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Abstract- Increasing requirements of electric vehicles with different capacities of batteries and increasing number of 

small-sized renewable energy sources lead to complexity of calculations, voltage drop, power quality loss, and 

unevenness in the load curve. This paper proposes a modified version of the mean-field decentralized method to smooth 

the load curve, maximize vehicle owners' profit, and meet vehicle owners’ demands. Different capacity of batteries is a 

challenging problem in the charging and discharging control of electric vehicles; so to solve this problem, a weighted 

average method is used, which determines the design weighting parameters based on the capacity of batteries. Finally, 

a comparison has been made between five different centralized and decentralized strategies with weighted and 

weightless average methods. 
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1. INTRODUCTION 

Due to the small size of some distributed generation 

resources, such as small-sized wind turbines and 

photovoltaics, these resources are often installed near 

the consumer [1]. In this regard some approaches have 

been proposed to integrating small-scale distributed 

energy sources into low and medium-voltage networks 

with renewable energies [2]. In such networks, the 

demand-side management algorithms help to reduce the 

peak-to-average ratio by increasing the cost of 

electricity and using renewable energy resources [3]. 

Therefore, due to increasing energy consumption costs 

and also lack of resources to meet the needs, electric 

vehicles can be used for two-way energy exchange [4]. 

Using these vehicles is one of the optimal solutions to 

overcome the problem of fossil fuels and global 

warming [5]. Due to the increasing number of electric 

vehicles and renewable energy sources, the need to use 

energy management in smart grids is observed. By using 

energy management, the peak load could be reduced, 

which leads to increased network stability and reduced 

operating costs [6]. Because of the variable nature of 

renewable energy sources, energy storage devices such 

as batteries can help to maintain the voltage quality [7]. 

However, uncoordinated charging of electric vehicles 

leads to overload, power quality loss, and voltage 

fluctuations, which is very harmful to distribution 

networks [8]. To persuade vehicle owners to share their 

batteries with the smart grid, both profit and requests 

must be met (vehicle requirements). For this purpose, 

each vehicle notifies the required final state of charge 

(SoC) at arrival time to the aggregator. However, 

considering the initial and the final SoC lead to 

complexity of calculations and increases the time to 

perform calculations. 

A battery charge and discharge algorithm has been 

proposed in [9] for managing alternating renewable 

sources, real-time network data for peak load shaving, 

power curve smoothing, and voltage regulation of a 

distribution transformer. A solution for high penetration 

of renewable energy using a battery energy storage 

system with the peak shaving and load curve smoothing 

was presented [10]. High penetration of renewable 

energy is considered in [9, 10], but the vehicle 

requirements are not considered. Control of the diesel 

generators and wind turbines in [11] enables the battery 

to smooth the wind and load changes, improve the 

power quality of the islanded system, adjust the 

frequency and reduce the peak. In [12], the load curve 
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of a system consisting of diesel generators, PV farms, 

and batteries is smoothed in an islanded state based on 

load prediction, and the peak of the load curve is 

shaved. Also, the power system in [11, 12] is considered 

for islanded mode. An electric vehicle to grid energy 

management system presented in [13] to peak shaving, 

valley filling, and load balancing in a grid-connected 

microgrid helps to smooth the load curve and better use 

of microgrids. The main purpose of the system is to 

reduce critical customer demand, load demand, fill off-

peak periods, and electricity price variation. An optimal 

priority-based vehicle-to-grid scheduling to minimize 

the grid load variance is proposed in [14] and can 

operate in valley filling, peak load shaving, and priority 

charging modes. The electric vehicle charging can be 

performed in all three modes, and the electric vehicle 

discharging only occurs during peak load shaving mode. 

Two decentralized electric vehicle charge scheduling 

schemes for smoothing the load curve of residential 

communities are designed in [15]. These methods are 

based on coordinated valley-filling of the load curve via 

only EV charging and coordinated valley-filling and 

peak-shaving of the load curve via both EV charging 

and discharging, respectively; but the renewable energy 

resources are not considered in [15]. Two methods for 

optimizing electric vehicle charging in an aggregation of 

consumers with the objectives of load profile leveling 

and total cost minimization are proposed in [16]. A two-

layer distributed optimization platform with the 

alternating direction method of multipliers in [17] 

enhances the load profile’s smoothness compared to the 

locally coordinated and uncoordinated charging 

platforms. An optimal electric vehicle recharging 

strategy using quadratic programming for the peak 

power demand flattening is proposed in [18]. The main 

drawback of the management systems designed in [11-

18] is that they do not fulfill the vehicle requirements. 

