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Bi-level Programming of Retailer and Prosumers’ Aggregator to
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Abstract— In the restructured electricity industry, the electricity retailer, as a profit-oriented company, buys electricity from wholesale
electricity markets and sells it to end customers. On the other hand, with the move of the electricity networks towards smart grids,
small customers who, in addition to receiving energy from the distribution network, can generate power on a small scale, have emerged
as prosumers in the electricity market environment. Therefore, the prosumers’ aggregator is defined to maximize the profit of a set of
prosumers in this environment. In this paper, the energy exchange between the retailer and the aggregator has been modeled as a bi-level
game. At a higher level, the retailer, as a leader to maximize its profit or minimize its expenses, offers a price to buy or sell energy to the
prosumers’ aggregator. The aggregator also decides on the amount of exchange energy to buy or sell, to minimize the energy supply costs
required of its consumers according to the retailer’s bid price. In this paper, a combined method based on MILP (Mixed Integer Linear
Programming) and MO (Mayfly Optimization) has been used to find the optimal point of this modeled game. To evaluate the efficiency of
the proposed method, the three pricing methods FP (Fixed Pricing), TOU (Time Of Using), and RTP (Real Time Pricing) as price-based
demand response programs have been compared using the proposed algorithm. The simulation results show that among the three pricing
methods for customers, the RTP pricing method has the highest profit for the retailer and the lowest cost for the aggregator.

Keywords— Retailer; Smart grid; Renewable energy resources; Prosumers’ aggregator; Energy procurement.

NOMENCLATURE

Variables
α(t) Binary variable for the sales mode of retailer to the

prosumers’ aggregator at time t
β(t) Binary variable for the purchasing mode of retailer

from prosumers’ aggregator at time t
A (q, z, t) Binary variable to determine the retail price for

selling to customers by the retailer from the offered
price-power curve

CDGj (t) Purchased cost from the jth DG unit at time t
D(q, t) Demand supplied of the qth customers group at time

t
fl A random walk coefficient
Gbest The best social experience of mayflies
P chargel (t) Power charged of the lth energy storage system from

the retailer at time t
PDGj,h (t) The power of the hth block corresponding to the jth

DG in the linear cost function of the DG at time t
P discl (t) Power discharged of the lth energy storage system

at time t
Pbuy,pro(t) Power purchased by the retailer from prosumers’

aggregator at time t
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PPM (t) Power purchased by retailer from the pool market at
time t

Psell,pro(t) Power sold by the retailer to prosumers’ aggregator
at time

Pbest The best flight experience of each mayfly
R A random number
r A random number
rg Distance between Xu and gbest
rp Distance between Xu and pbestu
rmf Distance between male and female mayflies
SP (q, z, t) Price of the zth interval of the price-power curve for

the qth customers group from the retailer at time t
Uchargel (t) Binary variable for the charging mode of the lth

energy storage system at time t
Udiscl (t) Binary variable for the discharging mode of the lth

energy storage system at time t
v Mayfly’s velocity
x Mayfly’s male position
Xb
l (t) Energy stored by the lth energy storage system at

time t
y Mayfly’s female position
SPFixed(q) Fixed selling price offered to the qth customers

group by the retailer
SPRTP (q, t) Real-time selling price offered to the qth customers

group by the retailer at time t
SPTOUl (q) Time-of- use selling price offered to the qth

customers group by the retailer in low load level
SPTOUM (q) Time-of- use selling price offered to the qth

customers group by the retailer in medium load level
SPTOUp (q) Time-of- use selling price offered to the qth

customers group by the retailer in peak load level
Indices and Sets
H Number of production blocks of DG units
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h Index for generation block in linear modeling of DG
units

J Number of DG units
j DG unit index
K Number of wind power producer units
k Wind power producer unit index
L Number of energy storage system units
l Energy storage system unit index
Q Number of consumers groups of the retailer
T Number of time periods
t Time period index
tMO Time step in mayfly optimization algorithm
q Customer group index
Constants
χ Charging efficiency of energy storage system
η Discharging efficiency of energy storage system
d The coefficient of nuptial dance
Doffer (q, z, t) Offered demand of the qthcustomers group of the

zthstep in time t
P rk Rated power of the kth wind power unit
P charge,maxl Maximum chargeable power of the lth energy

storage system
P disc,maxl Maximum dischargeable power of the lth energy

storage system
Pmaxbuy,pro Maximum power that can be bought by the retailer

from prosumers’ aggregator
PmaxPM Maximum power that can be bought by the retailer

from pool market
Pmaxsell,pro Maximum power that can be sold by the retailer to

prosumers’ aggregator
Pwindk (t) Wind power produced by the kth wind power unit

at time t
vrk Rated wind speed of the kth wind power unit
vcik Cut-in wind speed of the kth wind power unit
vcok Cut-out wind speed of the kth wind power unit
vwindk (t) Wind speed related to the kth wind turbine area at

time t
Xl

0 Primary energy stored in the lthenergy storage
system

pricemaxbuy Maximum price of buying that can be bid by the
retailer to prosumers’ aggregator

pricemaxsell Maximum price of the selling that can be bid by the
retailer to prosumers’ aggregator

pricepm(t) Pool market price of power at time t

1. INTRODUCTION

In the last few years, the use of renewable energy resources,
distributed production sources, as well as energy storage systems
in smart grids has increased intending to increase system
efficiency [1]. Also, the smart grid has provided the possibility of
communication between the participants at the level of production
and consumption. Therefore, consumers can participate in the
process of modifying the load curve through demand response
programs [2].

The structure of the smart grid refers prosumers to as those
customers who play the role of both generating and consuming
power in the electricity networks. Given that prosumers have small
energy resources, it seems necessary to use an aggregator to make
the most of the benefits of being in a smart grid environment
and exchanging information and power with other players in the
electricity market [3]. Electricity retailers, on the other hand, as
profit-oriented companies, buy electrical energy from wholesale
electricity markets and sell it to end consumers [4]. Therefore, how
information and power exchange between retailers and consumers
is one of the important issues in the structure of the smart grid.
Accordingly, this paper provides a structure for modeling the
relationship between retailers and types of consumers.

