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Abstract- Dispersed energy resources and storage devices may be grouped as a Virtual Power Plant (VPP). In a 

competitive electricity market, VPP can exchange energy through a pool market or bilateral contracts. in order to 

maximize the profit, VPP needs to determine the optimal operating schedule. This paper provides a new decision-

making framework based on information gap decision theory (IGDT) for robust self-scheduling of VPPs in power 

markets. In the proposed approach, the energy price is the uncertain parameter while the decision variables are the 

energy that needs to be exchanged in the pool market and through bilateral contracts, the reserve which should be 

provided, dispatch of distributed energy resources, the load which is needed to be curtailed, and the state of 

charging/discharging of energy storage devices. The proposed method specifies the self-scheduling considering the 

risk-taking level of the decision maker. A case study has been used to validate the proposed framework. 
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1. INTRODUCTION 

In recent decades, the growing trend of energy 

consumption, besides the environmental concerns, has 

motivated governments to utilize distributed energy 

resources (DERs) in power networks. Consequently, the 

future power system may have numerous DERs with 

different sizes and technologies. The existing 

technologies for the DERs can be categorized into fossil 

fuel-based and renewable-based resources. Using 

multiple energy resources has some advantages 

including reliability improvement, operating cost 

reduction, and carbon emission reduction [1].  

According statistics, the penetration of renewable 

energy resources, mainly PV systems and wind turbines, 

has experienced a rapid growth over the last few years 

[2]. However, due to the intermittent nature of 

renewable-based DERs, high penetration of these kinds 

of generation makes the energy scheduling a 

challenging task. 

The concept of virtual power plant (VPP) has been 

lately introduced to manage the DERs in an elegant 

manner. VPPs aggregate renewable as well as 

conventional power generation, energy storage devices, 

and demands [3]. Based on the FENIX’s [4] definition, 

VPP is a flexible representation of a portfolio of DERs 

which enables the aggregator to make contracts in the 

wholesale energy/reserve markets and to offer services 

to the system operator. VPPs may also benefit from 

Demand Response (DR) programs. DR can be regarded 

as a source of operational reserve which can affect the 

energy and reserve scheduling [5, 6]. In general, the 

main goal for VPPs in the markets is to take advantage 

of exchanging energy with a power network [7-9]. 

According to the operation strategy, there are two 

types of VPPs: commercial VPP (CVPP) and technical 

VPP (TVPP). The main goal of the CVPP is to gain the 

maximum profit of VPP without considering the impact 

of the distribution network. On the contrary, the local 

network constraints are included in the offering strategy 

of TVPP [10].   
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To get the maximum outcome, the optimal bidding 

scheme for the VPP portfolio should be determined. 

Different sources of uncertainty may affect the profit of 

the VPP in energy/reserve markets. Pool market price, 

loads, and availability and performance of DERs, due to 

the intermittent nature of some DERs in VPP, all have 

some degree of uncertainty which may affect the 

operating profit of VPPs in the energy/reserve market 

[9]. Specifically, the uncertainty in the price of the pool 

market is an important factor in the self-scheduling 

problem for different market participants [11].  

Stochastic programming and robust optimization are 

two main techniques for handling uncertainties in 

optimization problems [3]. In stochastic programming, 

the probability distribution function for uncertain 

parameters must be forecasted, which may be difficult 

to obtain. On the contrary, robust optimization uses 

uncertainty set and does not need to make any 

assumption on the probability distribution function. 

 Some investigations have been accomplished to 

provide schedules for different energy market players in 

the presence of pool market uncertainty. Bidding 

strategies for Gencos, considering uncertainty in market 

price, have been investigated in Ref. [12-17]. In Ref. 

[17-19], several frameworks have been introduced to 

help retailers make decisions considering uncertainties 

in the energy/reserve market. The self-scheduling 

problem known as the procurement strategy of large-

scale consumers has been addressed in Ref. [20-24]. 

Ref.[25, 26] have also discussed the impact of energy 

price uncertainty on the energy scheduling of multi-

carrier energy systems. 