A penalty factor-based objective function is proposed 

in [19] for scheduling electric vehicles' coordinated 

charging and discharging strategy to flatten the daily 

load curve. A charging management method is proposed 

in [20] to minimize the total cost and smooth the 

demand curve with a stochastic distribution function for 

arrival and departure times. However, renewable energy 

resources are not considered in [19, 20]. 

The contributions of this paper are: 

1. The demand of vehicle owners has been considered 

by using four parameters including, arrival time, 

departure time, initial SoC, and final SoC which are 

selected randomly without any limit on their values. 

2. Some homes have small wind turbines, some homes 

have photovoltaics, and other homes are without 

renewable energy sources. 

3. A modified mean-field decentralized method is 

proposed to optimize the charging and discharging 

of batteries. 

4. The vehicle requirements and battery capacity of 

each vehicle are different. 

5. Some vehicles are at home, and the others are in the 

parking lot.  

6. The weighted average method has been modified to 

increase the accuracy of charging and discharging 

based on the different capacity of batteries. 

In this regard, the remaining of this paper is 

organized as follows: Section 2 introduces the 

components of the system, encounters vehicle demands, 

and proposes a modified mean-field algorithm. Section 

3 provides different methods with standard or weighted 

averaging for every hour or several hours. Section 4 is 

brought the value of parameters, the value of forecasting 

output power renewable energies, simulation results, 

and comparison between different methods. In Section 

5, the paper's conclusions are expressed. 

2. SYSTEM MODELING 

In this paper, home customers fall into two categories 

(Figure 1). The first category only contains loads. In 

addition to the load, the second category has home-

installed renewable energy resources. Renewable energy 

resources fall into two categories: a photovoltaic and a 

small wind turbine. Electric vehicle batteries with 

different battery capacities are also connected to the 

distribution network, either in the parking lot or home. 

When a battery is connected to the grid, it declares four 

parameters: arrival time, departure time, initial SoC, and 

final SoC. The aggregator smooths the load curve 

considering the output power of renewable energy 

resources and the necessary power for the home load 

and considering the connected batteries declaration and 

different battery capacities. 

Total home power consumption and total production 

capacity of renewable resources for the customer 𝑛 ∈ 𝑁 

at 𝑡 ∈ 𝑇 are considered as 𝑝𝑛
𝐷,𝑡

 and 𝑝𝑛
𝑆,𝑡

, respectively. As 

a result, the total uncontrollable power for each 

customer is considered as 𝑝𝑛
𝑈𝑛,𝑡 = 𝑝𝑛

𝐷,𝑡 − 𝑝𝑛
𝑆,𝑡

. 

Production capacity of renewable resources for 

customer 𝑛 ∈ 𝑁 at 𝑡 ∈ 𝑇 is considered as 𝑝𝑛
𝑆,𝑡 = 𝑝𝑛

𝑃𝑉,𝑡 +

𝑝𝑛
𝑊𝑇,𝑡

. The previous days’ uncontrollable power curve is 

used as a power forecast for the next days. Then, the 

total customer power, including EV battery, is 

determined as follows: 
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Fig. 1. Types of connection of electric vehicles to the distribution 

network 

 

𝑝𝑛 = 𝑝𝑛
𝑈𝑛 + 𝛾𝑛(𝑞𝑛

𝐶 − 𝑞𝑛
𝐷), 𝛾𝑛 = {

1, 𝑡𝑎𝑟𝑟
𝑛 ≤ 𝑡 ≤ 𝑡𝑑𝑒𝑝

𝑛

0,                     O. W.
 (1) 

where 𝑝𝑛
𝑈𝑛 = [𝑝𝑛

𝑈𝑛,1 ⋯ 𝑝𝑛
𝑈𝑛,𝑇]