1.1. Related research
Reference [5] has presented an energy management system

for residential prosumer based on fuzzy logic. In this paper, the
information related to the energy price has been obtained from
the main network in the form of fixed parameters. The authors
in reference [6] have used prosumers to adjust the voltage and
reduce line congestion. Therefore, the details of prosumers’ local
energy management are omitted in this article. The article [7]
has discussed the planning of electric vehicles and energy storage
systems belonging to prosumers using Mixed Integer Linear
Programming (MILP). In this paper, the authors have considered
an aggregator for consumers. In this reference, the incentive-based
pricing method is considered, so other pricing methods such
as Time of Use (TOU) and Real Time Pricing (RTP) are not
considered. The paper [8] has divided prosumers into superior
and inferior. According to this classification, the superiors, as
leaders, are responsible for being present in the energy market and
determining the scheduling strategy for the day ahead. Inferiors,
meanwhile, were responsible for generating renewable power and
responding to the price signals of leaders. One of the positive
features of this article is the consideration of day-ahead and
real-time markets. In this paper, the different pricing methods for
prosumers are not compared with each other. In reference [9], the
authors have presented a two-level multi-leader and multi-follower
game to model the behavior of prosumers and end users. Not
needing a central operator in the presented method is one of the
innovations of the article. However, not considering price-based
demand response programs and not comparing pricing methods
to consumers can be negative points of this article. Ref. [10]
deals with a two-step planning for prosumer’s aggregator and
determining TOU pricing tariffs for consumers in the medium
term. This article is different from our article due to its focus
on medium-term planning. In paper [11], the authors have used
the Particle Swarm Optimization (PSO) algorithm and the ability
of smart loads to provide a way to manage the power of the
day-ahead as well as the real-time of prosumers. Reference [12]
has presented a structure for energy sharing between prosumers
with renewable resources and energy storage systems. The purpose
of this article is to minimize the lack of power in the community
intended for prosumers. Therefore, the economic interests of each
prosumer have not been emphasized. The paper [13] by presenting
the concept of an Energy Storage (ES)-equipped Energy Sharing
Provider (ESP), which proposed sharing or exchanging energy
between neighboring PV prosumers. The proposed model has
provided a stochastic programming method for scheduling the
day-ahead and uses the Stackelberg game model to use real-time
demand response. Paper [14] has presented a distributed method
for energy exchange between independent prosumers to maximize
their level of social welfare. Unlike this article, which did not
use a central controller, reference [15] has modeled a collaborative
game between the energy hub manager and prosumers equipped
with a photovoltaic system. Morstyn et al. in ref. [16] has
provided a unique platform for the energy market to model the
energy exchange between prosumers with different priorities. In
this platform, different classifications have been done based on
different items such as the type of production technology, the
location of prosumers in the network, and the reputation of the
owners. The paper [17] has modeled prosumer planning into two
stages. In the first stage, the resources of each prosumer are
determined the day ahead, and in the second stage, they decided
to participate in intraday markets, such as peer-to-peer and flexible
markets, according to the shortage or excess power predicted. The
contribution of this article is to consider several markets. However,
references [14–17] have not discussed the effect of different
pricing methods on the profits of prosumers. The authors in [18]
have presented a model for peer-to-peer energy exchange between
prosumers and consumers based on RTP. Paper [19] has proposed
a decentralized model based on peer-to-peer energy exchange for
energy exchange between prosumers. One of the features of this
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article is considering a retail market to compensate for the lack
of local products when necessary. By dividing prosumers into
two categories of buyers and sellers, the ref. [20] has provided a
mechanism to determine the price between these two categories.
According to the review of papers [5–20], none of the articles has
a comprehensive review of the impact of different pricing methods
on the profit earned by prosumers and also the cost of consumers.

On the other hand, references [21–30] have investigated the
presence of retailers in the smart grid environment. In the
article [21], the retailer has settled the power in the presented
model by using the possibility of concluding a contract with the
wind power producer as well as its presence in the wholesale
market. In ref. [22], to reduce the risk of the retail market, the
contract of interruptible loads has been used in the form of an
optional contract. One of the positive features of this article is a
detailed review of the impact of DR contracts on the retailer’s
profit. The retailer’s energy clearance strategy presented in the
paper [23] consists of two steps. Decisions about day-ahead and
real-time market presence are made by the retailer in the first
and second stages, respectively. The retailer in this paper has the
possibility of arbitrage between the day-ahead market and the
real-time market. In ref. [24], the authors have proposed a bi-level
stochastic planning model for the presence of retailers in the
distributed renewable energy market. At a higher level, the retailer
decided on the level of the presence in the day-ahead and real-time
markets, as well as the price offered to renewable sources. At
the second level, renewable energy producers maximized their
profits. Not considering demand response programs is one of
the weaknesses of two articles [23] and [24]. In reference [25],
the authors have presented a model based on a data-driven
decision-making strategy to increase retailers’ profits and reduce
consumers’ costs. This method has based on received information
instead of relying on the model. Reference [26], by presenting
a new method based on the supervised learning method, has
investigated the two issues of energy settlement and retailer pricing
simultaneously. Nojavan et al. in [27] have used a robust method
of retailer energy procurement in the presence of a variety of
demand response contracts. The paper [28] considered a bi-level
game between retailers at a higher level and consumers at a
lower level. The goal of the higher level of the game was to
maximize the retailer’s profit by using pricing tools for wholesale
markets and using demand response programs. The goal of the
lower level of the game was to minimize the cost of purchasing
energy and also to maintain the level of welfare of consumers. It
should be noted that at the lower level of the game, consumers
and independent system operators were presented. The model
presented in [29] to determine the strategy of operation of energy
storage systems by retailers has used the real-time pricing method
as a tool to use demand response programs. Authors in the
reference [30] provided a hybrid model for estimating retailers’
profits with responsive consumers in the electricity market. In the
proposed model, the MILP problem has been used to simulate
the electricity market, and an economic model has been used to
estimate the amount of revenue and price fluctuations of electricity
demand. Based on our studies, few papers on the decision-making
process model between retailers and prosumers have focused more
on how prosumers use the resources available. Ref. [31], using
a bi-level model, has modeled the exchanges between retailers
and prosumers over the medium term. The comparison period
considered for this article is one year. Meanwhile, in this article,
we have discussed the day ahead planning. Also, in the papers
reviewed in a short term, the impact of different pricing methods
on end users and prosumers has not been investigated in detail, so
this issue has been investigated in the paper presented by us. On
the other hand, the smart grid environment has made it possible to
establish telecommunications between different participants in the
competitive electricity market. Therefore, this telecommunication
structure has made it possible to exchange information between
retailers and all types of customers. Thus, in such an environment,

