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Stability Analysis of Microgrid with Passive, Active,
and Dynamic Load
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Abstract— The autonomous microgrid can incur a stability issue due to the low inertia offered by power electronics-based distributed
generating sources of the microgrid. Due to the fast dynamics of inverters and the intermittent nature of renewables, the first phase of
abrupt load change might not be shared evenly by DGs, and the system’s stability deteriorates substantially. Hence the stability of the
microgrid can greatly influenced by the load dynamics because of the inertialess generating sources. This paper presents a stability analysis
of microgrid considering passive, active, and dynamic loads fed by inverter-based DGs. The small-signal analysis demonstrates the effect
of inverter parameters and load factors. The dominance of states in oscillatory mode is examined by participation analysis. The results
show that passive load does not introduce low-frequency mode, whereas rectifier interfaced active load (RIAL) introduces low-frequency
mode due to DC voltage controller. The induction motor (IM) load introduces less damped eigenvalues in the microgrid and profoundly
affects the real power-sharing of the system. The time-domain results verify the results obtained through eigenvalue analysis.
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NOMENCLATURE

ω angular frequency of common reference frame
F feed-forward gain
i∗ld,AL, i

∗
lq,AL d and q axis inductor reference currents of RIAL

i∗ld, i
∗
lq d and q axis inductor reference currents

iconv, idc output current of AC to DC converter and load
current

iDr, iQr D and Q axis rotor currents of IM
iDs, iQs D and Q axis stator currents of IM
igd, igq d and q axis input current of RIAL
ilineDi, ilineQi line currents in DQ reference frame
iloaDi, iloaQi load currents in DQ reference frame
iod, ioq d and q axis output current of DG
J total motor and load inertia
kpc, kic proportional and integral gain of current controller
kpv,AL, kiv,AL proportional and integral gain of AC current

controller of RIAL
kpv, kiv proportional and integral gain of voltage controller
Lc inductance of coupling inductor
Lf, Cf inductance and capacitance of LC filter
Lf,AL, Cf,AL inductance and capacitance of LC filter of RIAL
LSS , Lrr, Lm inductance of stator and rotor windings, mutual

inductance of IM
mp, nq real power and reactive power droop gain
PIM number of poles
Pin, P instantaneous and average real power of DG
Pki participation element of kth state variable in ith

eigenvalue
Qin, Q instantaneous and average reactive power of DG
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rf , rc internal resistance of LC filter and coupling
inductor

rs, rr resistance of stator and rotor windings
Rlinei, Llinei resistance and inductance of line
Rloadi, Lloadi resistance and inductance of ith RL load
Te,TL electromagnetic torque and load torque of IM
v∗dc, vdc reference voltage and actual voltage across dc

load
v∗id, v

∗
iq d and q axis inverter reference voltages

v∗od, v
∗
oq d and q axis output reference voltages

vn nominal set point voltage
vbD, vbQ D and Q axis bus voltages in common reference

frame
vbd, vbq d and q axis bus voltages in the inverter reference

frame
vDr, vQr D and Q axis rotor voltages of IM
vDs, vQs D and Q axis stator voltages of IM
vod,AL, voq,AL d and q axis voltage across capacitor of RIAL
vod, voq d and q axis output voltage of DG
δi angle between ith inverter’s reference frame and

common reference frame
∅d, ∅q state variables of voltage controller
∅AL state variable of DC voltage controller in RIAL
∅ki kth element in left eigenvector for ith eigenvalue
γd, γq state variables of current controller
γd,AL, γq,AL State variables of active load current controller
ωs angular synchronous speed
ωcf cut-off frequency of low pass filter
ωn nominal set point frequency