𝑇
, 𝑝𝑛 = [𝑝𝑛

1  ⋯ 𝑝𝑛
𝑇]𝑇 , 

𝑞𝑛
𝐶 = [𝑞𝑛

𝐶,1  ⋯ 𝑞𝑛
𝐶,𝑇]

𝑇
, and 𝑞𝑛

𝐷 = [𝑞𝑛
𝐷,1  ⋯ 𝑞𝑛

𝐷,𝑇]
𝑇

. 𝑞𝑛
𝐶,𝑡

 

and 𝑞𝑛
𝐷,𝑡

 indicate the amount of charge and discharge of 

the 𝑛th  battery at 𝑡 ∈ 𝑇 . 𝑡𝑎𝑟𝑟
𝑛  and 𝑡𝑑𝑒𝑝

𝑛  show electric 

vehicles arrival and departure times, respectively. 𝛾𝑛 is 

defined for the 𝑛th  EV according to its arrival and 

departure times. 

The dynamics of SoC is considered as follows [21]: 

𝑠𝑛
𝑡 = 𝑠𝑛

𝑡−1 +
𝜇𝑛

𝜍𝑛
𝑞𝑛

𝐶,𝑡 −
𝜇𝑛

−1

𝜍𝑛
𝑞𝑛

𝐷,𝑡
, (2) 

where: 

0 ≤ 𝑠𝑛
𝑡 ≤ 1 , 0 ≤ 𝑞𝑛

𝐶,𝑡 ≤ 𝑞𝑛
𝐶,max

, 0 ≤ 𝑞𝑛
𝐷,𝑡 ≤ 𝑞𝑛

𝐷,max
, 

𝑠𝑛
𝑡0

𝑛

= 𝑆𝑜𝐶0
𝑛, 𝑡0

𝑛 = 𝑡𝑎𝑟𝑟
𝑛 , 𝑠𝑛

𝑡𝐹
𝑛

= 𝑆𝑜𝐶𝐹
𝑛, 𝑡𝐹

𝑛 = 𝑡𝑑𝑒𝑝
𝑛 . 

𝑠𝑛
𝑡  indicates the SoC of customer 𝑛  at time 𝑡  and 

𝑆𝑜𝐶0
𝑛 and 𝑆𝑜𝐶𝐹

𝑛 represent initial and final values of the 

SoC. 𝜍𝑛 indicates the 𝑛th battery capacity 

Note that for 𝛾𝑛 = 0 , the amount of charge and 

discharge of the battery is assumed to be zero, and the 

defined optimization problem is solved without 

considering all the constraints in (2). However, if 𝛾𝑛 =

1 , all constraints in (2) are considered in the 

optimization problem. Also, due to the different 

capacities of the batteries, the charging and discharging 

dynamics of the batteries have different speeds, so these 

capacities must be taken into account for averaging. The 

price function is considered as follows: 

𝑇𝑛
𝑡(𝑝𝑛

𝑡 , 𝑝̅𝑡) = 𝑎𝑒,𝑛
𝑡 𝑝𝑛

𝑡 + 𝑏𝑒
𝑡𝑝̅𝑡 + 𝑐𝑒

𝑡, (3) 

where 𝑎𝑒,𝑛
𝑡 ≥ 0 and 𝑏𝑒

𝑡 > 0, and 𝑝̅ is defined as: 

𝑝̅ = ∑
1

𝑁𝑛∈𝑁 𝑝𝑛, (4) 

where 𝑝̅  is 𝑝̅ = [𝑝̅1  ⋯ 𝑝̅𝑇]𝑇 . 𝑎𝑒,𝑛
𝑡 , 𝑏𝑒

𝑡 , and 𝑐𝑒
𝑡  are 

predetermined parameters. The price function in (3) is 

effective in moving the load (due to the dependence of 

the price function on 𝑝̅𝑡) and reducing the load (due to 

the dependence of the price function on 𝑝𝑛
𝑡 ). According 

to the price function for customer 𝑛 , the daily bill is 

calculated as follows [21]: 

𝐸𝑛
𝑡 (𝑝𝑛

𝑡 , 𝑝̅𝑡) = 𝑇𝑛
𝑡(𝑝𝑛

𝑡 , 𝑝̅𝑡)𝑝𝑛
𝑡 , (5) 

The term 𝑎𝑒,𝑛
𝑡 𝑝𝑛

𝑡  in (3) converts the electricity bill 

into a quadratic form, encouraging customers to reduce 

consumption. The term 𝑏𝑒
𝑡𝑝̅𝑡 also encourages customers 

not to consume during peak rush hours, and it helps to 

smooth the load curve. The term 𝑐𝑒
𝑡  is for changing 

electricity tariffs at different times of the day by the 

distribution network. 