it is possible to use a variety of demand response programs to
improve the profits of various participants. FP, TOU, and RTP
pricing methods are price-based demand response programs. TOU
and RTP pricing methods provide more flexibility for energy
settlement of retailers and prosumers than the FP method. So, it
is expected that retailers and prosumers will benefit more in TOU
and RTP pricing methods. Therefore, in this article, the effect of
this pricing method on consumers is compared in the proposed
structure. In Table 1, a comparison has been made between some
of the latest relevant studies and the model presented in this paper.

1.2. Features and innovations of the paper
Given the above, a bi-level structure for energy exchange

between higher-level retailers and prosumers in the form of a
lower-level aggregator is presented in this paper. Therefore, to
find the optimal point instead of using mathematical models to
convert a bi-level to a single-level problem, an innovative model is
presented that combines the Mayfly optimization (MO) algorithm
with the MILP. Therefore, the features and innovations of this
paper can be summarized in the following sections:

1) A bi-level structure for scheduling the day-ahead power of
retailers and prosumers’ aggregators is presented. In this
structure, the retailer, as the leader, determines the price
of power exchange between itself and prosumers, and the
aggregator, as a follower, determines the amount of power
exchange.

2) In the proposed structure, the retailer has no ownership
over renewable generation resources and DGs, but prosumers
have renewable generation resources including wind turbines,
photovoltaics, and DGs.

3) To solve a bi-level problem, unlike many papers in this
field, instead of using complex mathematical formulations, a
combined MILP model and Mayfly optimization algorithm
have been used.

4) To check the efficiency of the proposed method, the presented
structure has been compared with a centralized power
management model.

5) To evaluate the proposed method in the presence of demand
response programs, three methods of pricing as price-based
demand response programs have simulated and their results
have compared.

1.3. paper structure
In the continuation of this article, in Section 2, the proposed

structure of information exchange and power exchange between
retailers and prosumers’ aggregator has been described. Also, in
Section 2, the proposed algorithm for solving the bi-level problem
has presented in general. Section 3 has showed the formulation of
the problem. In Section 4, the simulations have been performed on
a sample network and the efficiency of the proposed method has
been investigated. Finally, Section 5 has concluded the paper.

2. PROBLEM DESCRIPTION

The structure presented in this paper has shown in Fig. 1. The
retailer in this structure buys electricity from the wholesale market
and resells it to consumers. There are two categories of customers
in this paper. The first group is prosumers whose collection is
intended as an aggregator. Other customers are also considered
as price-sensitive consumers. In this paper, it is assumed that the
price-power curve of consumer consumption was informed to the
retailer the day before of operation. The aggregator of prosumers
has facilities such as wind products, photovoltaics, energy storage
system, and DG, and also there is a certain amount of load for
these prosumers. This paper hypothesizes that the aggregator of
prosumers can be considered a buyer or seller of power. Therefore,
according to Fig. 1, the power exchange between the retailer
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Table 1. Literature comparing

Reference Power management of prosumers Power management of retailer Bi-level programming Pricing method to consumers

[7] Yes No NO Incentive based
[8] Yes No YES Parameter (market price)
[10] Yes No NO TOU
[13] Yes No NO RTP
[14] Yes No NO parameter(market price)
[21] No YES NO Parameter
[24] No Yes YES RTP
[27] No YES NO Parameter (DR programs)
[28] No YES YES RTP
[30] No YES NO FP
This paper Yes YES YES FP,TOU and RTP

Fig. 1. Schematic of the proposed structure

and the aggregator of prosumers is considered bidirectional. In
this paper, a bi-level structure is considered to power settle the
retailer and prosumers’ aggregator on the day before the operation.
The decision-making process in the proposed structure is by the
following steps.

1) The retailer randomly generates prices for the purchase and
sale of power in the next 24 hours of the next day to the
prosumers’ aggregator and announces them.

2) The prosumers’ aggregator according to the offered purchase
and sale price received from the retailer and according to its
available resources and its consumption demands, determines
the amount of its ability to buy or sell to the retailer at any
hour of the day ahead and announces it to the retailer. It also
specifies the amount of its cost.

3) The retailer, considering the constant amount of exchange
power with the aggregator and its bid price, manages the
power to settle the energy of other consumers as well as
determine the amount of purchase from the wholesale market.
The retailer calculates its cost according to new information.

4) The retailer uses the MO algorithm to maximize its profit,
update the bid prices to the prosumers, and announce them
to the prosumers’ aggregator.

5) Steps 2 to 4 continue until the stop condition is reached. The
maximum stop condition is the number of iterations of the
MO (mayfly optimization) algorithm.

