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Abstract— This paper proposes a complete diagnostic analysis of faults in a typical modern power system’s transmission line using the
support vector machine (SVM) with time-series parameters and frequency series parameters as features. The training and testing data
of the proposed method are collected by simulating all types of faults with all possible variations on a transmission line (TL) in the
IEEE-9 bus system using the PSCAD/EMTDC software. While simulating one type of fault, fault resistances and fault inception angles
are also varied to account for the various behaviours of the fault. The three-phase instantaneous currents and voltages on both sides
of TL are recorded at 32 samples per cycle. A thirty-two sample moving window is used to compute time-series and frequency-series
parameters applied as features to the SVM. Ten-fold cross-validation is used to evaluate the performance of the proposed algorithm with
evaluation metrics such as accuracy, precision, recall and F1 score. Features generation, training and testing of the proposed method, and
performance comparison are done using PYTHON software. The proposed method has achieved an average accuracy of 99.996%, even in
the most contaminated environment of 30 dB noise. Compared with the performance of the other popular machine learning algorithms, the
proposed method has achieved more accuracy. The performance of the proposed method is also tested with different noise levels, which
account for the measurement errors of 30 dB, 35 dB and 40 dB.
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1. INTRODUCTION

Transmission lines (TL), an integral part of the power system,
improve the power reliability by interconnecting different parts
of the electrical grid. This interconnection helps export power to
the generation deficient regions from the excess power region.
In addition to the power system interconnections, TL permits
cost-effective electrical power dispatch from generating stations
–located on cheaply available land on the periphery of a city–
to load canters [1, 2]. These TLs cover different geographic
terrains such as forests, rivers, deserts etc. Unfortunately, because
TLs are exposed to the atmosphere, they are more susceptible
to various faults [3, 4]. Transmission line faults and subsequent
transmission line shutdowns impact the reliability and stability of
power systems [5].

A transmission line fault is a problem caused by an unintentional
path of power flow, which results in an anomalous flow of current
and, if not addressed, burns the line [13]. The fire created by
line burning could spread to other elements of the power system,
posing a considerable risk of death. Faults cause dangerous and
insecure power system operations and physical damage to line
infrastructure [14]. Based on how conductors have reacted to
external disturbances like breaking a line or a tree falling on the
line, faults in the system can be categorized as open conductor
faults, series faults, or shunt faults [15]. Proper protection of
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the transmission lines ensures the future expansion of the power
system [16].

1.1. Literature Review
Fault classification is necessary to estimate the amount of repair

work at the fault site [17]. Fault classification results are used
as inputs to the fault location identification algorithms and as
decision points for the circuit breaker’s single pole or double
pole operation to maintain the power system’s reliability, security,
and stability [18]. Because of the huge importance of fault
classification in transmission lines, much research is being carried
out. The methods used for the transmission line classification can
be broadly classified into two categories. Namely,

1) Analytical Methods or conventional methods
2) Intelligent Methods

The analytical methods can be further subdivided into three main
categories 1. Impedance-based methods 2. Travelling wave-based
Methods 3. Modal transformation methods

In the modal transformation methods [19–21], three-phase
quantities of voltages and currents in the stationary reference
frame represented by a, b and c axes are transformed into another
stationary reference frame α,β, and 0 axes with the help of Modal
transformation such as Clarke transformation (CT). Based on this
transformation, fault types were characterized by describing the
relationships between phase quantities and modal component

The entire classification is completed in this analytical method
in a single step. In analytical methods, with a solid mathematical
background, the computation time and complexity of the solution
depend on the system’s size. However, the second classification
method, i. e. intelligent, mainly uses two fault classification
stages. The first stage is feature generation from the front-end
data. The second stage is applying the features to different
classification algorithms. Different signal processing techniques
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are used in the first stage, such as Discrete Fourier Transform
(DFT), S-Transform (ST), Wavelet Transform (WT), Hilbert
Huang Transform (HHT), Principal Component Analysis (PCA)
and Empirical Mode Decomposition (EMD). The second stage of
fault classification may consist of artificial intelligent methods such
as Artificial Neural Network (ANN), Fuzzy Inference Systems
(FIS), Support Vector Machine (SVM), Decision Tree (DT),
k-nearest neighbors (KNN), Random Forest (RF).

