., architecture #1) comprising an 𝑁/2 to 1

multiplexer unit and one configurable multiplier which

Journal of Operation and Automation in Power Engineering, Vol. 10, No. 2, Aug. 2022 147

integrates 𝑁/2 constant multipliers in a single low-cost

hardware using steering multiplexers. The proposed

SAU architecture #1 directs the appropriate odd outputs

of butterfly block 𝐵𝑁/2 = {𝑏0, 𝑏1, . . . , 𝑏𝑁/2−1} to the

configurable multiplier by using 𝐶1 signal. Meanwhile,

C2 signal is responsible for selecting the suitable

constant multiplier in each clock cycle amongst the 𝑁/2

constant embedded in our configurable multiplier. The

𝑁/2 constants included in the configurable multiplier

are specified according to the first column of odd matrix

(𝑂𝑁/2) as derived from Eq. (8) which can also be

defined by the odd rows of the first half of the transform

matrix. In configurable multiplier block, we use a

heuristic algorithm presented in Ref. [25] that tries to

lower the number of required adder and shift blocks by

sharing the redundant elements. Every result coming

from the configurable multiplier block is registered and

then added by the previous sum which already exists in

that of the other register. After 𝑁/2 clock cycles, the

result of 𝑁/2 constant multiplications have been

accumulated in the output register, producing the first

output of odd block. As a result, generation of (𝑁/2)-

point odd outputs requires 𝑁2/4 clock cycles.

Fig. 2(b) shows the next SAU architecture (i.e.,

architectures #2), where the odd outputs are generated

every clock cycle. In this architectures, the more

hardware resources are utilized relative to the previous

architecture by employing a dedicated configurable

multiplier for each input sample while increasing the

hardware throughput. It consists of 𝑁/2 configurable

multipliers, each of which contains 𝑁/2 constant

multipliers. Finally, an adder tree is deployed to add the

intermediates output of configurable multipliers and

generate the final output. The adder tree can be realized

by the use of conventional full adders or the

combination of carry lookahead adder (CLA) and carry

save adder (CSA) to boost the performance of

architectures. Also, other low-power and high-speed

adders can be employed [26]. Signal 𝐶2 is responsible

for selecting the right choice of constant of each

configurable multiplier block. The 𝑁/2 constants

included in each configurable multiplier corresponded

to 𝑏(𝑖) are specified according to 𝑖𝑡ℎ column of odd

matrix (𝑂𝑁/2) as derived from (8). With respect to

architecture #1, the proposed architecture #2 provides

the higher throughput, albeit at the expense of higher

area overhead. Fig. 2(c) presents the last SAU

architetcure (i.e., architetcure #3) using configurable

multipliers. Architetcure #3 consists of a permutation

unit, two mutiplexer units, 𝑁/2 configurable

multipliers, and an adder tree. The configurable

multipliers can be divided into the right half and the left

half, where each half is supplied through a dedicated

multiplexer unit. The permutation units is responsible

for changing the order of 𝑁/2 input samples 𝐵𝑁/2 =

{𝑏0, 𝑏1, . . . , 𝑏𝑁/2−1} so that it splits the input sample into

two parts of 𝑅𝑁/4 = {𝑏0, 𝑏3, 𝑏4, 𝑏7, . . . , 𝑏𝑁/2−1} and

𝑄𝑁/4 = {𝑏1, 𝑏2, 𝑏5, 𝑏6, . . . , 𝑏𝑁/2−2}. The first part of the

splitting process (𝑅𝑁/4) is supplied to the left half of the

multiplier blocks, and that of the other (𝑄𝑁/4) is

supplied to the right half of the multipliers. Each

configurable multiplier includes two constants in such a

way the first and the second constants are specified by

the elements of the first and third rows of odd matrix

(𝑂𝑁/2), respectively. For the left half of the configurable

multipliers, the first and the second constants

(𝑚𝑖
1, 𝑚𝑖

2) are 𝑂𝑁/2(0, 𝑘) and 𝑂𝑁/2(2, 𝑘), respectively,

where 𝑘 is equal to the index of the 𝑖 th elements of

𝑅𝑁/4. The same procedure is also valid for the right half

of the configurable multipliers. Similar to architecture

#2, the throughput of the proposed architecture #3 is one

output per cycle. In comparison to architecture #2,

number of constant multiplier is reduced to two constant

per multiplier for architecture #3, at the expense of

adding additional multiplexer units. Now, we cannot

provide any comparison between architecture #2 and #3

in terms of hardware cost. However, such comparison

mainly depends upon the amount of hardware sharing

that architecture #2 can employ. The more hardware

sharing, the less hardware cost it incurs compared to

architecture #3. In fact, architecture #2 employs a large

number of multiplexers embedded in the configurable

multipliers, but architecture #3 has less multiplexers

inside the multipliers and more of it in outside of the

multipliers.

4.2. Proposed 8-point DCT Architecture

In this section, we present the proposed 8-point DCT

architecture by employing a 4-point odd and 4-point

even parts. The (𝑁/2)-point odd block was introduced

in the previous section. The lowest point even part (i.e.,

4-point DCT) can be developed in the same way as the

odd part. The higher point even parts can be

decomposed into the lower odd part and even parts.

Therefore, to develop a multi-sized 𝑁 -point DCT

architecture, it is required to develop the (𝑁/2)-point

odd blocks accompanied by 4-point even block.

Accordingly, by employing different SAU units

proposed in the previous section, three different DCT

architectures can be introduced.