The cost of degradation of electric vehicle batteries is 

considered as follows [21]: 

𝐻𝑛(𝑞𝑛
𝑡 ) = 𝑎ℎ,𝑛 ((𝑞𝑛

𝐶,𝑡)
2

+ (𝑞𝑛
𝐷,𝑡)

2
) + 𝑏ℎ(𝑞𝑛

𝐶,𝑡 + 𝑞𝑛
𝐷,𝑡), (6) 

where 𝑞𝑛
𝑡 = [𝑞𝑛

𝐶,𝑡 𝑞𝑛
𝐷,𝑡]

𝑇
. Now, the 𝑛th  customer 

cost function is defined as: 

𝑈𝑛(𝑞𝑛 , 𝑝̅) = ∑ (𝐸𝑛
𝑡 (𝑝𝑛

𝑡 , 𝑝̅𝑡) + 𝛾𝑛𝐻𝑛(𝑞𝑛
𝑡 ))𝑡∈𝑇 , (7) 

where 𝑞𝑛 = [𝑞𝑛
𝐶 𝑞𝑛

𝐷]𝑇 . The main task for each 

customer is to obtain the optimal value of 𝑞𝑛  to 

minimize the cost function in (7). 𝑞𝑛
𝐶  and 𝑞𝑛

𝐷  are the 

optimization problem variables which show parameters 

taken into account during charging and discharging 

respectively. 

According to (7), each customer’s strategy affects 

other customers through 𝑝̅𝑡. Also, since each player in 

the game does not have information about the strategy 

of other players, this game is not complete. However, 

since 𝑝̅  is a common term in the cost function of all 

players, they do not need to know the optimal strategy 

of other players. As a result, a modified decentralized 

mean-field optimization is proposed to solve the 

problem. In this method, information does not exchange 

among the players, but is only communicated between 

the players and the distribution network. That is, the 

distribution network calculates the optimal strategy for 

the players and sends the estimated amount of the mean-

field term for the next level, to all of them. Thus, the 

common term 𝑝̅, called the mean-field term, is estimated 

by 𝑧(𝑘), where 𝑘 is the step number of the algorithm. 

By employing 𝑧(𝑘)  instead of 𝑝̅ , the optimization 

problem for the 𝑛th player is modified as follows [21]: 

𝑞𝑛
∗ (𝑧(𝑘)) = argmin

𝑞𝑛

𝑈𝑛(𝑞𝑛 , 𝑧(𝑘)), (8) 

Using the Mann iteration algorithm [22], the update 
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rule is defined as [21]: 

𝑧(𝑘 + 1) = (1 − 𝜆(𝑘))𝑧(𝑘) + 𝜆(𝑘)Λ(𝑧(𝑘)) , 

Λ(𝑧(𝑘)) = ∑
1

𝑁
𝑝𝑛

∗ (𝑧(𝑘))𝑛∈𝑁 , (9) 

where ∑ 𝜆(𝑘)∞
𝑘=0 = ∞  and ∑ 𝜆(𝑘)2∞

𝑘=0 < ∞  and for 

every iteration 𝑘 , 𝑝𝑛
∗ (𝑧(𝑘)) = 𝑝𝑛

𝑈𝑛 + 𝛾𝑛 (𝑞𝑛
𝐶∗(𝑧(𝑘)) −

𝑞𝑛
𝐷∗(𝑧(𝑘))). 