2.1. Mayfly Optimization (MO)
Zervoudakis and Tsafarakis introduced the MO algorithm in

2020[32]. The MO algorithm used a mathematical model of the
flight and mating process of mayflies. The MO algorithm initially
produces two random populations, the male set, and the female
set, respectively. Each position of the mayflies is a potential
solution to the optimization problem. Vectors of position and
velocity in dthimension search-space are as X = (x1, x2, . . . , xd)
and V = (v1, v2, . . . , vd) respectively. To determine the direction
of flight of each mayfly, it uses the best flight experience of each

mayfly (pbest) and also the best social experience of mayflies
(gbest). Equation 1 is modelled the velocity of movement of a
male mayfly [32]:

vt
MO+1

uw = vt
MO

uw + a1 ∗ e−βr
2
p ∗
(
pbestuw − x

tMO

uw

)
+ a2 ∗ e−βr

2
g ∗
(
gbestw − x

tMO

uw

) (1)

In Eq. (1) vt
MO

uw indicates the velocity of the male mayfly, xt
MO

uw

shows the position, tMO denotes the time step, u is the mayfly
number, w = 1, . . . , n is the space dimension. While a1 and
a2 as constant values represent the effect of cognitive and social
components, respectively. Also," β denotes a visibility coefficient.
Finally, rp , rg represent the distance between Xu and pbestuand
gbest, respectively. The new position of each male mayfly changes
using Eq. (2) as follows [32]:

xt
MO+1
u = xt

MO

u +vt
MO+1
u (2)

Where vt
MO+1
u is calculated as follows for the best mayflies [32]:

vt
MO+1
u = vt

MO

u +d ∗ r.. (3)

Here, d is the coefficient of nuptial dance. While r is selected
randomly from [-1,1] interval.
Equation (4) models the speed of movement of a female mayfly
using a simulation of the attraction process between male and
female mayflies [32]:

vt
MO+1
uw =

{
vt
MO
uw + a3 ∗ e−βr

2
mf ∗

(
xt

MO

uw − yt
MO

uw

)
s.t : f(yu) > f(xu)

vt
MO

uw + fl ∗ r s.t : f(yu) ≤ f(xu)
(4)

In Eq. (4) vt
MO

uw indicates the velocity of the female mayfly, yt
MO

uw

shows the position, tMO denotes the time step," u is the mayfly
number, w = 1, . . . , n is the space dimension. Besides," a3 is
a constant applied to scale the contribution of the social and
cognitive components. Also, β denotes a visibility coefficient.
While rmf represents the distance between male and female
mayflies. Finally, d is the random walk coefficient and r is a
random number with a [-1, 1] range. Therefore, the new position
of the female mayfly is calculated as follows [32]:

yt
MO+1
u = yt

MO

u + vt
MO+1
u (5)

The mating process for mayflies is formulated by two Eqs. (6 and
7). The fitness value is used to pick out the parents for a mating
that results in offspring, which are generated as follows [32]:

offspring1 = R ∗male+ (1−R) ∗female (6)

offspring2 = R ∗ female+ (1−R) ∗male (7)

Where male indicates the male parent, female denotes the female
parent and R is a random number within a predefined range. The
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initial velocities offspring1 and offspring2 are assumed to be
zero. According to ref. [32], the Mayfly optimization algorithm
has the following steps:

1) Determine random values for the position and speed of male
and female mayflies.

2) Calculate the objective function based on the given initial
values.

3) Find global best (gbest).
4) Update velocities and position of male and female mayflies.
5) Calculate the objective function based on new values.
6) Rank male and female mayflies.
7) Mate the mayflies.
8) Calculate the offspring.
9) Divide offspring into two groups randomly.

10) Replace the worst solutions with the best new ones.
11) Update pbest and gbest
12) If the stop condition is reached, go to the next step, otherwise

return to step 4.
13) Display results and end of simulation.

3. PROBLEM FORMULATION

the proposed model in this paper, a bi-level structure is
considered, in which at the higher level is the retailer and at the
lower level is the prosumers’ aggregator.

3.1. Higher level problem: energy procurement from the
retailer’s point of view
The retailer in the structure proposed in this paper buys energy

from the pool market and seeks to meet the needs of its consumers
and prosumers. The goal of every retailer is to gain maximum profit
from participating in the power market environment. Equation (8)
has shown the objective function of the retailer.

min CRe =

T∑
t=1

{
pricePM (t) ∗ PPM (t)

+ pricebuy,pro(t) ∗ Pbuy,pro (t)
− pricesell,pro (t) ∗ Psell,pro (t))

−
Q∑
q=1

SP (q, t) ∗D (q, t)

} (8)

The retailer’s purchase from the pool market is limited by equation
(9):

0≤PPM (t)≤PPMmax (9)

Equations (10-12) have introduced the sale and purchase
restrictions from the prosumers aggregator and the impossibility of
simultaneous buying and selling from the prosumers aggregator in
the model, respectively.

0≤Psell,pro (t)≤α (t) ∗Pmaxsell,pro(t) (10)

0≤Pbuy,pro(t)≤β(t)∗Pmaxbuy,pro(t) (11)

0≤α (t)+β (t)≤1 (12)

Equations (13-14) show the limit of the retailer’s bid price for sale
and purchase to/from the aggregator, respectively.

0≤pricesell,pro(t)≤pricemaxsell (13)

0≤pricebuy,pro(t)≤pricemaxbuy (14)

The equations for the demand of each group of consumers are
entered in the model according to Fig. 2 [33]. The equations for

Fig. 2. Price-load curve of the demand supplied by the retailer [33]

the amount and price of selling power to price-sensitive consumers
are as follows [33]:

D (q, t)=
Z∑
z=1

Doffer (q, z, t) ∗A(q, z, t) (15)

SP (q, t)=

Z∑
z=1

SP (q, z, t) (16)

SP offer (q, z − 1, t) ∗A(q, z, t)≤SP (q, z, t)

≤SP offer (q, z, t) ∗A(q, z, t) (17)

Z∑
z=1

A(q, z, t)= 1 (18)

Also, according to the seller’s pricing method, equations (19) to
(21) are entered in the model for FP, TOU, and RTP pricing
modes, respectively [33].