 The decision-making problem of VPP, as a player in 

the energy/reserve market, in the presence of uncertain 

parameters has been investigated in some recent 

researches [27-37]. Ref. [27] have proposed a stochastic 

decision-making framework for a VPP considering price 

uncertainty. In this model, part or all of the demand can 

be supplied through a bilateral contract. This contract 

offers a strong opportunity to guarantee VPP income 

due to the volatility of the market price and possible 

constraints of the transmission system operator. In [28], 

a stochastic adaptive robust optimization model has 

been introduced for the offering problem of VPPs in the 

day-ahead energy market. The model considers the 

uncertainty in wind-power production and 

energy/reserve market prices. In Ref. [29], a robust 

optimization approach has been proposed in order to 

find the optimal bidding and offering strategy for 

participating in the day-ahead energy market. Price 

uncertainty has been considered in the paper and the 

results showed that VPP would be resisted against the 

uncertainty using the proposed method. The self-

scheduling of VPP based on stochastic programming 

subject to long-term bilateral contracts and technical 

constraints has been presented in Ref. [28]. In this 

framework, the uncertainty of wind and solar powers are 

compensated by including pumped hydro storage 

resources in VPP. Ref. [30] has proposed a stochastic 

programming model to find the optimal bidding strategy 

of a VPP, which participates in the electricity market. In 

this model, the price uncertainty and stochastic 

renewable power generation have been considered. In 

[31-33], uncertainties induced by renewable generation 

resources and prices in the energy market have also 

been taken into account in the short-term scheduling of 

VPP. These uncertainties in Ref. [31-30] were modeled 

in a probabilistic approach using Point Estimate Method 

(PEM). This method solves probabilistic problems by 

using deterministic routines. Based on the historical 

data, Conejo et. al. [33] used historical records in a 

scenario-based approach to model the uncertain 

parameters.  In Ref. [34], two risk management 

approaches have been implemented in the decision 

making problem of VPPs based on the conditional value 

at risk (CVaR) and second-order stochastic dominance 

constraints (SSD) to avoid profit variability caused by 

market price uncertainties. 

 Information gap decision theory (IGDT), developed 

by BenHaim [35], is a non-probabilistic decision 

technique that tends to maximize robustness to failure, 

or opportunity for success, under “severe uncertainty” 

[35]. It is an effective approach to support making 

decisions in uncertain environments. The main 

advantage of this theory is that it does not need any 

assumption of the nature and size of the uncertain data. 

Furthermore, the IGDT-based models have the ability to 

determine the optimal schedules to gain a predefined 

profit level. The IGDT-based model may help the 

determiners to evaluate risks and opportunities and 

make informed decisions [22]. For instances, in Ref. 

[36], a decision-making framework has been proposed 

to optimize the electricity purchasing strategies of load 

aggregators in the day-ahead electricity market. The 

authors used IGDT approach to handle real-time price 

uncertainty. Ref. [37] has  addressed unit commitment 

problem in power network considering VPP and DR 

programs. In this paper, the VPP has uncertain output 

and the authors used IGDT to deal with the 

uncertainties. 

This paper introduces a new bidding strategy 
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framework for robust decision making and self-

scheduling of a VPP, in which the IGDT is utilized to 

deal with the uncertainty of prices in the energy market. 

Furthermore, to manage the risk of VPP owners, besides 

the pool-based contracts, the bilateral contracts are also 

modeled in the VPP’s decision-making approach. In our 

proposed framework, the energy pool price is the 

uncertain parameter and the decision variables comprise 

the energy that needs to be exchanged in the pool 

market and through bilateral contracts, the reserve 

which should be provided, dispatch of DERs, the load 

which is needed to be curtailed, and 

charging/discharging scheduling of energy storage 

devices. Considering the risk-taking level of the 

determiner, this method guarantees the least critical 

outcome for the VPP by choosing decision variables in 

the presence of uncertainties. The main contributions of 

this paper are summarized as follows: 

1. A comprehensive analysis, based on IGDT-based 

self-scheduling framework, is performed to evaluate 

different schedules under various market settlement 

conditions for opportunistic and robust self-scheduling 

of VPP. Furthermore, the long-term bilateral contracts, 

besides the pool-based contracts, is considered and 

investigated by its modeling in the VPP’s decision-

making problem.  

2. Using the proposed IGDT-based model, the VPP 

owner can quantify the risk and caution in his/her self-

scheduling with respect to the obtained profit. 

Therefore, it is possible for the VPP owner to decide 

based on the risk (caution) level.  

The rest of the paper is structured as follows: Section 

2 gives characteristics and formulation for the self-

scheduling problem of VPP in energy/reserve markets. 