The estimation and optimization process is described 

through the following iterative where each player plans 

his optimal strategy using the average network 

consumption. According to the consumption curve of 

the players in different iterations, estimation of the 

average network load curve is updated by the 

distribution network and sent to the players. If customer 

𝑛  cannot send its corresponding 𝑝𝑛  value at any 

iteration, the algorithm continues with the last 𝑝𝑛 value 

sent by the player. 

Modified mean-field algorithm for electric vehicle 

charging problem: 

initialization 

   randomly initialize 𝑧(0), 𝑘 ← 0 

iteration 

   for 𝑛 ∈ 𝑁 

      𝑞𝑛
∗ (𝑧(𝑘)) ← argmin

𝑞𝑛

𝑈𝑛(𝑞𝑛 , 𝑧(𝑘)) 

      𝑝𝑛
∗ (𝑧(𝑘)) ← 𝑝𝑛

𝑈𝑛 + 𝛾𝑛(𝑞𝑛
𝐶∗(𝑧(𝑘)) − 𝑞𝑛

𝐷∗(𝑧(𝑘))) 

   end 

      Λ(𝑧(𝑘)) ← ∑
1

𝑁
𝑝𝑛

∗ (𝑧(𝑘))𝑛∈𝑁  

      𝑧(𝑘 + 1) ← (1 − 𝜆(𝑘))𝑧(𝑘) + 𝜆(𝑘)Λ(𝑧(𝑘)) 

      𝑘 ← 𝑘 + 1 

Lemma 1: According to Theorem 3 in [21], if the 

assumptions of Theorem 2 in [21] are valid and the 

population of players converges infinitely, then the 

proposed algorithm converges to the Nash equilibrium 

point. 

3. SOLVING THE OPTIMIZATION PROBLEM 

Due to the vehicles’ information changes and their 

requests, the calculations shall be updated every hour. 

On the other hand, due to the different capacities of the 

batteries, the charging and discharging dynamics of the 

batteries are different. In the following subsections, five 

methods are presented to solve the problem. 

3.1. The first method 

In this method, the normal average is used, and due to 

the change in the number of vehicles and their requests, 

the calculations of all vehicles are updated per hour. 

3.2. The second method 
In this method, batteries with the same capacity are put 

in one batch. First, the optimization is done for all 

vehicles. Then the calculations are updated for the first 

category in the first hour, the second category in the 

second hour, and so on. If the number of categories 

equals 𝑚, the calculations will be updated in the same 

way from 𝑚 +  1 onwards. Also, the average is done 

normally per hour. 

3.3. The third method 
In this method, due to the change in the number of 

vehicles and their requests, the calculations of all 

vehicles are updated per hour. The weighted average 

also is used for averaging as follows: 

Λ(𝑧(𝑘)) =
𝛼1𝑝1

∗(𝑧(𝑘))+𝛼2𝑝2
∗(𝑧(𝑘))+⋯+𝛼𝑛𝑝𝑛

∗ (𝑧(𝑘))

𝛼1+𝛼2+⋯+𝛼𝑛
, (10) 

in which 𝛼𝑛 =
1

𝜍𝑛
. 

3.4. The fourth method 
This method is the same as the second method, but the 

average per hour is calculated using (10). 

3.5. The fifth method 
This method is the same as the second method, but for 

average, the weighted average is calculated as follows: 

( )( )

( )( ) ( )( )( )

( )( ) ( )( )( )

( )( ) ( )( )( )

1

1 2

1

* *

1 1

* *

2 1

* *

1

1 1 12 2 1,

Λ
v v

r

r r

v r r

v v v

p z k p z k

p z k p z k

p z k p z k
z k

r r r







  

−

+

+

−

++

+ ++

++ ++
=

+ ++
, (11) 

In (11) 𝑟𝑣−1,𝑣 = 𝑟𝑣 − 𝑟𝑣−1  and 𝛿𝑛 =
1

𝛽𝑛
 where 𝛽𝑛  is 

computed based on the following simple rule: If 𝜍1 to 

𝜍𝑟1
 fall into the first category, then 𝛽1 =

𝜍1+𝜍2+⋯+𝜍𝑟1

𝑟1
. 