1. INTRODUCTION

A microgrid is a part of a modern energy system that comprises
distributed generation (DG) units, energy storage units, and loads.
The DGs in microgrid can be photovoltaic cells (PV), fuel cells
(FC), and microturbine (MT) [1–3]. The PVs and FCs generate
DC power while MTs and wind farm generates variable frequency
ac power. All DGs are interconnected in the microgrid using power
electronics converters. Since power electronics-based converters
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offer high efficiency and operational flexibility, they are commonly
employed in power conversion and control [4]. The microgrid’s
ability to operate in an autonomous and grid-tied mode offers
immense reliability, expandability, and generation of high-quality
green energy [5–11]. In grid-connected mode, the microgrid
supplies active and reactive electricity to the main grid as an extra
energy source. In this mode, the microgrid’s frequency and voltage
parameters are maintained because of the primary grid. In islanded
or autonomous mode, besides supplying power to the load, it has to
maintain voltage and frequency within permissible limits [12]. The
stability of a microgrid is essential for its reliable operation. The
nature of generating sources, operating modes, control strategies,
the response speed of DG, and distance from source to load are
different in a microgrid as compared to a traditional grid. The low
inertia of DGs in a microgrid operating in islanded mode makes
the system operation complicated when the load and network
parameters suddenly change. Therefore, it is essential to account
for the load as well as dynamics of the distribution network while
performing a stability analysis of a microgrid.
The transient stability of AC and DC microgrids is investigated
in [13] using a prosumer-based approach. The modified converter
control strategy is applied to see the response of the microgrid
during a temporary fault, permanent fault, and significant variations
in load. The frequency stability of the microgrid is investigated
with a novel linear controller applied to the diesel generator’s speed
governor system in [4]. In [14], the voltage stability of a microgrid
is analyzed using a modified voltage stability index for a two-tier
load model. The optimum size and best allocation of DGs are
obtained by using the imperialist competition algorithm to improve
the voltage stability and reduce losses. The transient stability of
an autonomous microgrid using a novel energy-based approach
is evaluated in [15]. The dissipativity and neutral connections
of the microgrid are investigated using the Takagi-Sugeno based
multimodal [15]. In [16], the review of various approaches for
the transient stability and small-signal analysis of microgrids is
presented. Additionally, the response of DGs to large disturbances
and the fault current contributions of different DGs using various
control strategies are investigated and discussed.
The small-signal stability is the analysis of the behavior of
the system after small disturbances. The state-space modeling
technique has been appreciably utilized in literature to develop
non-linear or linearized models that are useful in accessing the
dynamic response and stability of the microgrid [17–20]. In [21],
the stability of a microgrid is analyzed with angle droop and
frequency control considering passive load. The non-linear load
is also taken into account, but it only gives an idea of the
power quality issues of microgrids. The small-signal stability of
a microgrid with RL load is analyzed using perturbation theory
in [22] for various values of droop gains, load resistance, and
load reactance. In [23], the authors have developed a complete
state-space model of the microgrid and analyzed the system
considering passive load. The damping resistor can be used to
reduce oscillations along with a phase-locked loop (PLL) by
considering the effect of passive load in a microgrid [24]. The
state-space model of microgrid consisting of different architecture
of wind power (WP), PV, and a diesel generator is developed and
explored in [25]. Time-domain analysis of different source (WP,
MT, FC, and PV) based systems with different control strategies are
studied in [26]. In [27], the effect of line parameters on microgrid
stability is analyzed considering linear loads. Since the microgrid
is located near the load location, the synchronous generators (SG)
application seems difficult and infeasible for stability analysis.
Hence it is relatively less worthy of accounting dynamics of
SGs in microgrid [28]. In contrast, the majority of DGs in the
microgrid are inverter-based; hence the mathematical model of
microgrid consisting of power electronics-based sources has been
widely utilized for stability analysis [29]. The load on a microgrid
can be passive, active, and dynamic; hence various literature
shows the stability analysis of microgrids with different loading

Fig. 1. Typical Structure of Voltage Source Inverter Coupled Microgrid

conditions [20, 30, 31]. The outcome of the active load parameter
on the microgrid’s stability is discussed in [17]. The negative
resistance characteristic of constant power load may lead to the
instability of a microgrid. In [32], the stability of the microgrid
is explored considering constant power loads. The loading limit
of the microgrid is obtained in this paper, but how the load
parameters affect the system stability is not shown. In [18], the
effect of induction motor (IM) load dynamics on medium-voltage
microgrid stability is studied with a remote stabilization control
scheme. Dynamic stability of an isolated microgrid considering
direct online induction motor load is analyzed in [19] with a
small-signal impedance model and Nyquist stability criterion. In
[33], droop control is studied with linear and non-linear load
employing time-domain simulation. The authors in [34] presents
the effect of varying load on the small-signal model stability of an
11-bus microgrid system.

The state-space structure of microgrid is developed with certain
assumptions, and stability study is carried out either with passive,
active, and dynamic loads or a combination of different loads in
literature. The objective of this work is to examine the impact of
load dynamics on microgrid stability by building a comprehensive
mathematical model of microgrid systems that includes passive,
active, and dynamic loads. A detailed analysis of the system with
time-domain simulations, eigenvalue analysis, and participation
factor is presented.

The major contributions of the paper can be summarized as
follows:

1) The comprehensive microgrid model with inverter interfaced
DG, consisting of a power controller, a voltage and current
controller, and an LCL filter is developed.

2) The passive load modeling is represented by R and RL load,
RIAL is modeled considering control and filter dynamics of
active load using the averaging method, and induction motor
load is modeled in terms of stator and rotor dynamics.

3) Time-domain simulations and small-signal analysis are used
to examine the system response under various loading
conditions.

The remaining part of the paper is structured as follows:
the state-space model of the system components is derived in
Section 2. Section 3 presents the eigenvalue and participation
factor analysis of the microgrid. In Section 4, the results and
discussion from the simulation for various cases are presented.
Section 5 concludes the work.