The IGDT-based self-scheduling for VPP as well as the 

modeling of uncertainties through information gap 

decision theory is given in Section 3. In Section 4 the 

simulation results and discussions are presented. 

Finally, Section 5 is dedicated to conclusions.  

 
Fig.1. Potential energy/reserve transactions for VPP 

2. VPP SELF-SCHEDULING PROBLEM 

2.1. VPP in energy/reserve markets 

A VPP, similar to other electrical market players, may 

take part in energy/reserve markets. Unlike typical 

power plants, VPPs may perform a dual role (seller or 

buyer) as a player in energy/reserve markets depending 

on parameters such as prices in the market, availability 

of DERs, or the demand of VPPs. Besides taking part in 

the pool market of energy, VPPs may enter a secondary 

market where producers and consumers can have 

bilateral contracts. The pool market is considered based 

on hourly bids. In the long term, on the other hand, 

bilateral contracts are concluded. Major reasons for 

bilateral contracting are the renewable energy resources 

uncertainties and possible system operator constraints. 

Accordingly, a VPP decides how much of its capacity 

should be contracted bilaterally in advance, and how 

much can be offered in the market. Moreover, similar to 

electricity retailers, VPPs need to satisfy their own small 

consumers by providing energy with a fixed price, 

which is known as the retail price. The potential 

energy/reserve transactions for VPP is illustrated in 

Fig.1.  

2.2. The Formulation of self-scheduling problem for 

VPP 

a. Objective Function 

The purpose of self-scheduling for VPP is to gain 

maximum profit from selling energy to local loads, 

trading power in energy/reserve markets, and signing 

bilateral contracts. Therefore, the objective function 

indicating the self-scheduling problem of VPPs in the 

energy/reserve markets is expressed by (1) [38]. 

The first term in Eq. (1) implies the income gained by 

exchanging energy in the energy/reserve markets, 

signing bilateral contracts, and also supplying end 

consumers. The next terms in Eq. (1), respectively, 

stand for the costs of DGs, electromechanical storage, 

and load curtailment. In this framework, either pay-as-

bid or uniform clearing mechanisms of the energy pool 

exchange market can be applied. The settlement of the 

reserve market is based on capacity bids. Similar to 

[39], the self-scheduling model is developed based on 

forecasted clearing prices of energy/reserve markets. 

The submitted capacities of participants whose bids are 

accepted are considered to be realized. 
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b.  Equality constraints for supply-demand balancing 

The constraints for the equality of supply and demand in 

the pool market and bilateral contracts are respectively 

given in Eq. (2) and Eq. (3). According to these 

constraints, VPP can determine the amount of energy 

that should be bought and sold through pool market and 

bilateral contracts for each time period of t in the 

scheduling horizon. The scheduling horizon in this 

paper is considered one week. Equation (4) shows the 

equality constraint for the operating reserve in the 

system. Equations (5) - (8) express the total scheduled 

power for DGs, storages, load curtailment, and served 

load in the pool market and bilateral contracts, 

respectively. 
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c. DER constraints 

In the following relations, Eqns. (9) to (14) represent 

constraints of DG units, Eqns. (15) and (16) show the 

limitation of storage devices, and Eq. (17) expresses the 

limitation of load curtailment. Constraint (9) represents 

that the sum of the scheduled generation of each DG 

unit in the energy and reserve market must be within its 

lower and upper production limits. The ramp rate for 

DG generation in the reserve market is constrained by 

Eq. (10) [39]. Equations (11) - (14) model the minimum 

up and down constraints for DG units. 
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d. Constraints for network security of VPP  

The equations for considering the security of the 

network are given by Eqns. (18) to (23) [39]. Equation 

(18) and (19) denotes the power flow equations for a 

distribution network. The active and reactive power 

losses for the line connecting node i to j is calculated by 

equations (20) and (21), respectively. Equations (22) 

and (23) apply the upper and lower bounds for each line 

flow and node voltage, respectively. 
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3. IGDT-BASED SELF-SCHEDULING MODEL 

OF VPP IN ENERGY/RESERVE MARKETS 

This section proposes an IGDT-based self-scheduling 

formulation for a VPP participating in the 

energy/reserve market in the presence of uncertain 

parameters. In the proposed approach, the energy pool 

price is the uncertain parameter while the decision 

variables are the energy that needs to be exchanged in 

the pool market and through bilateral contracts, the 

reserve which should be provided, dispatch of DERs, 

the load which is needed to be curtailed, and the state of 

charging or discharging of storage resources. The 

proposed model aims at maximizing the net profit of 
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VPP over the scheduling period, as expressed in Eq. (1). 