R. Younesi, M. J. R. Fatemi, M. Rastgarpour: A Low-Cost Multi-sized HEVC Core Transform… 148

Fig. 3 shows the proposed 8-point DCT architectures

by employing 4-point even and 4-point odd blocks. Fig.

3(a) presents the proposed 8-point DCT architecture

based on the SAU architecture #1 as introduced in Fig.

2(a). It consists of two configurable multipliers, each of

which contains four constants, where the constants

related to the odd block are specified according to the

first column of 𝑂4 matrix, as expressed by (7). On the

other hand, the constants related to the even block (i.e.,

4-point DCT) is specified according to the first column

of 𝑇4 matrix, as expressed by (4). The butterfly unit

consist of eight adders generating four samples of odd

(𝑏𝑖) and four samples of even blocks (𝑎𝑖). Two 4 to 1

multiplexers are also employed to steer the proper

inputs to multipliers. The architecture generates two

coefficients every four clock cycles; Thus, for

generating eight coefficient of 8-point DCT, sixteen

clock cycles are required. Fig. 3(b) shows the next 8-

point DCT architecture which is developed based on the

proposed SAU architecture #2. It consists of eight

configurable multipliers, each of which contains four

constants. The four constants related to the multipliers

of odd and even blocks attached to 𝑏𝑖 and 𝑎𝑖 are

specified according to the 𝑖𝑡ℎ column of 𝑂4 and 𝑇4

matrices, respectively. It also includes total of six adders

in even and odd blocks together with eight adders of

butterfly unit. The throughput of architecture is two

coefficients per cycles; thus, for generating eight

outputs, four clock cycles are required.

b(0)

...

Permutation (P)

MUX-UNIT-2

...

MUX-UNIT-2

...

... ...

O(0,0)

O(2,0)

O(0,3)

O(2,3)

O(0,N/2-1)

O(2,N/2-1)

O(0,1)

O(2,1)

O(0,2)

O(2,2)

O(0,N/2-2)

O(2,N/2-2)
...

...

ADDER TREE

Yi

S
A

U
-(

N
/2

)

A
rc

h
it

e
ct

u
re

 #
3

b(N/2-1) b(1)b(2)

b(0)
...

b(N/2-1) b(1)b(2)

O(0,N/2-1)

O(1,N/2-1)

O(2,N/2-1)

O(N/2-1,N/2-1)

..
. ...

ADDER TREE

...

...

O(0,2)

O(1,2)

O(2,2)

O(N/2-1,2)

..
.

O(0,1)

O(1,1)

O(2,1)

O(N/2-1,1)

O(0,0)

O(1,0)

O(2,0)

O(N/2-1,0)

...

..
.

..
.

b(0)

...

Mux-Unit

b(N/2-1) b(1)b(2)

+

REGREG

REG

O(0,0)

O(1,0)

O(N/2-1,0)

z

C2

C1

S
A

U
-(

N
/2

)

A
rc

h
it

e
ct

u
re

 #
2

S
A

U
-(

N
/2

)

A
rc

h
it

e
ct

u
re

 #
1

C2

C2

C1

YiYi

a) b)

c)

..
.

Fig. 2. The proposed shift-and-add unit (SAU) architectures a)

architecture #1 with only one multiplier and 𝑵/𝟐 constants, b)

architecture #2 with 𝑵/𝟐 multipliers and 𝑵/𝟐 constants, and 3)

architecture #3 with 𝑵/𝟐 multipliers and two constants

Fig. 3(c) shows the last DCT architecture which

incorporates the proposed SAU architecture #3. It

includes two permutation units (𝑃1 and 𝑃2), one for 4-

point odd block (𝑂4) and that of the other for 4-point

DCT. The dashed lines inside the permutation units of

𝑃1 and 𝑃2 highlight the splitting process of input

samples of 𝑏𝑖 and 𝑎𝑖, respectively. The splitting process

inside the odd block (i.e., 𝑃1), divide the input samples

{ 𝑏0, 𝑏1, 𝑏2, 𝑏3 } into two partitions of { 𝑏0, 𝑏3 } and

{𝑏1, 𝑏2}. However, the splitting process in the even part

is quite different so that the 𝑃2 divides the input

samples of { 𝑎0, 𝑎1, 𝑎2, 𝑎3 } into two partitions of

{ 𝑎0, 𝑎1 } and {𝑎2, 𝑎3 }. It also requires eight 2 to 1

multiplexers, four units for the left half and four units

for the right half of the multipliers. Also, eight

multipliers are needed, each of them requires two

constants. The constants are specified according to the

rule which was previously explained in subsection 4.1.

Finally, the results of eight multipliers are added

through an adder three, producing two output

coefficients per cycles. As a result, the throughput of 8-

point DCT architectures #2 and #3 are the same.

4.3. Proposed 16-point DCT Architecture

Fig. 4 shows the proposed 16-point DCT architectures

by employing the proposed SAUs accompanied by the

8-point DCT architectures of the subsection 4.2. The

same procedure is carried out when developing 16-point

DCT as 8-point DCT by decomposing it into 8-point

even and odd blocks.