2. STATE-SPACE MODEL OF MICROGRID

Fig. 1 depicts a typical microgrid evaluated in this study. It has
three voltage source inverters (VSI) interfaced DGs. The energy
source’s intermittent nature and the dynamics of the DC side are
not taken into account. Each VSI interfaced DG is linked to load
through LC filter and coupling inductor Lc. A common bus is
connected with the respective DG source through line impedances
Rline and Lline. When the isolation switch is in open condition
microgrid is in autonomous mode.
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Fig. 2. Voltage source inverter DG block diagram

                                              

Fig. 3. Voltage source inverter DG block diagram

The stability of the microgrid is studied and analyzed in the
form of non-linear mathematical equations. Hence these equations
are linearized about an operating point to form a small-signal
model and to examine the stability of the system. The small-signal
dynamic model of the complete microgrid system is decoupled
into three submodules.

• Parallel connected voltage source inverters DG sub-module.
• Network sub-module.
• Load sub-module.
First, the mathematical model of different submodules is derived

and combined to yield the study system’s complete model.

2.1. Modeling of a parallel-connected voltage source inverter
DGs
In a microgrid, DGs are integrated into the system by VSI, LC

filter, and coupling inductor, as illustrated in Fig. 1. The control
circuit and power circuit of the DG are shown in Fig. 2. The
power, current, and voltage controller form the control circuit. The
switching bridge and LCL filter form the power circuit for the
source system, as shown in Fig. 2.

A) Modeling of the power controller
The power controller resembles the governor of a conventional

SG. Suppose load increases in an alternator, an increase in output
power is fed by decreasing frequency. Similarly, in the inverter,
any increase in load is manipulated by decreasing frequency based
on the governor droop characteristic. The reactive power changes
are compensated by changing voltage magnitude.
The power controller is depicted in Fig. 3. Instantaneous real and
reactive power (Pin and Qin ) are using measured output current
(iod and ioq) and output voltage (vod and voq) represented in dq
reference frame by,

Pin = vodiod + voqioq (1)

Qin = voqiod − vodioq. (2)

The instantaneous powers are processed through a low pass
filter (LPF) with a cut-off frequency ωcf to get average powers (P
and Q) which are shown as,

P =
ωcf

s+ ωcf
Pin, Q =

ωcf

s+ ωcf
Qin (3)

Fig. 4. Voltage controller

Fig. 5. Current controller

where s is the Laplace domain transform a factor. The fundamental
voltage and frequency are set using droop gain given by,

ω = ωn −mpP, (4)

v∗od = vod,n − nqQ, v
∗
oq = 0 (5)

where mp and nq are static droop gains; ωn and vod,n is nominal
set point frequency and nominal set point voltage, respectively. All
inverter parameters are converted from their respective reference
frame to a common reference frame. The angle (δi) between the
dq frame of the individual inverter and common DQ frame is
defined as,

δi =

∫
(ωi − ω)dt (6)

where, ωi is the frequency of the respective inverter and ω is the
common reference frame frequency.

B) Modeling of voltage controller
The voltage controller controls the output voltage using the PI

controller, as shown in Fig. 4 [23].
The state equations of a controller are represented by,

dφd

dt
= vod

∗ − vod,
dφq

dt
= v∗oq − voq. (7)

The algebraic equations for reference currents are shown as,

i∗ld = Fiod − ωnCfvoq + kpv(vod
∗ − vod) + kivφd (8)

i∗lq = Fioq + ωnCfvod + kpv(v∗oq − voq) + kivφq (9)
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where kpv , kiv are proportional and integral gains; F is the
feed-forward term, and Cf is the filter’s capacitance.

C) Modeling of the current controller
The current controller regulates the output inductor reference

current using the PI controller, as displayed in Fig. 5.
The state equations of the current controller are represented by,

dγd
dt

= i∗ld − ild,
dγq
dt

= i∗lq − ilq. (10)

The algebraic equations are

v∗id = −ωnLf ilq + kpc(i
∗
ld − ild) + kicγd (11)

v∗iq = ωnLf ild + kpc(i
∗
lq − ilq) + kicγq (12)

where kpc, kic are proportional and integral gains, respectively, Lf

is filter inductance, and ild, ilq are filter inductor currents in dq
reference frame.

D) Modeling of output LC filter and coupling inductor
It is considered that the inverter generates the required voltage

(vi=vi∗), and switching losses are considered negligible. The
state-space equations for output LC filter and coupling inductor
are given by,

dild
dt

=
1

Lf
(−rf ild + vid − vod) + ωilq (13)

dilq
dt

=
1

Lf
(−rf ilq + viq − voq)− ωild (14)

diod
dt

=
1

Lc
(−rciod + vod − vbd) + ωioq (15)

dioq
dt

=
1

Lc
(−rcioq + voq − vbq)− ωiod (16)

dvod
dt

= ωvoq +
1

Cf
(ild − iod) (17)

dvoq
dt

= −ωvod +
1

Cf
(ilq − ioq) (18)

where rf is the LC filter’s internal resistance; rc and Lc are
coupling inductor’s resistance and inductance, respectively; vbd
and vbd are base voltages in dq reference frame.