3.1. Uncertainty modelling through information gap 

decision theory 

The IGDT helps the determiner to choose uncertain 

parameters based on its predefined aims such as 

maximizing robustness (defined as achievement of 

minimum requirements under any circumstances) or 

opportunity (defined as gaining maximum performance 

in the presence of desired deviations of uncertain 

parameters). Modeling errors between the exact and 

predicted values, IGDT supports the determiner to 

assess risk and to make risk-based decisions [22-24].  

Uncertainties may be disadvantageous when they 

cause the profit to be decreased or may be advantageous 

when it leads to a higher profit. IGDT uses robustness 

and opportunity functions to manage this, considering 

the level of risk-taking behavior of the determiner. 

Robustness function   and opportunity function   for 

uncertainty parameter  are expressed as follows [22-24]:  

ˆ
ˆ max{ | ( ) , }
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B B
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 
   
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
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 
   




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The robustness function (24) shows the maximum 

amount of uncertainty so that the desired minimal 

reward or demand is satisfied. In other words, the 

robustness function is the degree of resistance to 

uncertainty and immunity against less profit. This 

means that a large value of ̂  is desirable. Therefore, it 

can be defined mathematically through an optimization 

problem as Eq. (24).  

On the contrary, the opportunity function (25) 

expresses the minimum amount of uncertainty so that 

the desired maximal target is achieved. This function is 

the immunity against windfall profit. Thus, a low value 

of ̂ is desirable. A low value of ̂  indicates a 

situation in which the profit is achievable. The 

corresponding mathematical formulation can be 

represented by the minimization problem (25). An 

IGDT decision-making framework comprises three 

elements as follows [20-22]: 

a.  System model 

The system model ( , )C A  gives the input/output 

behavior of the system, which needs decision making. 

Using the system model ( , )C A  , the result of choosing 

decision variables A and the uncertain parameter  is 

defined. In this research, the system model presents the 

outcome of VPP from participating in energy/reserve 

markets. 

b. Performance requirements 

The performance requirement can be whether the least 

expected benefit of a firm or the maximum expected 

cost it should pay. It is important to state that due to 

uncertainties, the minimum requirements are risk 

dependent. IGDT guarantees the determiner to achieve 

the minimum requirements by choosing decision 

variables in the presence of uncertainties of parameters. 

These requirements can be evaluated through robustness 

and opportunity functions mentioned in equations (24) 

and (25).  

c. Uncertainty model 

The uncertainty model shows the distance between 

unknown and forecasted values. In the IGDT method, 

the envelope bound model is considered as the 

uncertainty model ˆ( , )U x . The uncertainty model 

ˆ( , )U x  presents a set for all values with deviations not 

more than  from x , as follows: 

ˆ( , )

ˆ
ˆ( , )

ˆ

x U x

x x
U x

x



 




 

 (26) 

In this research, IGDT has been applied to VPP self-

scheduling problem to help the determiner gain a robust 

profit in the presence of uncertainties in market prices. 

The prices in pool-based market are considered to be 

forecasted as
1

ˆ ˆ ˆ{ , , }
T

 λ . An envelope bound 

model ( , )U    is assumed as the IGDT uncertainty 

model to define the uncertainty vector  by: 

ˆ
( , ) : , 0

ˆ
U

 
    




  
 
 
 

 (27) 

where, ̂ is the forecasted amount of the actual price

 .  shows the radius that the parameter can drift 

from the forecasted value which defines the opportunity 

value for the opportunity-seeking strategy and the 

robustness value for the risk-averse strategy. This model 

expresses an envelope-bound model in which the 

magnitude of deviation is proportional to the forecasted 

value. 