Also, if 𝜍𝑟1+1 to 𝜍𝑟2
 fall into the second category, then 

𝛽2 =
𝜍𝑟1+1+𝜍𝑟1+2+⋯+𝜍𝑟2

𝑟12
, in which 𝑟12 = 𝑟2 − 𝑟1 . The 

other values of 𝛽𝑖 are obtained in the same way. 

4. SIMULATION AND RESULTS 

To evaluate the proposed algorithm, a set of 110 

customers is considered for sample. The vector 𝑁(𝑡) is 

considered as follows; that the average of 𝑁(𝑡) is 110. 
𝑁 = [114 103 113 109 114 103 119 103 102 116 119 105 113 101 

 105 118 115 110  107 104 105 116 108 118], (12) 

20%  of customers have a home load, an electric 

vehicle, and a home-installed photovoltaic. 20%  of 

customers are considered with a home load, an electric 

vehicle and a home-installed small turbine. 10%  of 

customers have a home load and an electric vehicle. 

50% of electric vehicles are also in the parking lot. The 

load consumption of homes is borrowed from Figure 6 
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in [23]. The predicted output power of the photovoltaic 

and wind turbine are also employed in Table 7 of [24]. 

In this table, the output power is given based on the 

power of the installed units, as shown in Table 1, and 

the installed power of photovoltaic and wind turbines in 

this paper is 1kW. The other parameters are selected as 

𝑎𝑒,𝑛
𝑡 = 1000 , 𝑏𝑒

𝑡 = 13.5 , 𝑐𝑒
𝑡 = 0 , 𝑎ℎ,𝑛 = 1.2 , 𝑏ℎ = 0 , 

𝜍𝑛 = 7.1, and 𝜇𝑛 = 0.95. The battery capacity of each 

vehicle is randomly selected from the batteries listed in 

Table 2. The arrival time of all batteries is randomly 

selected in interval [1, 10]. The departure time of all 

batteries is randomly selected in interval [13, 24]. The 

minimum time between arrival and departure time is 2. 

There is no limit to choosing between the minimum 

time of arrival and departure of batteries. However, if 

the minimum time between arrival and departure time is 

more than one, the total load curves of this system are 

very close to each other. The initial SoC of batteries at 

arrival time is randomly selected in interval [0, 1]. The 

final SoC of batteries at departure time is randomly 

selected in interval [0.5, 1]. 

 
Fig. 2. Total battery charge, total home load, and total system load 

curve using method 1 

 
Fig. 3. Total battery charge, total home load, and total system load 

curve using method 2 

The number of categories must be a factor of 24, such 

as 3, 4, 6, or 8. In this paper, 11 types of batteries are 

considered. Therefore, the number of categories should 

be 3, 4, or 6. If the number of categories is considered 

equal to 3 or 6, the capacity of the batteries in each 

category is very different. As a result, the number of 

categories should be considered equal to 4 so that the 

capacity of the batteries in each category is less different 

and their charging and discharging speeds are very close 

to each other. The capacity of the first category batteries 

is less than 25 kWh. The capacity of the second 

category batteries is in the range of 26 to 35 kWh. The 

capacity of the third category batteries is in the range of 

36 to 45 kWh. The capacity of the fourth category 

batteries is greater than 46 kWh. Thus, two types of 

vehicles are in the fourth category, and three types of 

vehicles are in the first, second, and third categories. 

The simulation results of this system using five different 

methods are seen in Figures 2 to 6. Calculations are 

updated every hour according to the vector 𝑁(𝑡). Table 

3 compares the different types of problem-solving 

methods. According to Table 3, the load curve of the 

first and third methods have the lowest values, but the 

simulation time of these methods is very long. The 

variance of the fourth and fifth methods is slightly 

different from the first method, but the simulation time 

of these two methods is one-third of the simulation time 

of the first method. 