E) Complete model of an individual inverter
he inverters are connected to the network by transforming the

output variables of the inverter into a common reference frame.
Hence the conversion of output current iodq to ioDQ is shown by,[

iD
iQ

]
common

=

[
cos θ sin θ
− sin θ cos θ

] [
id
iq

]
local

. (19)

Similarly, input bus voltages to the inverters can be remodeled
from a common reference frame to an individual reference frame
by employing the reverse transformation given by,[

vd
vq

]
local

=

[
cos θ − sin θ
sin θ cos θ

] [
vD
vQ

]
common

(20)

The state-space model of an inverter is formed by interlinking
power, current, and voltage control loops, an LC filter, and
coupling inductor models. A state-space model of a single inverter
unit in a common reference frame is represented by

•
[∆xINV i] = [AINV i] [∆xINV i] + [BINV i] [∆ubDQi]

+ [Bωcomi] [∆ωcomi]
(21)

The individual inverter system contains a total of thirteen states,
three inputs, and two outputs. The first inverter’s frequency is
considered as the reference frequency. Where AINV i is state matrix
of ith inverter, BINV i is the voltage input matrix, Bwcomi is the

Fig. 6. Line model

input frequency matrix. CINV wi and CINV ci are output frequency
and current matrices, respectively.[

∆ωi

∆ioDQi

]
=

[
CINV ωi

CINV ci

]
[∆xINV i] (22)

where state vector [xINV i] of the inverter is
[δi, Pi, Qi, φdqi, γdqi, ildqi, vodqi]

T .
F) Complete model of parallel-connected inverter DG

system
In this paper, three inverters interfaced DGS are connected

in parallel. All inverters are built using individual reference
frame, and the complete model is formed using reference frame
transformation.

The state-space representation of parallel-connected inverters
can be represented by,

•
[∆XINV ] = [AINV ] [∆XINV ] + [BINV ] [∆vbDQ]

+ [BINV ω] [∆ωcom]
(23)

[
∆ωi

∆ioDQi

]
=

[
CINV ω

CINV c

]
[∆XINV ] . (24)

Where AINV is the state matrix of all the inverter submodules,
BINV and BINV ω are input matrices of the complete inverter
submodule related to the input voltage and frequency. CINV c is
output matrices corresponding to the inverter output current.

In (23) and (24), for the "g" number of DG inverters state
vector and output vector can be shown as,

[∆XINV ] = [∆xINV 1,∆xINV 2, ...,∆xINV g]T (25)

[∆YINV ] = [∆ioDQ1,∆ioDQ2, ...,∆ioDQg]T (26)

2.2. Network model
The distribution line is represented as a network with resistance

Rline and inductance Lline, as shown in Fig. 6. The dynamics of
an ith line connecting jth source node and kth load node given by,

dilineDi

dt
=
−Rlinei

Llinei
ilineDi + ωilineQi

+
1

Llinei
vbDj −

1

Llinei
vbDk

(27)

dilineQi

dt
=
−Rlinei

Llinei
ilineQi − ωilineQi

+
1

Llinei
vbQj −

1

Llinei
vbQk

(28)

The state-space representation for the network is given by,
•

[∆ilineDQ] = [ALINE ] [∆ilineDQ] + [B1LINE ] [∆vbDQ] +

[B2LINE ] [∆ωcom] .
(29)

Where ALINE is the state matrix of the network submodule,
and B1LINE and B2LINE are network submodules corresponding
to the input voltage and reference frequency, respectively.
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Fig. 7. Control circuit of RIAL

For l number of lines in (29), the line current vector is defined
as,

[∆ilineDQ] = [∆ilineDQ1,∆ilineDQ2, ...,∆ilineDQl]
T (30)

[∆vbDQ] = [∆vbDQ1,∆vbDQ2, ...,∆vDQm]T (31)

2.3. Load model
n this paper, the stability of the islanded microgrid is explored,

considering different loads connected to the node. Passive loads
are modeled by a resistive or an inductive–resistive circuit. Active
load is structured as constant power load or rectifier interfaced
active load (RIAL). The IM is considered a dynamic load.