3.2. Robustness function  

Risk-averse VPPs tend to guarantee a critical profit, 

denoted as
R

B , which is protected against unpleasant 

deviations of actual energy market prices from their 

forecasted amounts. Therefore, robust performance of a 

VPP in energy/reserve markets can be formulated as: 
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( , ) max
R

A B   (28) 

Subject to: 

1
Re Ret

( ) ( )
min { }

cost( )

t Con

R

t :T
s

E λ t R t
B

R (t) R (t) t

 


  

 
 
 

  (29) 

(1 )
R R D

B B   (30) 

ˆ( ) (1 ) ( )t t     (31) 

ˆ( ) (1 ) ( )t t     (32) 

Equations (2) – (23) (33) 

It should be noted that Equations (2) – (23) are added 

into the above optimization problem as constraints in 

(33). The VPP schedule achieved from the above-

mentioned optimization model is robust to the 

predefined amount of 
R

B  which is the least expected 

outcome for VPP. To put it another way, if all absolute 

relative errors of forecasted prices are smaller than or 

equal to , the profit of VPP will be greater than
R

B . In 

this way, the maximum tolerable error for forecasting 

will be . 

3.3. Opportunity function 

Risk-seeker VPPs tend to make use of pleasant 

deviations of actual energy market prices from their 

forecasted values and reach the target profit, denoted as

O
B . Hence, the opportunity function for risk-seeker 

VPP can be expressed as: 

ˆ ( , ) min
O

A B   (34) 

Subject to: 

Re

1
Ret

( ) ( )
max { }

cost( )

t Con s

O

t :T

E λ t R t R (t)
B

R (t) t

  


 

 
 
 

  (35) 

(1 )
O O D

B B   (36) 

ˆ( ) (1 ) ( )t t     (37) 

ˆ( ) (1 ) ( )t t     (38) 

Equations (2) – (23) (39) 

It should be noted that Equations (2) – (23) are added 

into the above optimization problem as constraints in 

(39). The above-mentioned optimization problem leads 

to a schedule that the owner is hopeful to gain a 

predefined target outcome of 
O

B when all absolute 

relative errors of forecasted prices are greater than or 

equal to ̂ . To put it another way, ̂  is the least 

required error of forecasting which leads to the least 

expected target
O

B . 

Please note that any uncertain parameter might have 

negative or positive impacts on the system. Therefore, 

the IGDT method is utilized as a proper method to 

evaluate both negative and positive sides of uncertainty 

by considering robustness and opportunity functions, 

respectively. 

4. NUMERICAL RESULTS 

4.1. Case system 

To evaluate the proposed self-scheduling model, the 

case study is chosen to be identical to the test system 

studied in [40-41]. In this test system, a VPP with eight 

DGs is considered to participate in energy/reserve 

markets. Figure 2 shows the network diagram of the 

case system. The network is connected to the main grid 

(infinite bus) at Bus 1. 

Interruptible loads at buses 4 and 7, respectively, can 

be reduced up to 30 kW and 40 kW. The costs of 

curtailing loads at these buses are given in Eqns. (40) 

and (41), respectively. 

2
( ) 0.01 3

us us us us
c P P P     (40) 

2
( ) 0.01 1.5

us us us us
c P P P     (41) 

In this study, similar to [23], the VPP’s demand in 

each day has been divided into three load levels 

addressed as peak, shoulder, and valley. The retail rates 

for each load level are given in Table 1. Bilateral 

contracts are considered to be convenient for the 

scheduling horizon. Table 2 provides the data for 

bilateral contracts, including the type of the contract, the 

energy to be exchanged, the energy price, and available 

hours for the contract. 

 
Fig. 2. The case system 

Table 1. Retail rates at daily load levels 

Load level Hours of day 
Retail rate 

(Monetary units/kW) 

Valley 1,2,3,4,5,6,7,8 8 

Shoulder 9,10,15,16,17,18,23,24 9 

Peak 11,12,13,14,19,20,21,22 11 

Table 2. Bilateral contracts specification 

# 
Type of 

contract 

Amount 

(kW) 

Price (Monetary 

units/kW) 
Load Level 

file:///C:/Users/jsaeb/Dropbox/Papers/Saeed/1/Main%20VPP_joape_Blind-R1.docx%23_ENREF_44
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1 Bid to sell 40 6.2 Valley 

2 Bid to sell 60 9.3 Shoulder 

3 Bid to sell 80 14.7 Peak 

4 Bid to buy 30 6.1 Valley 

5 Bid to buy 50 8.9 Shoulder 

6 Bid to buy 70 12.6 Peak 

The net forecasted load over the scheduling horizon 

(1 week) and the forecasted clearing prices for 

energy/reserve markets are illustrated in Figures 3.a and 

3.b, respectively. DG1, DG4, and DG8 besides 

interruptible loads in busses 4 and 7 are assumed as 

providers of reserve service. The proposed framework is 

modeled in GAMS 22.0.35 and solved using the 

BARON solver. It should be noted that the problem is a 

mixed-integer non-linear programming (MINLP) model. 