-1-1-1-1

a0a1a2a3b0b1b2b3

64

83

64

36

DCT-4

DCT-8

X0X1X2X3X4X5X6X7

Yj

MUX
(4:1)

REG

+

REG

REG

89

75

50

18

O4

Yj

MUX
(4:1)

REG

+

REG

REG

C1

Journal of Operation and Automation in Power Engineering, Vol. 10, No. 2, Aug. 2022 149

+

-1-1-1-1

a0a1a2a3b0b1b2b3

F2F1 F3 F4 F2F1

64

83

64

36

64

36

64

83

64

36

64

83

64

83

64

36

F3 F4

+ + + +

+

O4 DCT-4

DCT-8

X0X1X2X3X4X5X6X7

Yi Yj

C2

89

75

50

18

75

18

89

50

50

89

18

75

18

50

75

89

+

-1-1-1-1

a0a1a2a3b0b1b2b3

P2

F2F1

50

18

75

89

18

75

89

50

MUX
(2:1)

MUX
(2:1)

MUX
(2:1)

MUX
(2:1)

F3 F4 F2F1

64

83

64

36

64

36

64

83

MUX
(2:1)

MUX
(2:1)

MUX
(2:1)

MUX
(2:1)

F3 F4

+ + + +

+

O4 DCT-4

DCT-8

X0X1X2X3X4X5X6X7

Yi Yj

C2

C1

P1

Fig. 3. The proposed 8-point DCT architecture using configurable

multipliers based on a) SAU architecture #1, b) SAU architecture

#2, c) SAU architecture #3

Yi

-1-1-1-1

Yj

C2

X0X1X2X3X4X5X6X7X8X9X10X11X12X13X14X15

-1

a0a1a2a3a4a5a6a7b0b1b2b3b4b5b6b7

DCT-8

-1 -1 -1 -1 -1 -1 -1

DCT-16

64

83

64

36

DCT-4

MUX
(4:1)

REG

+

REG

REG

89

75

50

18

O4

MUX
(4:1)

REG

+

REG

REG

C2

C1

90

87

80

70

57

43

25

9

O8

MUX
(4:1)

+

REG

REGREG

C1

Yi

+

+

-1-1-1-1

Yj

C2

X0X1X2X3X4X5X6X7X8X9X10X11X12X13X14X15

-1

a0a1a2a3a4a5a6a7b0b1b2b3b4b5b6b7

9

25

43

57

70

80

87

90

25

70

90

80

43

9

57

87

DCT-8

-1 -1 -1 -1 -1 -1 -1

DCT-16

43

90

57

25

87

70

9

80

57

80

25

90

9

87

43

70

++++

87

57

9

43

80

90

70

25

90

87

80

70

57

43

25

9

70

43

87

9

90

25

80

57

80

9

70

87

25

57

90

43

+

+

F2F1 F3 F4 F2F1

64

83

64

36

64

36

64

83

64

36

64

83

64

83

64

36

F3 F4

+ + + +

+

O4 DCT-4

Yi Yj

C2

89

75

50

18

75

18

89

50

50

89

18

75

18

50

75

89

O8

+

++

+

Yi

+

+

++

-1-1-1-1

b3

P2 P3

50

18

75

89

18

75

89

50

MUX
(2:1)

MUX
(2:1)

MUX
(2:1)

MUX
(2:1)

F2F1

64

83

64

36

64

83

MUX
(2:1)

MUX
(2:1)

MUX
(2:1)

MUX
(2:1)

F3 F4

+ + + +

+

O4 DCT-4

Yj

I(7)I(5)I(4)I(1)I(0)

1C2

C1

I(3)

O8

MUX
(4:1)

MUX
(4:1)

MUX
(4:1)

MUX
(4:1)

MUX
(4:1)

MUX
(4:1)

MUX
(4:1)

MUX
(4:1)

I(2)

X0X1X2X3X4X5X6X7X8X9X10X11X12X13X14X15

-1

a0a1a2a3a4a5a6a7b0b1b2b3b4b5b6b7

P1

25

90

43

57

80

70

87

9

9

43

57

25

70

87

90

89

DCT-8

-1 -1 -1 -1 -1 -1 -1

DCT-16

64

36

I(6)

Fig. 4. The proposed 16-point DCT architecture using configu-

rable multipliers based on a) SAU architecture #1, b) SAU

architecture #2, c) SAU architecture #3

X(0)X(1)...X(N/2-1)X(N/2)X(N/2+1)X(N-1) ...

BUTTERFLY UNIT

b(0)b(1)...b(N/2-1)a(0)a(1)...a(N/2-1)

MUX-UNIT-1

...

...

(N/2)-point

Reusable DCT

Architecture

(N/2)-point

Reusable DCT

Architecture

Permutation Unit

MUX-UNIT-2

...

MUX-UNIT-2

...

... ...

C
o

nf
ig

u
ra

b
le

M
u

lt
ip

li
er

C
o

nf
ig

u
ra

b
le

M
u
lt

ip
li
er

C
o

nf
ig

u
ra

b
le

M
u
lt

ip
li
er

C
o

nf
ig

u
ra

b
le

M
u

lt
ip

li
er

C
o

nf
ig

u
ra

b
le

M
u
lt

ip
li
er

C
o

nf
ig

u
ra

b
le

M
u
lt

ip
li
er

... ...

ADDER TREE

...

Y(1) Y(2) Y(N/4)

S
A

U
-N

/2

A
rc

h
it

et
cu

re
 #

3

C
O

N
T

R
O

L
 U

N
IT

Sel

C1 C2

. .
.

...

Y(N/4-1)

...
Y(N/4+1) Y(N/4+2) Y(N/2-1)

...