Strong pattern recognition capabilities make Artificial Neural
Network (ANN) a good transmission line fault classification
method. Researchers and scientists have used different types of
ANN methods for classification. Radial basis function neural
network is used in [22], [23], multi neural network is used in
[24]. Authors in [25] used Chebyshev neural networks for the
protection of ISPST [25], and authors in [26] used data mining
and SVM-based technique to protect the microgrid [26]. Similarly,
authors in [27] used data mining techniques to improve vehicle
charging on imbalance index in unbalanced distribution networks
[27]. The drawback of the ANN is that it takes a long time
for training, and also overfitting the trained data will give wrong
results to data out of the trained data [22].

With the help of only current samples, fuzzy logic-based fault
classification is done in [28]. Data mining-based fuzzy logic is
used in [29] to identify the cause of fault in unbalanced distributed
lines. Some authors have used the Adaptive Network-Based Fuzzy
Inference System [30] for fault classification. Authors in [31] have
used the ANFIS algorithm to classify the faults in the transmission
line. However, the fault classification metrics are not properly
mentioned. Authors in [32] used a fuzzy neuro approach [33] to
classify the faults with the help of symmetrical components along
with the line currents. Moreover, several studies have ignored the
effect of noise in training or test data.

Authors in [34] used a cross-correlation aided fuzzy-based
scheme for fault classification. This method has a Low burden
for calculating features, is less immune to noise, and only utilizes
single-end parameters. However, fewer fault and non-fault scenarios
are used in the method [34]. Authors in [35] used ratio-based and
probabilistic neural networks with the help of Principal component
analysis for the transmission line fault classification. This method
requires the data of only one end of the line, but the transmission
line with single-end feeding is considered in this work [35]. Chen
et al. used novel integrated feature extraction for the transmission
line fault classification. This method is used for both fault location
and classification [36]. Authors in [37] used an unsupervised
feature learning and convolutional spares auto encoder-based fault
classification of the transmission line. The effect of sampling
frequency is considered in this work [37].
The authors in [38-40], [17], and [41] used the Support vector
machines algorithm [42] for classifying the faults in a transmission
line or distribution line. With the help of SVM, wavelet-based
fault classification is performed in [17]. The average classification
accuracy is around 96%, and no proper procedure is available
to select the mother wavelet. A radial basis neural network is
used along with SVM in [39], where the average classification is
around 98%. However, the data set used for testing the algorithm
is very less. The method used in [43] is very complex, and
the classification accuracy is around 95%. The accuracy of the
classification in [40] is around 95%.

1.2. Significant Contribution and paper organization
As the faults happen on different phases of the transmission line,

the corresponding phase currents and phase voltages get affected
severely. Different faults will result in different current and voltage
value variations. Fault resistance, fault inception angle, and fault
location will contribute to this variation.

• All samples in one full cycle, i.e. thirty-two samples, are
gathered from the instant of the fault, the three-phase currents
and three-phase voltages on both sides of the transmission

line to calculate time series parameters and frequency series
parameters up to the seventh harmonic using FFT.

• The time-series and frequency-series parameters are applied
as features to the SVM algorithm.

• To the original data, the noise of various signal-to-noise ratio
(SNR) levels such as 30dB, 35dB, and 40dB is introduced.
Next, the algorithm’s robustness is tested by calculating the
time and frequency series parameters.

• The performance of the proposed method is compared with
that of the other popular Machine Learning algorithms such
as Decision Tree, Random Forest, K-Nearest neighbours,
Adaptive Boosting Classifier and Gaussian Naive Bayes.

The rest of this paper is organized as follows. Section 2 explains the
basics and formulation of the Support Vector Machine Algorithm.
Section 3 explains how the application of the SVM can solve the
present problem. Section 4 describes the simulation of the IEEE9
bus system in PSCAD / EMTDC and the data generation process.
Section 5 talks about validating the generated data. Section 6
provides the results and discussions. Finally, Section 7 talks about
the conclusions and recommendations.

2. MATHEMATICAL DESCRIPTION OF SVM
SVM is a classification algorithm that provides a clear and

possibly large boundary between the two classes [42]. SVM can
be applied to distinguish between two classes and among multiple
classes. SVM is an algorithm which bifurcates two classes.
However, the same theory can be applied to multiple classes by
converting the multiple classes into two classes - one class is all
the instances that belong to one of the classes in the given multiple
classes. The other class is all the instances that do not belong
to the above-said class. This process can be repeated x-1 times,
where x is the number of unique classes in a given data [42].