SP (q, t)=SPFixed (q) (19)

SP (q, t)=

 SPTOUL (q) , t∈low load level
SPTOUM (q) , t∈ medium load level
SPTOUP (q) , t∈peak load level

(20)

SP (q, t)=SPRTP (q, t) (21)

Constraint (22) shows the balance of power associated with the
retailer.

PPM (t)+Pbuy,pro (t)− Psell,pro (t)=
Q∑
q=1

D(q, t) (22)

3.2. lower level problem: energy procurement from the
prosumers’ aggregator point of view
At the lower level of the proposed structure in this paper,

there is an aggregator of prosumers whose goal is to obtain the
highest profit (lowest cost) to provide the required load demand
from available resources. Therefore, the objective function (23)
has defined for the prosumers’ aggregator.

minCpro =

T∑
t=1

{
J∑
j=1

(CDGj
(t) − pricebuy,pro (t) ∗Pbuy,pro (t)+pricesell,pro (t) ∗Psell,pro (t)

}
(23)
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Fig. 3. Linear operation cost model of DG units [33].

Equations (24-26) have included the sales and purchasing limit of
the retailer to/from the prosumers’ aggregator and the impossibility
of simultaneous buying and selling from the prosumers’ aggregator
in the model, respectively:

0≤Psell,pro (t)≤α (t) ∗Pmaxsell,pro(t) (24)

0≤Pbuy,pro(t)≤β(t)∗Pmaxbuy,pro(t) (25)

0≤α (t)+β (t)≤1 (26)

Equations (27-28) show the limit of the seller’s bid price for sale
and purchase to the aggregator, respectively:

0≤pricesell,pro(t)≤price
max
sell (27)

0≤pricebuy,pro(t)≤price
max
buy (28)

Conditions (29-31) related to DGs owned by prosumers’ aggregator
are [33]:

CDGj (t)=

N∑
h=1

SDGj,h ∗PDGj,h (t) (29)

0≤PDGj,h (t)≤PMAX
j,h − PMAX

j,h−1 , h = 2, . . . , N (30)

0≤PDGj,1 (t)≤PMAX
j,1 (31)

Fig. 3 provides a better understanding of equations (29-31).
Equation (32) has shown the amount of production capacity of
wind power generation sources belonging to the aggregator of
prosumers [33]:

Pwindk (t) =


0 s.t : vW (t) ≤ V cik
P rk

(
vW (t)−V ci

k

V r
k
−V ci

k

)
s.t : V cik ≤ v W (t) ≤ V rk

P rk s.t : V rk ≤ v W (t) ≤ V cok
0 s.t : vW (t) ≥ V cok

(32)

Equation (33) has shown the amount of generating power of solar
power generation sources (photovoltaic system) belonging to the
prosumers’ aggregator [34]:

PPVg (t)=ηPVg ∗SPVg ∗∅ (t) ∗
(
1− 0.005

(
TePV−25

))
(33)

Equations (34-39) for energy storage systems belong to
aggregator [33]:

Xl (t0) = Xl
0 (34)

P chargel (t)≤P charge,maxl ∗Uchargel (t) (35)

P discl (t)≤P disc,maxl ∗Udiscl (t) (36)

Xmin
l ≤ Xl(t) ≤ Xmax

l (37)

Uchargel (t) + Udiscl (t) ≤ 1 (38)

Xl(t) =Xl(t− 1)+χ∗P chargel (t)− P discl (t)

η
(39)

The power balance constraint for the aggregator of prosumers has
given in Equation (40):

J∑
j=1

N∑
h=1

PDGj,h (t) + Psell,pro (t)− Pbuy,pro (t)

+

K∑
k=1

Pwindk (t) +

G∑
g=1

PPVg (t) +

L∑
l=1

P discl (t)

−
L∑
l=1

P chargel (t) = P demand,pro

(40)

3.3. Simulation process
The algorithm of the proposed method is shown in Fig. 4. The

proposed method to solve the problem has the following steps:
i. Initialization: Start the process with iteration = 1. Allocate

the random values to price buy, pro(t), and pricesell,pro (t)
at the beginning of the process subject to constraints of Eqs.
(13) and (14). Here, pricemaxsell and pricemaxbuy are assumed to
be 0.1 $/kWh.

ii. By solving the objective function (23) and according to
the constraints (24) to (40), each prosumers’ aggregator
announces to the retailer the amount of power that can be
sold or the amount of power that can be purchased from the
retailer. At this stage, the prices received from the retailer are
assumed to be fixed.

iii. The retailer according to the information received from the
prosumers’ aggregator and assuming the amount of power
sold and purchased to/from the aggregator is constant, solving
the objective function (8) according to the constraints (9) to
(22) performs power management. After performing power
management and considering the exchange of power with the
prosumers’ aggregator, it calculates its cost.

iv. The retailer uses the MO optimization algorithm to update the
sale and purchase prices of power and inform the prosumers’
aggregator to make a decision, with the aim of function (8)
and according to the costs calculated in the previous step.

v. Updating of iteration number: At this step, if the maximum
number of iterations is reached, stop. Else, go to Step ii.

4. CASE STUDIES

In In this section, the proposed model is implemented on
a sample network. The network includes a retailer, procumers
aggregator, and three groups of price-sensitive consumers. The
retailer buys power from the wholesale market to meet the
consumption demand of its consumers and prosumers. The results
of applying the proposed method using three pricing methods FP,
TOU, and RTP have given below. Also, these results have been
compared with the results of the centralized power management
method. Also, to investigate the effectiveness of using the MO
optimization algorithm in the proposed method, the results of using
the MO algorithm have been compared with two optimization
methods, PSO and HHO.
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Fig. 4. The flowchart of the proposed algorithm

4.1. Data
Fig. 5 showed the wholesale market prices. In this network,

three groups of residential, industrial, and commercial consumers
are considered. The consumer’s load sensitivity to price is
considered in a graph consisting of ten steps. Fig. 6 has shown
the percentage of loads demanded by these consumers based
on price. The prosumers’ aggregator has used various sources
in addition to exchanging energy with retailers to supply the
consumption demand of its consumers. Fig. 7 showed the basic
load of consumption of the three groups of consumers as well as
the amount of a load of prosumers’ aggregator. Information on
DGs owned by prosumers has shown in Table 2. It also has shown
information on wind generation sources, photovoltaic systems,
and energy storage systems in Tables 3, 4, and 5, respectively.
Meteorological information has shown in Table 6. Information on
daily load classification at three levels of consumption for use in
TOU pricing has shown in Table 7.