Fig. 5. The proposed reusable architecture by employing an

additional (𝑵/𝟐)-point DCT and using SAU architecture #3

Fig. 4(a) shows the 16-point DCT architecture based

on SAU architecture #1. In order to generate eight

output coefficients of odd block (𝑂8), it requires 64

clock cycles, since each coefficient takes eight clock to

be generated in architecture #1. On the other hand, the

even part (i.e., DCT-8) requires 16 clock cycles to

generate eight output coefficient related to the even

block. As a result, 64 clock cycles is required to

generate 16 output coefficients of 16-point DCT

architecture #1 in a worst case scenario. Fig. 4(b) shows

the 16-point DCT architecture based on SAU

architecture #2. The throughput of architecture #2 is two

output coefficients per cycle; thus, eight clock cycles are

required so as to generate 16 coefficients. Lastly, Fig.

4(c) presents 16-point DCT based on SAU architecture

#3. The throughput of DCT architecture #3 is the same

as architecture #2, but all the multipliers include only

two constants. This feature is in contrast to architecture

#2, where the constants embedded in multiplier blocks

increases by increasing the DCT transform size.

Therefore, it is expected that the architecture #3 incurs

less hardware cost within multiplier blocks compared to

architecture #2, especially for higher transform sizes.

However, it should be noted that the number and the

size of steering multiplexers of architecture #3 are

increased when the DCT transform size increases. In

R. Younesi, M. J. R. Fatemi, M. Rastgarpour: A Low-Cost Multi-sized HEVC Core Transform… 150

overall, there is not a clear evidence that before

implementation indicates which architecture incurs less

hardware cost. The same procedure can be carried out

for developing the proposed 32-point DCT architecture.

The proposed 32-point DCT architecture can compute

the DCT computation of the lower points (i.e., one 16-

point, one 8-point, and one 4-point) as well, since the

lower point DCTs are embedded in higher point DCTs.

To further enhance the throughput of architecture, we

can add additional (𝑁/2)-point DCT alongside the main

(𝑁/2)-point DCT and (𝑁/2)-point SAU unit. Fig. 5

shows the general architecture of the modified DCT

architecture. We called this architecture the reusable

architecture for the rest of the paper. This modification

doubles the previous throughput, as the 32-point DCT

with an additional 16-point DCT can computer one 32-

point, two 16-point, four 8-point, and eight 4-point

DCTs in parallel. The reusable architecture includes an

additional (𝑁/2)-point DCT alongside the main (𝑁/2)-

point DCT. It can process a variable-sized DCT

processing meaning that it can perform multiple lower-

point DCT in parallel. In contrast to the architectures #1,

#2, #3, where they can only perform a 𝑁-point DCT one

at the time, the reusable architecture can perform

multiple lower point DCT in parallel resulting in higher

throughput and supporting higher resolution contents in

HEVC application. So, the reusable architecture benefits

from higher throughput and coding efficiency compared

to the other architecture, at the expense of higher

hardware cost because of an additional (𝑁/2)-point

DCT block.

a)

b)

1D-DCT1D-DCT

a1

a2

a3

aN

D0i

D1i

D2i

DNi

D0r

D1r

D2r

DNr

b1

b2

b3

bN

EN CLK EN CLKROWACK COLACKCLK

Transposition

Memory...

...

... ...

0

1

M
u
x .

.

.

.

.

.

.

.

.

.

.

.

1D-DCT

Architecture #1/ #2 .

.

.

.

.

.

S

D1
D2
D3

D8

EN CLK

Transposition

Memory

Rows of

2D-DCT

input

Columns of

intermediate

output

Rows of

intermediate

input

Columns of

2D-DCT

output

Right Shift

R
ig

h
t

S
h

if
t

Fig. 6. The proposed 2D-DCT architecture; a) unfolded 2D-DCT,

b) folded 2D-DCT structure

4.4. Proposed 2D-DCT Architetcure

The architecture of 2D-DCT can be realized by row-

column approach by employing two 1D-DCT blocks

and a transposition butterfly [10]. Fig. 6 (a) shows the

unfolded 2D-DCT architecture. At first, the first 1D-

DCT is fed with the rows of the 32×32 input block, then

the intermediate output generated by the first 1D-DCT

are stored in transposition memory. After processing all

the rows of input block, the column of transposition

memory is supplied to the second 1D-DCT generating

32 output coefficients. It should be noted that when

processing the second 1D-DCT to generated 2D-DCT

outputs, the first 1D-DCT computation of another input

block can be performed and its intermediate results can

be stored column-wise in transposition memory. This

mechanism increases the throughput of the final

implementation at the cost of adding additional 1D-DCT

architecture.

Another approach that has focused on reducing the

hardware cost of 2D-DCT is the folded structure. The

folded 2D-DCT employs only one 1D-DCT and a

transposition memory. However, the intermediates

output samples are time-multiplexed in such a way that

the next 1D-DCT operation over the columns of

intermediate block is performed on the same 1D-DCT

unit using a multiplexer unit. This architecture reduces

the hardware cost, at the expense of higher latency since

the second 1D-DCT operation must be stall until the

first 1D-DCT over the rows of input block is terminated.

Fig. 6(b) shows the folded 2D-DCT architecture.

5. EXPERIMENTAL RESULTS

5.1. Details of experiment
We have implemented the proposed 1D-DCT and 2D-

DCT architectures using VHDL language and synthe-

sized them using Synopsys Design Compiler® in TSMC

90-nm technology node. The verification of our

architecture is carried out by ModelSim software and

the experimental results have been performed using a

personal computer with Intel Core-i7, 8 gigabyte

DRAM. Also, we used the heuristic algorithm which

was presented in Ref. [27]. The frequency of the

architectures is set to the maximum tolerable frequency

of hardware and the library is set to the typical timing

condition. Moreover, the wire load is set to the lowest

value available by the technology node. All the

experimental results are directly extracted from the

design compiler tool and compared with the available

results in the literature. We develop four different

architectures to provide a comprehensive comparison in

terms of hardware cost and hardware efficiency.