Therefore, to overcome the solution complexities, the 

Benders’ cut decomposition has been utilized [38]. To 

establish simulations, the deterministic VPP’s self-

scheduling problem formulated in section 2 is solved 

according to the forecasted market prices. The desired 

optimal profit D
B

 is 126001.6 monetary units.  

 
Fig. 3. The Forecasted a)load of VPP b)prices of energy/reserve 

markets over the scheduling horizon 

 
Fig. 4. The optimum robustness parameters over different profit 

deviation factors 
 

 
Fig. 5. The different robust schedules of VPP for various profit 

deviation factors 

4.2. VPP’s robust self-scheduling  
The robust optimization problem (28)-(33) has been 

solved for different amounts of
R

 . The results in 

different optimum robustness functions depicted in Fig. 

4. This figure reveals that, for example, a critical 

outcome of 63000.787
R

B   ( 0.5
R

  ) is assured 

when none all hourly errors are not more than

ˆ 0.145  . It indicates that expecting smaller critical 

profits results in tolerability of larger errors in 

forecasting prices. However, the expected critical profit 

may not be obtained if real prices are not in the 

corresponding robust region. 

Fig. 5 shows the robust schedules of VPP for 

different amounts of
R

 . The changes in the schedules 

of VPP over different values of 0
R

   to 0.65
R

   

are to help VPP tolerate greater unfavorable price 

deviations. As can be seen in Fig. 5, for lower values of 

risk (higher
R

 ), buying from the pool, with volatile 

prices, is decreased and buying via contracts and 

production are increased. Buying from the pool is 

decreased by 35.4 percent when 
R

  is increased from 0 

to 0.65.  On the other hand, total production of the VPP 

is increased by 48.7 percent when 
R

 is increased from 

0 to 0.65. Due to high production of units in lower 

values of risk, the participation in reserve market is 

decreased.   

4.3. Opportunistic self-scheduling of VPP  

To assess the profit obtained through opportunistic self-

scheduling, using equations (34) to (39), different 

opportunistic schedules for the operation of VPP are 

investigated with 
O

  value ranging from zero to 0.65. 

Fig. 6 depicts variations of opportunity parameter ̂  

over different profit deviation factors. This figure 

reveals that to obtain a greater desired target outcome, 

price mismatch from forecasted values should be 

desirable and high.  

Fig. 7 shows the opportunistic schedules of the VPP for 
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different values of 
O

 . The changes in the schedules of 

the VPP over different values of 
O

  are to help the VPP 

gain greater profits from desired price deviations. As it 

can be seen in this figure, with increasing 
O

 , the VPP 

tends to increase buying from the energy market, with 

uncertain prices, and decrease local generation as well 

as buying energy via signing bilateral contracts. In this 

schedule, buying from the pool market is always more 

than total production for all different values of 
O

 . 

Buying from the pool is increased by 30.7 percent when 

O
  is increased from 0 to 0.65. On the other hand, total 

production of the VPP is decreased by 27.5 percent 

when 
O

 is increased from 0 to 0.65. 

 

 
Fig. 6. Optimum opportunity parameters over different profit 

deviation factors 

 
Fig. 7. The opportunistic schedules of VPP for different profit 

deviation factors 

Table 3. Profits of the VPP in each scenario 

Price Scenario 

Benefit of Robust 

scheduling 

(Monetary Units) 

Benefit of Opportunistic 

scheduling 

(Monetary Units) 

Scenario 1 124000.12 126341.58 

Scenario 2 104465.61 95656.36 

Scenario 3 122220 123878.47 

Scenario 4 94999.04 86546.63 

Scenario 5 149471.9354 161633.75 

Scenario 6 95954.86 85547.17 

It should be noted that the main difference between 

the IGDT model with other uncertainty modeling 

systems is that the VPP can decide according to the risk 

or caution level, while other uncertainty modeling 

methods do not provide such an option for the decision-

maker. In other methods, the self-scheduling is done 

without any predefined values for risk and caution. 