A) State-space model of a passive load
The R and RL type load can be expressed by given equations

for the load allied at ithnode,

diloadDi

dt
=

1

Lloadi
(−RloadiiloadDi + vbDi) + ωiloadQi (32)

diloadQi

dt
=

1

Lloadi
(−RloadiiloadQi + vbQi)− ωiloadQi (33)

In general, for p passive loads, the state space representation
for load is given by,

•
[∆XPL] = [APL] [∆XPL] + [B1PL] [∆vbDQ]

+ [B2PL] [∆ωcom]
(34)

where, APL is the state matrix of the passive load submodule,
B1PL and B2PL are matrices related to the input voltage and
reference frequency of the load submodule, respectively. In (34)
the state vector [∆xPL]is defined as

[∆xPL] = [∆iloadDQ1,∆iloadDQ2, ...,∆iloadDQp]T (35)

where is ∆iloadDQ load current at each node.
B) State-space model of a rectifier-interfaced active load

Fig. 7 shows the full control circuit for a RIAL. The DC
voltage controller and AC current controller are shown in Fig. 8.
The DC voltage controller regulated the voltage across the load by
comparing it with a reference voltage.

The AC controller provides a reference voltage signal for the
switching bridge of the load side inverter. The state-space equation
for the DC voltage control circuit of the load is given by,

i∗ld,AL = kpv,AL(v∗dc,AL − vdc,AL) + kiv,ALφAL (36)

dγdq,AL

dt
= i∗ldq,AL − ildq,AL (37)

Fig. 8. Voltage and current control loop for RIAL [23]

where kpv.AL and kiv.AL is proportional and integral gains of
DC voltage controller of RIAL respectively.

The state-space equation for AC current controller circuit is
given by,

v∗id,AL = ωnLf,ALilq,AL−kpc,AL(i∗ld,AL− ild,AL)−kic,ALγd,AL

(38)

v∗iq,AL = −ωnLf,ALild,AL−kpc,AL(i∗lq,AL−ilq,AL)−kic,ALγq,AL

(39)
where kpc,AL and kic,AL is proportional and integral gains

of AC current controller of RIAL; id,AL and iq,AL are inductor
currents of LC filter of active load in dq reference frame. In
general, the state space representation of RIAL used is shown as,

·
[∆XAL] = AAL [∆XAL] +B1AL [∆UAL]

+B2AL [∆VbDQ] +B3AL [∆ωcom]
(40)

where AAL is the state matrix of the RIAL submodule, B1AL,
B2AL, and B3AL are matrices of RIAL submodule related to input
control, input voltage, and reference frequency.

In (40) the state vector (∆XAL) and input vector (∆UAL) for
RIAL is represented as,

[∆XAL] = [∆ΦAL,∆γdq,AL,∆ildq,AL,∆vodq,AL,∆igdq,AL,∆vdc]
T

(41)

[∆UAL] = [∆v∗dc,∆i
∗
lq,∆idcdist]

T (42)

C) State-space model of an induction motor load
The currents of IM are taken as state variables for describing

voltage equations [35]. Hence the IM can be represented in
mathematical form using 5th order derivative model in the
common DQ reference frame as

vQs = rsiQs +Lss
diQs

dt
+ωLssiDs +Lm

diQr

dt
+ωLmiDr (43)
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Table 1. Low-frequency eigenvalues of the study system

Mode No. Eigenvalues Damp. Ratio Damp. Freq.
σ ± jω ζ fd (Hz)

1, 2 -129.84±206.7i 0.531 32.9
3,4 -71.8±147i 0.436 23.5
5 -125.7 1 0
6 -57.7 1 0
7 -9.2 1 0
8,9 -13.99±20.03i 0.5728 3.18
10 -32.031 1 0
11,12 -31.37±0.061i 0.99 0.009

vDs = −ωLssiQs+rsiDs+Lss
diDs

dt
−ωLmiQr+Lm

diDr

dt
(44)

vQr = Lm
diQs

dt
+ s ωLmiDs + rriQr + Lrr

diQr

dt
+ s ωLrriDr

(45)

vDr = −s ωLmiQs + Lm
diDs

dt
− s ωLrriQr

+ rriDr + Lrr
diDr

dt

(46)

where rs and rr are resistances of stator and rotor windings,
respectively; Lss and Lrr are inductance of stator and rotor
windings, respectively; Lm is mutual inductance; S and ω are
rotor slip and supply frequency of stator, respectively. The relation
between electromagnetic torque, stator, and rotor currents can be
stated as,

Te =
3

2

(
PIM

2

)
Lm (iQsiDr − iDsiQr) (47)

The correlation between electromagnetic torque (Te) and load
torque (TL) can be deduced in terms of the slip (s) and angular
synchronous speed (ωs) as,

Te − TL = J
d

dt
((1− s)ωs) (48)

In (47) and (48), PIM is number of poles, J is total motor
and load inertia and TL is load torque. By using (43)–(48), the
complete state-space representation of the induction motor load is
obtained as,

·
[∆XIM ] = [AIM ] [∆XIM ] + [B1IM ] [∆UIM ]

+ [B2IM ] [∆ω] + [B3IM ]