Architectures #1, #2, and #3 refer to the 𝑁-point DCT

architecture which embeds the proposed SAU

architectures #1, #2, and #3, respectively. The proposed

reusable architecture refers to the architecture #3 that an

additional (𝑁/2)-point DCT has been employed

Journal of Operation and Automation in Power Engineering, Vol. 10, No. 2, Aug. 2022 151

alongside the main 𝑁/2)-point DCT as shown in Fig. 5.

In order to fairly compare the proposed architectures,

we need to inspect them from different perspectives.

The first item is the hardware cost which is assessed

according to the gate count. The gate count is

normalized according to the equivalent cell area of the

smallest 2-input NAND gate in library. The second item

is the throughput of architectures which represents the

number of processing pixels per second. The final item

the hardware efficiency which provides a trade-off

between hardware cost and throughput. The hardware

efficiency is defined as the ratio of throughput to the

gate count or can be expressed as the normalized area

which is defined according to Eq. (9), where 𝑇𝑎𝑣𝑒 and

𝑃𝑅𝑎𝑣𝑒 are the average throughput and processing rate of

architecture over different size of transform sizes.

ave ave

Gate Gate
Normalized Area

T Freq PR
= =


 (9)

In the first experiment, Table 1 reports the number of

arithmetic units in terms of adder, shifter, and

multiplexers included in the proposed architectures for

different transform sizes. It is worth noting that the shift

blocks do not incur any hardware cost in terms of gate

count, but it may incur additional overhead due to

routing process. It is concluded form Table I that the

proposed architecture #1 requires the lowest number of

arithmetic units compared with architectures #2 and #3.

Another In the first experiment, Table 1 reports the

number of arithmetic units in terms of adder, shifter, and

multiplexers included in the proposed architectures for

different transform sizes. It is worth noting that the shift

blocks do not incur any hardware cost in terms of gate

count, but it may incur additional overhead due to

routing process. It is concluded form Table I that the

proposed architecture #1 requires the lowest number of

arithmetic units compared with architectures #2 and #3.

Another interesting finding from Table 1 is that

architecture #3 incurs less number of arithmetic units in

comparison to architecture #2 for all the transform sizes

excluding 32-point DCT. In fact, the multi-sized 32-

point DCT architecture #2 offers the lower hardware

cost compared to architecture #3 in terms of adders and

multiplexers. This is mainly because of the fact that as

the number of constants in the configurable multiplier

increases, the likelihood of increasing in the hardware

reusability in the arithmetic units increases as well. This

increase in hardware reusability eventually reduces the

hardware cost.

Table 1. Number of arithmetic circuits required for computing

different sizes of 1D-DCT blocks

Design
SAU #1 SAU #2 SAU #3

add shift mux add shift mux add shift mux

DCT-4 8 5 5 15 20 8 10 8 4

DCT-8 17 12 12 42 40 28 37 35 22

DCT-16 39 22 27 105 120 92 101 93 79
DCT-32 75 34 53 200 312 268 234 205 283

Table 2. Number of arithmetic units of different 32-point 1D-

DCTs

Design Multiplier Add Shift Mux

Partial Butterfly [30] 340 372 2 0

WHT-Based [2], [16] 147 307 8 0
CSD-CSE Based [14] 0 764 306 0

RAG-n Based [2] 0 584 503 0
MCM-Based [13] 0 682 278 0

Proposed #1 0 75 34 53

Proposed #2 0 200 312 268

Proposed #3 0 234 205 283

Table 2 lists the number of arithmetic units in the

proposed multi-sized 32-point 1D-DCT architectures

#1, #2, and #3 and that of the other architectures. None

of the proposed architectures employ multiplier blocks

and in turn the fixed point multipliers are replaced with

the simple add and shift blocks. It can be seen from

Table II that the proposed architecture #1 achieves the

lowest hardware cost in terms of number of arithmetic

units, amongst the existing DCT architectures, while all

the proposed architectures surpasses the existing multi-

sized designs in terms of hardware cost. Unlike the

existing DCT architectures, the proposed architectures

employ multiplexer units. Nevertheless, our analysis on

90-nm technology proved that the cell area consumed

by an adder cell is about ≈3.9 larger than the equivalent

multiplexer circuit with the same bit width.

5.2. Results of 1D-DCT Architectures

Table 3 provides a detailed comparison between the

proposed 1D-DCT architectures and that of the existing

1D-DCT architectures [2], [13], [15], [28] in terms of

gate count, processing rate (PR), throughput (T), area-

delay-product, and normalized area. According to Table

III, the proposed DCT architecture #1 yields only 12 K

in gate count under 350 MHz operating frequency.

Although this value represents the lowest hardware cost

amongst the existing architectures, the throughput of

architecture #1 is very low. This implies that the

proposed architecture #1 is a suitable candidate only for

the resource-constraint devices that do not need very

high performance, and suitable in the cases that there is

no need to transfer or store high resolution video

contents. The second places in terms of gate count goes

to architecture #2 with 31 K and right behind that

architecture #3 with 37 K. It is worth pointing out that

the maximum operating frequency of architectures #1

and #2 is set to 350 MHz, while architecture #3 can

operate in higher frequency of 370 MHz. Furthermore,

R. Younesi, M. J. R. Fatemi, M. Rastgarpour: A Low-Cost Multi-sized HEVC Core Transform… 152

all the proposed architectures #1, #2, and #3

outperforms the existing 1D-DCT architectures [2],

[13], [15], [28] in terms of hardware cost.