4.2. numerical results
In this section, the efficiency of the proposed algorithm has

compared to a power management algorithm described in case 1.
Based on our studies, in none of the previous studies, a structure
similar to the structure presented in this article has not been used
for short-term planning of retailers and prosumers aggregators.
However, in references [30], and [33–35], a centralized power
management structure is used to minimize retailer costs. Therefore,
in this article for comparison, a centralized power management
method is used from the point of view of the retailer as a
central operator. Also, to find the best pricing method and evaluate
price-based demand response programs, three pricing methods FP,
TOU, and RTP have been used in the proposed algorithm.
Case 1. First, using the centralized power management method
from the perspective of the retailer as a central operator to
minimize the cost of the entire system, production and demand
planning for the day ahead 24 hours are done. In this method,
it is assumed that pricing to price-sensitive consumers is done
in the form of FP. Also, the central operator is allowed to

Fig. 5. Pool market price

Fig. 6. Demand-price curve

plan production resources and demand related to prosumers.
Therefore, the difference between production and demand related
to prosumers’ aggregator is settled based on the prices of the pool
market shown in Fig. 5. Accordingly, the amount of profit and
loss of retailers and prosumers’ aggregators is determined in this
method.
Case 2a. FP pricing method has been used to determine to price
for consumers and prosumers aggregator in the proposed algorithm.
Case 2b. TOU pricing method has been used to determine to
price for consumers and prosumers aggregator in the proposed
algorithm.
Case 2c. RTP pricing method has been used to determine to
price for consumers and prosumers aggregator in the proposed
algorithm.

The results of applying case 1, case 2a, case 2b, and case 2c
on retailer and prosumer aggregator costs have shown in Table 8.
The maximum number of iterations of the proposed algorithm has
assumed to be 50. As it is clear from the results of the table,
applying the proposed method using three pricing methods FP,
TOU and RTP have caused the retailer to get out of the loss

Fig. 7. Base load profile for retailer’s consumers group and demand profile
of the prosumers’ aggregator
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Table 2. The parameters data of the Distributed Generations (DGs)

Parameters First DG Second DG Third DG Furth DG Units

Maximum
power output

150 180 200 200 KW

Minimum
power output

0 0 0 0 KW

SDG1 0.030 0.037 0.040 0.033 $/KWh
SDG2 0.036 0.040 0.043 0.038 $/KWh
SDG3 0.039 0.045 0.045 0.043 $/KWh
Pmax1 60 80 100 100 KW
Pmax2 110 120 150 150 KW
Pmax3 150 180 200 200 KW

Table 3. The parameters data of the wind power producer

Parameters Values Units

Rated power 400 KW
Cut-in wind speed 3.5 m/s
Rated wind speed 10.5 m/s
Cut-out wind speed 20 m/s

situation in case 1. Therefore, in case 2a, case 2b, and case 2c, the
retailer has earned $193.36, $206.78, and $225.72, respectively.
In the comparison between case 1 and our proposed method in
this paper, the pricing ability of the retailer to the prosumer
aggregator can be seen as the main reason for the difference in the
much lower costs created for the retailer in the proposed method.
Also, in the proposed method using RTP, a 3.8% lower cost is
created for the prosumers’ aggregator than the other two pricing
methods. According to the results of the table, it is clear that
the lowest cost or the highest profit for the retailer is obtained
for the RTP, TOU, and FP respectively. To further explore the
strategies adopted by the retailer and prosumers’ aggregator, the
final prices offered by the retailer to its consumers as well as how
the energy is settled by the retailer and prosumers’ aggregator are
given below. Table 9 has shown the price offered by the retailer to
three groups of consumers in case 1. Fig. 8 has shown the energy
procurement strategy of retailers and prosumers’ aggregators in
the centralized power management method. According to the
information in Table 9, the highest price has been offered to the
group of industrial customers. Based on Fig. 6, it is clear that the
group of industrial consumers has requested more load than the
other two groups at the same price, so it is reasonable for the
retailer to offer a higher price to this group. Therefore, it can be
seen in Fig. 9 that the most power sold to consumers is related to
industrial, commercial, and residential groups, respectively. It can
also be seen from Fig. 9 that when the total amount of production
from DG, PV, and wind power sources is at its lowest, the amount
of purchase from the pool market is higher. Also, the discharge

Table 4. The parameters data of the PV system

Parameters Values Units

Capacity(KW) 550 KW
ηPV 15.7 %
SPV 3500 m2

Table 5. The energy storage system parameters data

Parameters Values Units

Xb,max 300 KW
Xb,min 30 KW
P charge,max 180 KW
P disc,max 180 KW
χ 90 %
η 90 %

Table 6. Forecasted daily wind speed, temperature and irradiation for a
sample day

Time (h) Wind speed (m/s) Temperature (◦C) Irradiation
(W/m2)

1 10.5 24.7 0
2 13.5 24.5 0
3 14.9 24.3 0
4 15.6 24.4 0
5 19.5 24.5 93.5
6 20.6 26.5 219
7 14.4 27.5 467.5
8 14.1 28 637.5
9 11.3 28.5 780
10 9.7 28.8 916
11 7 29 1100
12 5.9 29.7 1033
13 8.9 29.8 850
14 9.5 30 680
15 10.4 29.8 595
16 8.8 29.5 255
17 7.1 29 212.5
18 8.3 27.7 153
19 9.9 26.5 63
20 7.5 24.8 0
21 8.8 25 0
22 9.8 24.8 0
23 9.2 24.6 0
24 8.4 24.8 0

Table 7. Classification of daily load levels

Level Hours of the day

Low (L) 1, 2, 3, 4, 5, 6, 7, 8
Medium (M) 9, 10, 11, 12, 13, 14, 15, 16
Peak (P) 17, 18, 19, 20, 21, 22, 23, 24

of the energy storage system has occurred during hours with high
energy prices in the pool market.