[
·

∆ω

] (49)

where AIM is the state matrix of load submodule, B1IM , B2IM

and B3IM are load submodule matrices related to voltage, and
frequency. In (49),

[∆XIM ] = [∆iQs,∆iDs,∆iQr,∆iDr,∆si]
T (50)

[∆UIM ] = [∆vQs,∆vDs,∆vQr,∆vDr,∆TL]T (51)

2.4. State-space representation of complete microgrid
The microgrid’s comprehensive state-space model is derived

from the relationship between the system’s input and output.
The input variables in the microgrid are node voltages, and the
output variables are DG output currents. To eliminate switching
harmonics, LCL fitters are connected between the switching
bridge and the grid. However, the closed-loop system could be

Table 2. Eigenvalues introduced and affected by RIAL in the study system

Mode No. Eigenvalues Damp. Ratio Damp. Freq.
σ ± jω ζ fd (Hz)

1, 2 -4343471±314.1i 1 50
3,4 -1180.3±123123i 0.095 1959
5,6 -1254.8±11770i 0.106 1873
7,8 -3137.2±5066.7i 0.526 806
9,10 -2926.8±4594.4i 0.537 731
11,12 -3306.2±3282.6i 0.709 22.4
13,14 -2783.1±2869.3i 0.69 456.66
15,16 -1019.4±2308.8i 0.403 367.4
17,18 -1054.9±2186.9i 0.434 348.07
19,20 -1785.8±1644.3i 0.735 261.71
21,22 -1704.3±1509.3i 0.748 240.21
23,24 -1373.1±1790.2i 0.6 284.9
25,26 -47.7±165.0i 0.277 26.27

destabilized by LCL filter resonance and high grid side impedance.
The common bus voltages can be shown as,

vbDi = rv(ioDi − iloadDi + ilineDi,j) (52)

vbQi = rv(ioQi − iloadQi + ilineQi,j) (53)

where rv is the resistance of the virtual resistor. In general, for
the n node system, the small-signal model is represented as,

[∆vbDQ] = RV (MINV [∆ioDQ] +MLOAD[iloadDQ]

+MLINE [∆ilineDQ]).
(54)

where Rv is a diagonal matrix of rv of size n × n, MINV

represents the mapping of nodes and inverter sub-module of size
2n × 2g. MLOAD represents the mapping of nodes and load
of size 2n × 2p, MLINE represents the mapping of nodes and
network sub-module of size 2n × 2l.

The elements of mapping matrices MINV , MLOAD, and MLINE

are further expressed as,

MINV (i, j) =

{
1, if jth is linked to ith node,
0, if jth is not linked to ith node.

MLINE (i, j) =


−1, if jthline is linked to ithnode and
current is flowing away from node,

1, if jthline is linked to ithnode
and current is flowing towards node.

MLOAD (i, j) =


−1, if jth passive, active or dynamic
load stator is linked to ith node,

0, There is no load associated to the node.

· ∆XINV

∆XLINE

∆XLOAD

 = Asys

 ∆XINV

∆XLINE

∆XLOAD

 (55)

where Asys represents a state-space matrix of microgrid, xINV ,
xLOAD, and xLINE are state variable matrix of inverter submodule,
network submodule, and load submodule, respectively.

The microgrid inverter parameters, RIAL parameters, and IM
parameters are given in Appendix.
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Fig. 9. Eigenvalue plot of microgrid with RL load

3. SMALL-SIGNAL ANALYSIS

he state-space model of a microgrid developed in Section 2 is
used to analyze the stability of the microgrid while considering
the various loading conditions. The eigenvalue analysis, and
time-domain simulation of three inverter source systems operating
at 220 V, 50 Hz are shown for different cases considering passive,
active, and induction motor load.

The eigenvalues are modes of the system which give insights
into the stability of the system through the oscillation frequency
and magnitude of the damping ratio. The (55) yields the complete
state-space model of the system, and the matrix Asys is a system
matrix that includes network and load parameters. The participation
factor indicates which state is active for a given eigenvalue. They
highlight the states responsible for the low-frequency dominant
mode. Participation factors are determined by

Pki = φkiψik (56)

where, φki is the kth element in the right eigenvector φi, and ψik

is the kth element in the left eigenvector ψi corresponding to the
eigenvalue λi [36]. k shows the state variable number for which
the participation factor is evaluated.