The proposed architecture #1 requires 16, 16, 64, and

256 clock cycles to process 4-point, 8-point, 16-point,

and 32-point DCTs, respectively. Therefore, the PR of

architecture #1 in terms of processing pixel per cycle is

0.25, 0.5, 0.25, and 0.125 for 4, 8, 16, and 32-point

DCTs, respectively. The average throughput for

architecture #1 can be obtained as a weighted sum of

throughput of different transform sizes, where the

weight associated to each size is the usage statistics of

each 𝑁-point DCT presented by Ref. [28]. Therefore,

the throughput of architecture #1 is obtained as 103-

megabyte sample per second (Msps) in 350 MHz.

Table 3. Comparison of different 1D-DCT architectures

Design Tech
Gate

Count
Freq. PR=Pixels/Cycle ADP T (Gsps)

T/Gates

(Gsps)

Normalized

Area

Goebel [15] 45-nm 97.3 K 502 MHz 323 1.95 1.6 16.44 60.81

Masera [2] 90-nm 163 K 250 MHz 12.8/12.8/13.4/14.2 0.65 3.212 19.63 50.78

Zhao [28] 45-nm 205 K 333 MHz 1.2/2.8/6.2/13.6≈1.9 0.62 0.634 3.09 324.01

Meher [13] 90-nm 131 K 187 MHz 16 0.70 2.99 22.82 43.78
Proposed #1 90-nm 12 K 350 MHz 0.25/0.5/0.25/0.125≈0.295 0.03 0.103 8.58 116.2

Proposed #2 90-nm 31 K 350 MHz 2 0.88 0.700 22.58 41.89

Proposed #3 90-nm 37 K 370 MHz 2 0.10 0.740 20.00 50.00
Reusable Architecture 90-nm 53 K 370 MHz 4/4/2/1≈ 3.87 0.14 1.430 27.00 37.00

1 Only for 32 and 16-point DCTs
2 Target frequency is specified for throughput of 1.6 Gsps
3 PR was calculated for full-parallel 2-D, for folded structure PR is 16

Table 4. Comparison of different 2D-DCT architectures

Design Tech Gate Count Freq Pixels/Cycle ADP T (Gsps) Supporting Video format

Masera [2] Folded 90-nm 157 K 250 MHz 5.2 0.628 1.302 4096×2048@ 60 fps

Unfolded 90-nm 243 K 250 MHz 12.8/12.8/13.4/14.2 0.97 3.212 7680×4320@ 60 fps

Kalali [29] LU-Unfolded 90-nm 175 K 140 MHz 4/8/16/32 ≈5.64 1.21 0.79 3840×2160@ 60 fps

HU-Unfolded 90-nm 197 K 130 MHz 16/16/16/32≈16.11 1.51 2.09 7680×4320@ 30 fps

Meher [13] Folded 90-nm 208 K 187 MHz 16 1.11 2.99 7680×4320@ 60 fps

Unfolded 90-nm 347 K 187 MHz 32 1.86 5.98 7680×4320@ 60 fps

Masera [17] Folded 90-nm 165 K 187 MHz 16 0.88 2.99 7680×4320@ 60 fps

Unfolded 90-nm 253 K 187 MHz 32 1.35 5.98 7680×4320@ 60 fps

Proposed #1 Unfolded 90-nm 99 K 350 MHz 0.25/0.5/0.25/0.125≈0.295 0.28 0.103 1920×1080@ 30 fps

Proposed #2 Unfolded 90-nm 116 K 350 MHz 2 0.32 0.700 3840×2160@ 56 fps

Proposed #3 Unfolded 90-nm 124 K 370 MHz 2 0.34 0.740 3840×2160@ 60 fps

Proposed

Reusable

Folded 90-nm 104 K 370 MHz 4/4/2/1≈3.87 0.28 1.430 4096×2048@ 60 fps

Unfolded 90-nm 156 K 370 MHz 8/8/4/2≈7.74 0.42 2.860 7680×4320@ 56 fps

The PR of architectures #2 and #3 is two pixels per

cycle which is independent of transform sizes. This will

result in a throughput of 700 and 740 Msps in 350 MHz

and 370 MHz frequency for architecture #2 and #3,

respectively. As a result, the throughput of architectures

#2 and #3 is about 6.8-fold and 7.2-fold higher than

architecture #1, respectively, while architecture #1

archives the remarkable reduction in gate count around

60% and 67% compared to proposed architectures #2

and #3, respectively.

 The reusable architecture based on 1D-DCT

architecture #3 can process eight 4-point, four 8-point,

two 16-point, and one 32-point DCTs in 16, 32, 128,

and 512 clock cycles, respectively. Therefore, the PR of

the reusable architecture is 4, 4, 2, and 1 for 4, 8, 16,

and 32-point DCTs, respectively. The weighted sum of

the processing rate for the reusable architecture is

approximately 3.87 pixels per cycle, which yields a

throughput of 1430 Msps in 370 MHz frequency. The

reusable architecture achieves the highest throughput in

comparison to the rest of the proposed architectures

(i.e., 13.8-fold, 2-fold, and 1.9-fold increase compared

to architectures #1, #2, and #3), at the expense of

increase in gate count around 30% compared to the

base architecture #3 due to an additional (𝑁/2)-point

1D-DCT. Moreover, the comparison of hardware

efficiency in terms of throughput/gate and normalized

area from Table 3 reveals that the reusable architecture

and after that architecture #2 offer the best hardware

efficiency compared to the rest of the proposed

architectures.