Therefore, any level of risk and caution illustrated in 

figures 5 and 7 may be the final solution, while in our 

model, the VPP can decide his/her desired scheduling 

based on the risk/caution level.  

4.4. Evaluation of robust and opportunistic 

schedules in various market settlement 

conditions 

In this part, we investigate the changes in the VPP’s 

profit through different operating schedules under 

various market settlement conditions. To simulate 

various market-clearing conditions, different scenarios 

of real market prices have been considered. The robust 

regions for all of these scenarios correspond to 

0.2
R

  . These scenarios for energy/reserve market 

prices are presented below: 

1. In scenario 1, real prices are randomly located in the 

corresponding robust region and they all are below 

the forecasted prices. 

2. In scenario 2, all real prices are randomly located in 

the corresponding robust region and are above the 

forecasted prices. 

3. In scenario 3, all real prices are distributed randomly 

in the corresponding robust region. 

4. In scenario 4, real prices have some spikes over the 

forecasted prices. 

5. In scenario 5, some negative spikes happen in real 

market prices compared with the forecasted prices. 

6. In scenario 6, both negative and positive spikes 

happen in real market prices compared with the 

forecasted prices. 

To evaluate different schedules under various market 

settlement conditions, the robust and opportunistic 

operating schedules expressed by 0.2
R

   and 

0.2
O

   have been used. The critical outcome for the 

robust schedule and the target outcome for the 

opportunistic schedule are 

(1 0.2) 126001.6 100801.3
R

B      and

(1 0.2) 126001.6 151201.9
O

B      monetary units, 

respectively. Considering the previously defined 

scenarios, the outcome of the opportunistic and the 

robust schedules in each scenario are determined. The 

gained profits of the VPP from these schedules for each 

scenario are given in Table 3. 

Table 3 shows that while clearing prices of the first 

three scenarios are all located in the corresponding 

robust region, the critical outcome of 100801.3
R

B   

will be guaranteed for the VPP. For scenarios 4 and 6, 

the achieved profits for the robust schedule are 

94999.04 and 95954.86 monetary units, respectively. 
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The profits for these two scenarios are below the critical 

outcome. The reason is that the real prices are out of the 

corresponding robust region in some hours. The 

obtained profit from the robust scheduling in scenario 5 

not only is more than the critical outcome but also is 

more than the profits obtained by the VPP in other 

scenarios. That is because the VPP can play a dual role 

(seller/ buyer) as a player in energy/reserve markets. 

Therefore, negative price spikes in the real market 

prices may lead to the higher outcome for the VPP by 

purchasing energy from the market. However, achieving 

such a profit has no conflict with the concept of robust 

self-scheduling. 

On the contrary, due to a lack of satisfying price 

spikes in real market prices, the VPP’s opportunistic 

schedule in each of the first three scenarios has not 

reached the predefined target profit. It is necessary to 

note that the opportunistic schedule in scenario 2 fails to 

reach the critical outcome either. The situation is similar 

for scenarios 4 and 6. In these scenarios, real market 

prices deviate undesirably from the VPP point of view. 

In the fifth scenario, the situation is a bit different. In 

this scenario, there are favorable differences between 

real and forecasted market prices. Due to these 

differences, the VPP will obtain higher profit in the time 

of purchasing energy from the market.  

5. CONCLUSION 
This paper proposed two new IGDT-based models for 

the risk-constrained self-scheduling problem of VPPs 

considering uncertain pool market prices. A VPP with 

risk-aversion behavior, using the proposed formulation, 

assures a least predefined profit called critical profit 

while the real prices are in the robust corresponding 

area. In contrast, a risk seeker VPP may reach a 

predefined target profit by using the proposed 

framework and with the help of desired sudden large 

price spikes that may happen in the markets. 

For the purpose of illustrating the validity of the 

IGDT-based formulation, the proposed method was 

tested on a VPP case system. Robust and opportunistic 

scheduling of the VPP were determined through the 

method. Using this method, risk and caution in self-

scheduling for the VPP were quantified with respect to 

the obtained profit. In the proposed robust formulation, 

the profit relies on how cautious is the VPP about 

considering tolerance for forecasted errors. On the 

contrary, in opportunistic self-scheduling, the profit 

relies on how ambitious is the VPP by choosing the 

targeted profit. Our future work will consider the 

impacts of uncertainties in loads and intermittent 

renewable resources. 
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