3.1. Passive load connected to the microgrid
The eigenvalue plot of the microgrid with RL load is shown in

Fig. 9. The entire eigenvalue spectrum is split into four regions
(each region is marked by dashed circle). The dominant low-
frequency modes are displayed in Table 1. There are ten eigenvalues
in Region-1, including four complex pairs with low frequency and
damping ratio around 0.43-0.53 (Mode No.1,2,3,4,8,9,11,12). The
participation plot shown in Fig. 10 confirms that the states of
the droop controller and power controller are dominant in low-
frequency eigenvalue in Region-1. Region-2 contains six complex
pairs of eigenvalues with frequencies in the range from 200 Hz
to 350 Hz with a low damping ratio of 0.5-0.6. The states of the
current and voltage control loop are dominant factors for these
modes. Region-3 contains six high-frequency eigenvalues because
of the LCL filter and line state variables. Region-4 contains four
complex pairs of eigenvalues. One pair due to passive load state
variables is shown in Fig. 9. Since low-frequency modes are
related to power controllers, they are insensitive to the dynamics
of passive load.

3.2. Active load connected to the microgrid
Table 2 shows the eigenvalue introduced and affected by state

variables of RIAL. Fig. 11 and Fig. 12 depict the eigenvalue
plot and participation plot, respectively, for microgrid connected
with RIAL. The complete eigenvalue spectrum is split into five
regions. It is clear from Fig. 11 that load introduces a complex
pair of eigenvalues (Mode No.25, 26) with a frequency of 26 Hz
and damping ratio of 0.27 in Region-1. The capacitor voltage vdc
and voltage controller at the DC side (see Fig. 8) are dominant
states for this mode. Two complex pairs of eigenvalues (Mode
No.3,4,5,6) with a frequency of around 2 kHz and damping ratio
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Fig. 10. Participation plot of power controller variables in low-frequency
modes

Fig. 11. Eigenvalue plot of microgrid with active load

of nearly 0.1 located in Region-2 are related to the AC side LCL
Filter.

In Region-3, two eigenvalues with a frequency range of 250
Hz-300 Hz and a damping ratio in the range 0.6–0.7 (Mode
No.19,20,21,22) appear. It is observed that, the affecting states
in this mode are related to the current controller and coupling
inductor.

3.3. Induction motor connected to the microgrid
The microgrid system’s eigenvalue plot with IM load is shown

in Fig. 13. The entire eigenvalue spectrum is split into three
regions. The coupling of IM with microgrid induces prominent
oscillations in real power, reactive power, voltage, and frequency;
as a result, two less damped complex pairs and the null point
are introduced. The poorly damped mode is most affected by the
d-axis stator and q-axis rotor current, as shown in Fig. 14.

4. TIME-DOMAIN ANALYSIS

In this section, time-domain results are discussed by applying a
step change in load power for different types of loads to examine
the stability of the microgrid.

4.1. Simulation results of microgrid with passive load
The study system has an initial load of 5.8 kW (25 Ω per phase)

at Local bus 1 and 7.3 kW (20 Ω per phase) at Local bus 3. The
low-frequency mode of the system is excited by a step increase of
3.9 kW in real power applied at t=0.8 seconds at Local bus 1.

Fig. 15(a) shows that initially, DG1 compensates for the major
change in real power, as it is located near to load together with
DG2 and DG3 responds slowly. In a steady-state, the load is shared
equally by all DGs. Fig. 15(b) depicts that reactive power-sharing
is unequal. Fig. 15(c) represents the drop in frequency due to an
increase in load. All the DGs share load equally, and frequency is
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Fig. 13. Eigenvalue plot of the system with induction motor load
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Fig. 14. Participation analysis of induction motor state variables in
microgrid

set to a new value based on droop characteristics. The high value
of droop gain can make power-sharing better among the DGs, but
the oscillations in frequency may appear, which can affect the
system’s stability and voltage regulation.

In Fig. 16, as the load on Local bus 1, is increased at 0.8 sec
(see iloadd1 in Fig. 16(a)), the DG1 responds quickly (see iodDG1

in Fig. 16(b)). In the transient period after the switching event,
the output current of DG1 is observed with peak overshoot. A
similar change is observed in the response of line currents (see
ilined1 Fig. 16(c)). Due to the same droop gain of all the DGs, the
DGs share the change in load applied at Local bus 1 evenly after
the transient phase. As a result, since the RL branches are used to
distribute the compensating powers from the DGs, the line current
responses are also impacted. The line current direction is assumed

(a)

(b)

(c)

Fig. 15. Dynamic responses of DGs with 3.9 kW of a step-change in load
power at Local bus 1: (a) Real Power PDG, (b) Reactive Power QDG, (c)
frequency of DG units
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(a)

(b)

(c)

Fig. 16. Dynamic responses of microgrid with 3.9 kW of a step-change
in load power at Local bus 1: (a) load currents iloaddq , (b) DGs output
current iodqDG, (c) line currents ilinedq

to be positive when the current flows away from the node and
negative when the current flows towards the node.

The high-frequency modes are examined by a sudden change
of R load from 0 to 28 kW at Local node 1. Fig. 17(a) and
17(b) show the output voltage and d-axis inductor current of all
the DGs, respectively. The notch (of (381 − 307/381) ∗ 100 =
19.42%) for less than 1 msec is observed in the output voltage
waveform of inverter 1, which is connected near to the load point.
High-frequency modes are most affected by the load condition of
the microgrid.