Table 10 shows the retailer pricing to prosumers’ aggregator
and the three groups of consumers using the FP method. Fig. 9
and. 10 have shown the retailer and prosumers aggregator energy
procurement strategy in the FP method using the proposed
algorithm, respectively. As can be seen from the figures, the
prosumers’ aggregator prefers to buy energy from the retailer
during peak hours of the night, in the hours when the aggregator
is short of power, based on the retailer’s bid price to sell energy to
prosumers’ aggregator. This is also due to the high price offered
by the retailer. Also, considering the retailer’s offer price to buy
power from the prosumers’ aggregator, the aggregator prefers to
choose the power sold to the retailer during off-peak hours, which
is more economical for him. Also, the amount of power sold
to residential, commercial, and industrial groups is selected from
the lowest to the highest, respectively. This case can also be
justified according to the price offered to the three groups of
consumers by the retailer as well as the price-sensitivity figure
of these consumer three groups. Fig. 10 also has shown how the
prosumers’ aggregator uses the available resources to supply the
energy required

by their customer. One of the things that can be deduced
from this figure is that the simultaneous use of wind and solar
energy during the day under study has to some extent been
able to complement each other to provide the power required
by customers. Also, charging energy during off-peak hours and
discharging it during higher price hours can have a positive effect
on reducing the costs of prosumers.

Table 11 has shown the pricing of the retailer to its customers
in the TOU pricing method. Fig. 11 and. 12 also show the energy
procurement strategy of the retailer and prosumers’ aggregator in
the TOU pricing method, respectively.
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Table 8. Cost of the retailer and prosumers’ aggregator

Case Retailer’s cost ($) Aggregator’s cost ($)

Case 1 239.80 69.78
Case 2a (FP) -193.36 542.38
Case 2b (TOU) -206.78 542.38
Case 2c (RTP) -225.72 521.53

Table 9. Retailer’s pricing to the customers in the case1

Unit Price of the en-
ergy selling to
residential con-
sumers

Price of the en-
ergy selling to
commercial con-
sumers

Price of the en-
ergy selling to
industrial con-
sumers

($/Kwh) 0.0515 0.0530 0.0545

As can be seen from the figures, power exchange is based on
the retailer’s bid prices at 6, 20, and 21 hours from the retailer to
the aggregator. The aggregator also prefers to sell energy to the
retailer only at 1 o’clock, based on the retailer’s bid prices. Also,
in most hours, according to the consumption- price figures of the
three groups of consumers, the amount of power provided by the
retailer between residential, commercial, and industrial consumers
is from the lowest to the highest amount, respectively. Comparing
Fig. 10 and. 12, it can be seen that the aggregator strategy is
about the buying and purchasing capacity as well as the charging
and discharging of the energy storage system and DG resources
in two pricing modes FP and TOU vary in hours. However,
the results in Table 8 show that this change in strategy did not
change the aggregator costs in either case. However, the change
in the retailer’s pricing strategy and the consequent change in the
customers’ energy procurement strategy has increased the retailer’s
profit.

Table 12 has shown the retailer pricing to its customers in the
RTP method using the algorithm proposed in this paper. Fig. 13 and
14 are related to the energy settlement strategy of the retailer and
the prosumers’ aggregator, respectively. Comparing Fig. 13 with
Fig. 9 and. 11, it is clear that the possibility of more flexible retail
pricing in the RTP method than the other two pricing methods, FP
and TOU, has led to greater energy exchange between the retailer
and the aggregator. Also, the change in pricing method has caused
a change in the amount of purchases from the pool market. Also,
the supply of power to three groups of consumers by retailers has
increased. Also, the change in the use of energy storage systems
and distributed generation resources by the prosumers’ aggregator
in the three pricing methods in Fig. 10,. 12, and. 14 is evident.

What can be said from the results of the tables and figures
presented in this section, is that in general, the use of the RTP
method using the proposed algorithm has generated the most profit
for retailers and aggregators. This is due to the variation in prices
offered to customers, which has led the prosumers’ aggregator
to use their available resources to better meet the demand of
consumers.

Fig. 8. The power procurement of retailer and prosumers’ aggregator in
case 1

Fig. 9. The power procurement of the retailer in FP method (case 2a)

Fig. 10. The power procurement of the prosumers’ aggregator in FP
method (case 2a)

Fig. 11. The power procurement of the retailer in TOU method (case 2b)

Fig. 12. The power procurement of the prosumers’ aggregator in TOU
method (case 2b)

Fig. 13. The power procurement of the retailer in RTP (case 2c)

Fig. 14. The power procurement of the prosumers’ aggregator in RTP
method (case 2c)
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Table 10. Retailer’s pricing to the customers in the FP method (case 2a)

Unit Price of the energy selling
to aggregator

Price of the energy buying
from aggregator

Price of the energy selling
to residential consumers

Price of the energy selling
to commercial consumers

Price of the energy selling
to industrial consumers

($/Kwh) 0.1 0.0414 0.0515 0.0530 0.0545

Table 11. Retailer’s pricing to the customers in TOU method (case 2b)

Daily load level Price of energy selling to
aggregator ($/Kwh)

Price of energy buying
from aggregator ($/Kwh)

Price of energy selling
to residential consumers
($/kwh)

Price of energy selling
to commercial consumers
($/Kwh)

Price of Energy selling
to industrial consumers
($/Kwh)

Low 0.0533 0.0314 0.0480 0.0495 0.0510

Table 12. Retailer’s pricing to the customers in RTP method (case 2c)