In respect to the existing architectures [2], [13], [15],

[28], the proposed reusable architecture yields a

favorable reduction in gate count and ADP around 61%

and 82% respectively, and a significant increase in

hardware efficiency about 40%. Therefore, the resurface

architecture can be considered as a suitable candidate

for resource-constraint and higher performance

application of HEVC. Also, the proposed architectures

#2 and #3 achieve a remarkable reduction in gate count

Journal of Operation and Automation in Power Engineering, Vol. 10, No. 2, Aug. 2022 153

around 78% and 74%, on average, compared to

architectures of [2], [13], respectively, with relatively

the same hardware efficiency.

5.3. Results of 2D-DCT Architectures

We implemented the proposed folded and unfolded 2D-

DCT architectures. Table 4 reports a detailed

comparison between the proposed 2D-DCT architect-

ures and that of the other architectures [2], [13], [17],

[29]. We select the unfolded structure for the

architectures #1, #2, and #3 since they offer less

throughput than the reusable architectures and their

folded architectures decreases the throughput

accordingly. However, the reusable architecture is

implemented in two different structure of folded and

unfolded 2D-DCTs. In respect to the unfolded

architectures, 2D-DCT architectures #1 provides the

ultra-low number of gate count, but with a remarkable

decrease in throughput. The unfolded 2D-DCT

architecture #1 with throughput of 103 Msps can only

process 1080p (1920×1080) at 30 fps of high-definition

video modes. The unfolded architectures #2 and #3 offer

the moderate amount of hardware cost and throughput

compared to the rest of proposed architectures. They

archive 116 K and 124 K gate count, respectively, and

both of them can process 4K (3840×2160) video format

at almost 60 fps. The reusable unfolded 2D-DCT

architecture, however, provides the highest throughput

of 2860 Msps amongst the proposed architectures #1,

#2, and #3, at the expense of increase in gate count

around 57% 34.5%, and 26%, respectively. It can

process UHD 8K (7680×4320) at 56 fps. Moreover, the

folded 2D-DCT reusable architecture yields the half of

the throughput of unfolded architectures, but with a

favorable 30% decrease in gate, and it can process 4K

video content at 60 fps. In respect to the existing folded

2D-DCT architectures [2], [13], [17], the proposed

folded and reusable 2D-DCT architecture archives a

considerable reduction in gate count around 40%, on

average, with relatively the same throughput of [2].

This achievement for the proposed unfolded and

reusable architecture is around 32% reduction in gate

count, on average, compared to the existing unfolded

2D-DCT architectures [2], [13], [17], [29]. Moreover,

the unfolded architectures #1, #2, and #3 outperform the

existing unfolded architectures [2], [13], [17], [29] by

reducing the gate count around 57%, 49% and 46%, on

average, respectively.

6. CONCLUSION

In this paper, the new low-cost and multi-sized DCT

architectures for HEVC application was proposed.

Three different shift-and-add units are developed by

using different configurations of configurable constant

multiplier to trade-off between hardware cost and hard-

ware efficiency. Moreover, the folded and unfolded 2D-

DCT architectures based on 1D-DCT architectures #1,

#2, #3 were presented. The following conclusion can be

drawn from the experimental results on 90-nm

technology node: 1) The proposed unfolded 2D-DCT

architectures #1 archives the best hardware cost in terms

of gate count amongst the proposed architectures and

that of the other architectures by a favorable reduction

around 57%, but with a lower throughput (Table IV). 2)

the proposed unfolded 2D-DCT architectures #2 and #3

offer the moderate reduction in gate count around 47%,

on average with moderate throughput compared to the

existing architectures (Table IV). 3) The proposed

reusable folded and unfolded architectures yield the

highest throughput amongst the proposed 2D-DCT

architectures and highest efficiency amongst the

existing architectures, with 40% reduction in gate count

(Table IV). 4) The proposed unfolded 2D-DCT

architectures #1, #2, #3, and the reusable architecture

can process 2K at 30 fps, 4K at 56 fps, 4K at 60 fps, and

8K 56 fps, respectively. It is worth to note that the

proposed architectures do not involve inverse DCT

architecture and cannot be directly applied to the other

existing coding standards. Accordingly, these issues will

be addressed in the future work of this paper

REFERENCES

[1] K. Rao, D. Kim, and J. Hwang, “Video coding

standards”, The Netherlands: Springer, pp. 51–97, 2014.

[2] M. Masera, M. Martina, and G. Masera, “Adaptive

approximated DCT architectures for HEVC”, IEEE

Trans. Circuits Syst. Video Tech., vol. 27, no. 12, pp.

2714-25, 2017.

[3] A. Shabani, S. Timarchi, and H. Mahdavi, “Power and

area efficient CORDIC-Based DCT using direct

realization of decomposed matrix”, Microelectron. J.,

vol. 91, pp. 11-21, 2019.

[4] A. Seyed et al., “Analysis and synthesis of facial

expressions by feature-points tracking and deformable

model”, 2007.