Fig. 18 shows the system’s simulation results when the RL load
is increased to 16.9 kW and 13 kVAR from 0 at node 1. Initially,
transients are observed in the output of DG1; then, gradually, all
inverters share power equally. The results show that the change in
reactive power is inappropriate. However, the high value of droop
gain can ameliorate reactive power-sharing, but it adversely affects
voltage regulation. The load change has an insignificant effect on
low-frequency modes in the microgrid.

4.2. Simulation results of microgrid with active load
In this case, a passive R load of 6.9 kW (21 Ω per phase)

and RIAL of 7.3 kW is connected to Local bus 1 and Local bus
3 respectively. The sudden step increase of 3.6 kW in DC load
is applied at t=0.5 second to espy the low-frequency modes of
the inverters and active load. According to participation analysis
results, there is no correlation between the low-frequency modes of
the inverters and the active load. As the inverter droop controllers
swing against each other, the fundamental inverter power-sharing
is seen in Fig. 19(a) and 19(b). Fig. 19(c) shows DC voltage
output when the active load is increased by 3.6 kW.

(a)

(b)

Fig. 17. Dynamic responses of the system when the load is changed
suddenly from no load to 28 kW: (a) variation in d-axis output voltage
vodDG, (b) variation in d-axis inductor current ildDG

(a)

(b)

Fig. 18. Dynamic responses of DGs with a sudden change in RL load from
no load to 16.9 kW and 13 kVAR at Local bus 1: (a) Real Power PDG,
(b) Reactive Power QDG

4.3. Simulation results of microgrid with induction motor
load.

Fig. 20(a) and 20(b) respectively show DG’s real power and
reactive power responses when IM load is applied. The real power
response, as can be seen, exhibits oscillatory behavior due to
low-frequency modes introduced by IM.

Fig. 21(a) and 21(b) show rotor speed of IM and frequencies of
all DG units respectively. The oscillations in speed are reflected in
the output frequency of DG units, which in turn affects the input
power of the IM through the droop controller.
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(a)

(b)

(c)

Fig. 19. Dynamic responses of DGs with step change of 3.6 kW in RIAL
at Local bus 1: (a) Real Power PDG, (b) Reactive Power QDG, (c) DC
link capacitor voltage vdc in RIAL

(a)

(b)

Fig. 20. Dynamic response of DG units when IM load is applied: (a) Real
power PDG, (b) Reactive power QDG.

(a)

(b)

Fig. 21. Dynamic response of DG units when IM load is applied: (a) Rotor
speed Nr , (b) Output frequency ω of DG units.

5. CONCLUSION

This paper presents a detailed stability analysis of microgrids
using a small-signal model with time-domain simulations. The
state-space model of the microgrid with different loading is
developed to see the effect of load dynamics on the system’s
stability. The microgrid state-space model is designed for various
instances, including passive load, rectifier-controlled active load,
and dynamic load. The stability of a system is examined by
eigenvalue analysis, and it is supported by time-domain simulations.
The participation analysis is utilized to examine the participation
of dominant states in various modes. The results reveal that when
a microgrid is subjected to a step increase in RIAL, low-frequency
oscillations are introduced by the DC voltage controller, and AC
current controller influences the system’s stability. In contrast,
sudden high change in passive load causes appearance of high
frequency modes. The sudden small change in passive load
affects the power-sharing of DGs in transient periods and causes
low-frequency oscillations. The time-domain results show that IM
load induces oscillations momentarily in the dynamic response of
the microgrid. The IM load introduces lightly damped eigenvalues
which provoke rotor electromechanical oscillations. The effect of
these modes is also reflected in the active power and frequency
response of the microgrid. The time-domain results shown in this
paper corroborate the eigenvalue analysis.

APPENDIX

Table A.1. Inverter Parameters [23]

fs 8 kHz mp 9.4×10−5

Lf 1.35 mH nq 1.3×10−3

Cf 50 F kpv 0.05
rf 0.1 Ω kiv 390
Lc 0.35 mH kpc 10.5
rLc 0.03 Ω kic 16×103
?c 31.41 rad/sec F 0.75
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Table A.2. Active Load Parameters [17]

fsw 10,000 Hz cdc 2040 F

Lf 2.3 mH Rload 84.5 Ω
Cf 8.8 F kpv 0.5
rf 0.1 Ω kiv 125
Lc 0.93 mH kpc 15
rLc 0.03 Ω kic 25×103

Table A.3. Induction motor Parameters, 10 Hp, 400 V [20]

fs 50 Hz rs 0.7834 Ω

Lss 127.1 mH rr 0.7402 Ω
Lrr 127.1 mH Lrr 124.1 mH
PIM 4 TL 47.75 N.m
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