Table 1. Output power of photovoltaic and wind turbine 

Hour power of photovoltaic (kW) power of wind turbine (kW) 

1 0 0.119 

2 0 0.119 

3 0 0.119 

4 0 0.119 

5 0 0.119 

6 0 0.061 

7 0 0.119 

8 0.008 0.087 

9 0.15 0.119 

10 0.301 0.206 

11 0.418 0.585 

12 0.478 0.694 

13 0.956 0.261 

14 0.842 0.158 

15 0.315 0.119 

16 0.169 0.087 

17 0.022 0.119 

18 0 0.119 

19 0 0.0868 

20 0 0.119 

21 0 0.0867 

22 0 0.0867 

23 0 0.061 

24 0 0.041 

Table 2. Types of vehicles and battery capacity of each vehicle [25] 

Brand Model 
Battery capacity 

(kWh) 

𝑞𝑛
𝐶,max, 

𝑞𝑛
𝐷,max 

Chevrolet Spark EV 18.3 7.32 

Honda FIT 20 8 

Fiat 500e 24 9.6 

BMW i3 27.2 10.88 

Mercedes B250e 28 11.2 

Ford Focus-e 33.5 13.4 

Hyundai Ioniq-e 38.3 15.32 

Nissan LEAF 40 16 

Toyota RAV4 41.8 16.72 

Kia Soul EV 64 25.6 

Tesla Model 3 78 31.2 

The most accurate method of energy management is 

the third method. Because the calculations are updated, 

every hour and the weighted average is used. Among 

the second, fourth, and fifth methods, the lowest time 

and the lowest variance belong to the fifth method. As a 

result, the fifth method has the most negligible 

difference inaccuracy from the third method and the 
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lowest computational cost related to other methods. 

 
Fig. 4. Total battery charge, total home load, and total system load 

curve using method 3 

 
Fig. 5. Total battery charge, total home load, and total system load 

curve using method 4 

 
Fig. 6. Total battery charge, total home load, and total system load 

curve using method 5 

 
Fig. 7. Total battery charge, total home load, and total system load 

curve using method 6 (Eq. (14)) 

Differences between the load profiles in five methods 

were quantified in Table 4. This table lists the sum of 

absolute values of the differences. According to Table 4, 

method five has differed the accuracy of calculation for 

mean load values per day by 0.0410  compared to 

method four. This value is for all vehicles for 24 hours. 

As a result, given that this value is minimal, methods 

four and five are very similar. According to Table 4, 

method five has deteriorated the calculation accuracy 

for mean load values per day by 702.7227 compared to 

exact method three. When this value is divided by 24 

(number of hours), the accuracy of the calculations of 

all vehicles per hour is reduced by 702.7227/24 =

29.2801. When this value is divided by 110 (number of 

vehicles), the accuracy of the calculations of each 

vehicle per hour is reduced by 29.2801/110 = 0.2661, 

and this value is small. Now, for further comparison, the 

cost function suggested in [26], [27] and [28] is used to 

smooth the load curve as follows: 

Table 3. A comparison between different types of problem solving 

methods 

Type of method 
Simulation time 

(mins) 

Load curve 

variance 

Load curve 

average 

Method 1 425.6588 6101.4644 634.5865 

Method 2 144.3774 6069.7710 663.7968 

Method 3 412.0885 6016.5883 631.7689 

Method 4 122.9922 6027.3486 661.0485 

Method 5 122.7103 6027.2927 661.0472 

Table 4. Absolute mean value summation of a day load profile 

differences between vertical and horizontal methods. 

MSAD 

(kW) 
Method 1 Method 2 Method 3 Method 4 Method 5 

Method 1 0 699.2710 69.3976 640.6499 640.6195 

Method 2 699.2710 0 768.6686 65.9582 65.9912 

Method 3 69.3976 768.6686 0 702.7560 702.7227 

Method 4 640.6499 65.9582 702.7560 0 0.0410 

Method 5 640.6195 65.9912 702.7227 0.0410 0 

Table 5. Load curve values of different methods. 