Time
(hour)

Price of energy selling to
aggregator ($/Kwh)

Price of energy buying
from aggregator ($/Kwh)

Price of energy selling
to residential consumers
($/Kwh)

Price of energy selling
to commercial consumers
($/Kwh)

Price of energy selling
to industrial consumers
($/Kwh)

1 0.0461 0.0388 0.0515 0.0530 0.0580
2 0.0583 0.0411 0.0515 0.0530 0.0545
3 0.0366 0.0374 0.0480 0.0495 0.0545
4 0.0368 0.0403 0.0480 0.0495 0.0510
5 0.0372 0.0255 0.0445 0.0460 0.0475
6 0.0434 0.0668 0.0445 0.0460 0.0475
7 0.1 0.0405 0.0445 0.0460 0.0510
8 0.0422 0 0.0480 0.0495 0.0510
9 0.0442 0.0195 0.0480 0.0495 0.0545
10 0.0854 0.0435 0.0480 0.0530 0.0545
11 0.0525 0.0272 0.0515 0.0530 0.0580
12 0.0804 0.0521 0.0515 0.0565 0.0580
13 0.0634 0.0457 0.0515 0.0565 0.0580
14 0.0545 0.0429 0.0515 0.0565 0.0580
15 0.0618 0.0356 0.0515 0.0530 0.0580
16 0.0824 0.0265 0.0480 0.0530 0.0545
17 0.0417 0.0561 0.0445 0.0460 0.0510
18 0.0487 0.0569 0.0480 0.0530 0.0545
19 0.0539 0.0434 0.0550 0.0565 0.0580
20 0.0946 0.0245 0.0550 0.0600 0.0650
21 0.0958 0.0885 0.0550 0.0600 0.0650
22 0.0514 0.0470 0.0550 0.0600 0.0650
23 0.0790 0.0456 0.0550 0.0565 0.0580
24 0.0855 0.0405 0.0515 0.0565 0.0580

4.3. Comparing the results of using MO and other meta-
heuristic algorithms in the proposed method
Given the advantages of MO compared to other meta-heuristic

techniques [32], this paper emphasizes the use of MO in the
proposed method. Nevertheless, the profit acquired by retailers
using MO and other meta-heuristic algorithms in the proposed
method for the 2a, 2b, and 2c cases are compared in Table 13.
For comparison, in this section, Particle Swarm Optimization [36]
and Harris Hawks Optimization (HHO) [37] have been used. The
maximum number of iterations of these optimization algorithms
is assumed to be 50. The results of this table show that, via
employing MO as the optimization method of the proposed
strategy, retailers earned higher total profits in FP and RTP pricing
methods. However, the use of all three optimization algorithms in
the TOU pricing method has given equal benefits to the retailer. In
the FP pricing method, the use of the MO optimization algorithm
in the proposed method has given retailers 0.3 and 0.8 percent
more profit than the PSO and HHO algorithms, respectively. Also,
in the RTP pricing method, the use of the MO optimization
algorithm in the proposed method has provided retailers with 2.4
and 16.67 percent more profit than PSO and HHO algorithms,
respectively.

4.4. Discussion
According to the review of the papers written by the researchers

in the field of the day ahead planning of retailers and prosumers,
there is a gap that can examine both the planning of retailers and
prosumers aggregator in a short term. Therefore, in this paper, a
bi-level structure is presented for the day ahead planning of these

Table 13. Comparing the profit of retailer using different optimization
algorithms in the proposed method

Pricing methods Using MO($) Using PSO ($) Using HHO($)

FP (case 2a) 193.36 192.59 191.64
TOU (case 2b) 206.78 206.78 206.78
RTP (case 2c) 225.72 220.42 193.46

two participants in the smart grid environment. To compare the
efficiency of the proposed method, a central power management
model has been used to minimize the grid cost. Also, to compare
FP, TOU, and RTP pricing methods, these three pricing methods to
consumers and prosumers have been used in the proposed model.
The results of the simulations have proven the effectiveness of
the proposed method from the point of view of the retailer. This
issue is because, in the proposed method, the possibility of pricing
to consumers as well as prosumers is considered. Also, in the
proposed method at a higher level, the profit of the retailer is
considered as the target. Also, out of the three pricing methods,
RTP, TOU, and FP have given the most profit to the retailer,
respectively. This is also due to the RTP pricing method being
more flexible than the other two methods. Also, to compare
the efficiency of the MO optimization algorithm, the results of
using this algorithm have been compared with the PSO and HHO
algorithms. This comparison has also shown the effectiveness of
the MO optimization algorithm.

5. CONCLUSIONS
This paper presents a bi-level structure for energy exchange

between retailers and aggregators of prosumers, as well as energy
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procurement of these two participants of the electricity market for
the day ahead. To solve the bi-level structure presented in this paper,
the combined method of MILP and MO algorithm is proposed.
In this paper, renewable energy sources, distributed generation
resources, and energy storage systems are used to provide energy
for the prosumers aggregator. To compare the effectiveness of the
proposed method, a central power management method has been
used as a benchmark. To use the telecommunication infrastructure
of the smart grid to take advantage of the potential of price-based
demand response programs, three pricing methods FP, TOU, and
RTP have been used to offer the retail price to its consumers
in the proposed model and their results have been compared
with each other. The simulation results show that the retailer and
aggregator of prosumers, if the RTP pricing method is used in the
proposed model, will have more profit than the other two pricing
methods, from the presence in a smart network environment.
Since in this paper the uncertainties related to the production of
renewable energy and the common market prices of power are not
considered for the day ahead, the effects of these uncertainties
can be considered in future studies. Also, in future studies, the
planning of retailers and prosumers can be considered in the
context of the electricity distribution network, so the effect of line
restrictions can be analyzed in the obtained results. Also, due to
the use of demand response programs in the planning of retailers
and prosumers, the presence of these participants in the real-time
and intra-day markets can be investigated.
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