[5] A. Abadpour and S. Kasaei, “A novel color image

compression method using eigenimages”, J. Iran. Assoc.

Electr. Electron. Eng., vol. 5, no. 2, pp. 49-57, 2008.

[6] Z. Mahdavipour, “Image de-noising and micro crack

detection of solar cells”, J. Iran. Assoc. Electr. Electron.

Eng., vol. 14, no. 4, pp. 55-61, 2018.

[7] A. Shabani and S. Timarchi, “Low-power DCT-based

compressor for wireless capsule endoscopy”, Signal

Proc.: Image Commun., vol. 59, pp. 83-95, 2017.

[8] M. Saidi et al., “A new adaptive image steganography

scheme based on DCT and chaotic map”, Multimedia

Tools Appl., vol. 76, no. 11, pp. 13493-510, 2017.

R. Younesi, M. J. R. Fatemi, M. Rastgarpour: A Low-Cost Multi-sized HEVC Core Transform… 154

[9] M. Budagavi et al., “Core transform design in the high

efficiency video coding (HEVC) Standard”, IEEE J.

Selected Top. Signal Proc., vol. 7, pp. 1029-41, 2013.

[10] K. . McCann et al., “High efficiency video coding

(HEVC) test model 8 (HM 8) encoder description”, JCT-

VC Documents , Sweden, 2012.

[11] M. Budagavi and V. Sze, “Unified forward+inverse

transform architecture for HEVC”, Proc. Int. Conf. Image

Proc., 2012.

[12] S. Park and P. Meher, “Flexible integer DCT architectures

for HEVC”, Proc. IEEE Int. Symp. Circuits Syst., 2013.

[13] P. Meher et al., “Efficient integer DCT architectures for

HEVC”, IEEE Trans. Circuits Syst. Video Tech., vol. 24,

no. 1, pp. 168-78, 2014.

[14] A. Darji and R. Makwana, “High-performance

multiplierless DCT architecture for HEVC”, 19th Int.

Symp. VLSI Des. Test, 2015.

[15] J. Goebel et al., “An HEVC multi-size DCT hardware

with constant throughput and supporting heterogeneous

CUs”, Proc. IEEE Int. Symp. Circuits Syst., 2016.

[16] A. Ahmed, M. Shahid, and A. Rehman, “N point DCT

VLSI architecture for emerging HEVC standard”, VLSI

Des., 2012.

[17] M. Masera, G. Masera, and M. Martina, “An area-

efficient variable-size fixed-point DCT architecture for

HEVC encoding”, IEEE Trans. Circuits Syst. Video Tech.,

vol. 30, no. 1, pp. 232-42, 2020.

[18] S. Shen et al., “A unified 4/8/16/32-point integer IDCT

architecture for multiple video coding standards”, Proc.

IEEE Int. Conf. Multimedia Expo., 2012.

[19] H. Sun et al., “A low-cost VLSI architecture of multiple-

Size IDCT for H.265/HEVC”, IEICE Trans.

Fundamentals Electron. Commun. Comput. Sci., vol.

E97A, no. 12, pp. 2467-76, 2014.

[20] S. Chatterjee and K. Sarawadekar, “WHT and matrix

decomposition-based approximated IDCT architecture for

HEVC”, IEEE Trans. Circuits Syst. II: Express Briefs,

vol. 66, no. 6, pp. 1043-47, 2019.

[21] S. Chatterjee and K. Sarawadekar, “An optimized

architecture of HEVC core transform using real-valued

DCT coefficients”, IEEE Trans. Circuits Syst. II: Express

Briefs, vol. 65, no. 12, pp. 2052-6, 2018.

[22] W. Pratt, J. Kane, and H. Andrews, “Hadamard transform

image coding”, Proc. IEEE, vol. 57, pp. 58-68, 1969.

[23] S. Chatterjee and K. Sarawadekar, “Approximated core

transform architectures for HEVC using WHT-based

decomposition method”, IEEE Trans. Circuits Syst. I:

Reg. Pap., vol. 66, no. 11, pp. 4296-308, 2019.

[24] S. Fralick, “A fast computational algorithm for the

discrete cosine transform”, IEEE Trans. Commun., vol.

25, no. 9, pp. 1004-9, 1977.

[25] Y. Voronenko and M. Püschel, “Multiplierless multiple

constant multiplication”, ACM Trans. Algorithms, vol. 3,

no. 2, 2007.

[26] A. Hassanzadeh and A. Shabani, “Low power parallel

prefix adder design using two phase adiabatic logic”, J.

Electr. Electron. Eng., vol. 3, no. 6, p. 181, 2015.

[27] P. Tummeltshammer, J. Hoe, and M. Puschel, “Time-

multiplexed multiple-constant multiplication”, IEEE

Trans. Comp. Aided Des. Integrated Circuits Syst., vol.

26, no. 9, pp. 1551-63, 2007.

[28] W. Zhao, T. Onoye, and T. Song, “High-performance

multiplierless transform architecture for HEVC”, Proc.

IEEE Int. Symp. Circuits Syst., pp. 1668-71, 2013.

[29] E. Kalali, A. Mert, and I. Hamzaoglu, “A computation

and energy reduction technique for HEVC Discrete

Cosine Transform”, IEEE Trans. Consumer Electron.,

vol. 62, no. 2, pp. 166-74, 2016.

[30] F. Bossen and K. Sühring, “Joint collaborative team on

video coding (JCT-VC) of ITU-T SG16 WP3 and

ISO/IEC JTC1/SC29/WG11”, 2015.