Hour Method 1 Method 2 Method 3 Method 4 Method 5 Method 6 

1 769.5493 768.0633 768.8265 767.8265 767.8268 766.7869 

2 674.6690 669.9799 669.0082 668.9853 668.9855 652.1458 

3 624.8781 619.6607 616.8008 617.0764 617.0746 585.1712 

4 632.9860 634.5849 622.9583 632.1850 632.1833 578.1284 

5 625.9126 625.0948 611.5435 621.6684 621.6673 545.1626 

6 644.6734 656.3721 634.6844 653.5745 653.5738 552.1071 

7 652.1602 659.8319 640.6262 656.0485 656.0479 586.5229 

8 643.5990 674.8653 633.7933 672.2098 672.2096 571.9212 

9 637.8277 684.8080 638.2357 679.9228 679.9208 542.6272 

10 653.4581 719.1460 654.7879 710.9893 710.9824 572.4726 

11 676.8785 734.0201 670.8548 726.9190 726.9135 650.8033 

12 647.0647 731.9233 649.9110 727.3953 727.3909 615.1933 

13 746.7181 817.4244 746.0042 814.4858 814.4849 756.8301 

14 558.3422 629.3607 565.9970 627.0224 627.0200 473.0411 

15 567.3910 602.2662 565.2135 599.1415 599.1397 507.2979 

16 554.8226 616.8894 568.6948 612.8758 612.8736 517.3769 

17 554.9932 606.6572 552.3988 602.8538 602.8505 522.3959 

18 575.1415 630.4439 575.0279 628.2429 628.2415 552.1549 

19 573.3790 619.7551 574.4317 618.0139 618.0150 558.6888 

20 584.6023 592.7753 583.3017 591.1796 591.1808 584.5381 

21 601.7973 601.9284 599.3462 601.2863 601.2877 600.0940 

22 547.8465 551.5660 539.6317 551.5561 551.5562 544.9662 

23 597.4385 599.7598 597.4298 599.7592 599.7592 597.4062 

24 883.9468 883.9468 883.9468 883.9468 883.9468 883.9468 

∆𝑃𝑡 = |∑ 𝑝𝑖
𝐷,𝑡𝑁(𝑡)

𝑖=1 − ∑ 𝑝𝑖
𝑃𝑉,𝑡𝑁(𝑡)

𝑖=1 − ∑ 𝑝𝑖
𝑊𝑇,𝑡𝑁(𝑡)

𝑖=1 +

𝛾𝑛(∑ 𝑞𝑖
𝐶,𝑡𝑁(𝑡)

𝑖=1 − ∑ 𝑞𝑖
𝐷,𝑡𝑁(𝑡)

𝑖=1 ) − 𝑝𝑔𝑟𝑖𝑑
𝑠𝑝𝑒𝑐

| (13) 

where 𝑝𝑔𝑟𝑖𝑑
𝑠𝑝𝑒𝑐

 is the specified grid power and is 

considered as the average of the load curve. Equation (13) 

is used to smooth the load curve per hour 𝑡 . The cost 

function for time interval 𝑡  is obtained by adding the 

battery degradation cost (6) to (13) as follows: 

𝐶 = ∆𝑃𝑡 + 𝛾𝑛𝐻𝑛(𝑞𝑛
𝑡 ), (14) 

In Figure 7, the simulation result of the system using 

(14) is seen with the same parameters as the other methods. 

Also, 𝑝𝑔𝑟𝑖𝑑
𝑠𝑝𝑒𝑐

 is equal to the average of methods 4 and 5 

(𝑝𝑔𝑟𝑖𝑑
𝑠𝑝𝑒𝑐

= 661). In this method, load curve variance and 

load curve average are equal to 8440.8167 and 596.5741, 

respectively. The variance of methods 4 and 5 is much less 

than method 6, and these methods help to smooth the load 
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curve much more. Also, the load curve values of Figures 2-

7 are given in Table 5. 

5. CONCLUSIONS 

Various problem-solving methods for smoothing the load 

curve were examined with different types of connections of 

electric vehicle batteries in homes and parking lots. The 

output power of home-installed small wind turbines and 

photovoltaics using the forecast based on previous days' 

information was applied in the optimization. The proposed 

algorithm satisfies the demands of vehicles well, and 

smoothes the load curve efficiently. Therefore, by using 

this algorithm and meeting customer needs, the profit of 

both the distribution network and the customers is 

maximized. In this regard, instead of using the normal 

average, the weighted average is used for power 

management, and the calculations for each vehicle are 

updated every four hours. The variance of the proposed 

method is less than one percent different from the most 

accurate method, but the computational cost of the method 

is 3.5 times lower. The calculation time of methods 4 and 5 

is 3.3 times shorter than method 3 (the most accurate 

method). 
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