Let there be two classes, namely C1 and C2, in the complete
training data of a classification problem. Let "n" be the number of
features of a class and "m" be the number of instances of those
two classes in the given problem. Out of these m instances, let
us assume that for k instances, the data belong to C1, and for the
remaining (m-k) instances, the data belong to C2. Here,

0 ≤ m ≤ ∞ and m ∈ Z ( A set of Integers) (1)

0 ≤ n ≤ ∞ and n ∈ Z ( A set of Integers) (2)

0 ≤ k ≤ n and k ∈ Z ( A set of Integers) (3)

The total number of occurrences and features can be represented
in a matrix of the type [X]mXn, where m represents the number
of rows (representing instances), and n represents the number of
columns (representing features). The following equation can be
used to solve the given categorization problem.

g (x) = wtX + b, where w = weights and b = bias (4)

g (X1) = wtX1+b > 0, when X1 is on RHS of the line (5)

g (X1) = wtX1 +b < 0, when X1 is on LHS of the line (6)

The orientation and bias of the line are dynamically changed to
accommodate all the instances of class C1 such that

g (Xi) = wXi + b > 0 then Xi ∈ C1 (7)

g (Xi) = wXi + b < 0 then Xi ∈ C2 (8)

For any instance, if Xi ∈ C1, then wXi + b > 0, and if Xi ∈ C2,

then, wXi + b < 0, and from the given labels, we can encode as

yi = ±1 such that yi = +1 if Xi ∈ C1 and yi = −1 if Xi ∈ C2

(9)
Combining the above three equations, we can get another equation
as follows

yi (wXi + b) > 0 (10)
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Fig. 1. the proposed moving window of one cycle (thirty-two samples) for calculating the features applied to the already trained model for fault classification

If p is any vector from the testing data set, and if (wp+ b) > 0
then p belongs to C1; otherwise, p belongs to C2.

Let x be the support vector in the given training data set. In
order to get good classification results irrespective of the pollution
in the testing data, we need to maximize the margin between the
support vectors of the two classes.

The distance from the support vector to the boundary is defined
as

w.x+ b

|w| ≥ γ (11)

w.x+ b ≥ γ|w| (12)

After proper scaling, the above equation can be rewritten as

w.x+ b ≥ 1 if x ∈ C1 (13)

w.x+ b ≤ −1 if x ∈ C2 (14)

In order to maximize the margin, γ, |w| should be the minimum
value, and b should be the maximum value

To get the minimum value of w, let us define a function

ϕ (w) = wt.w ∼=
1

2
w.w (15)

Now, let us minimize the function ϕ (w) such that yi (w.xi + b) =
1

We all know that a Lagrangian multiplier can be used to
convert a constrained optimization problem to an unconstrained
optimization problem.

L (w, b) =
1

2
(w.w)−

n∑
i=1

αi[yi (w.xi + b)− 1] (16)

where, αi ≥ 0 is the Lagrangian multiplier.

L (w, b) =
1

2
(w.w)−

n∑
i=1

αiyiwxi −
n∑

i=1

αiyib+

n∑
i=1

αi (17)

∂L

∂b
=

n∑
i=1

αi.yi = 0 (18)

Where n= No. of features. Similarly,

∂L

∂w
= w −

n∑
i=1

αiyixi = 0 (19)

Substituting (12) and (13) in (11), and after further simplification,
we get

L =

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αjyiyj(xi.xj) (20)

Once the value of L is known, the values of w and b can be
computed from (16). This enables the identification of the support
vectors in the training data with the maximum possible distance
between the support vectors.

3. METHODOLOGY USED FOR FAULT DIAGNOSTIC
ANALYSIS IN THE PRESENT WORK

There are 11 classes in the problem statement: no-fault, AG,
BG, CG, AB, AC, BC, ABG, ACG, BCG, and ABCG. The
purpose of this paper’s work is to classify the classes as precisely
as possible. The thirty-two sample moving window is refreshed at
a sampling frequency of 1920 Hz, as shown in Fig. 1. The moving
window stores the three-phase instantaneous line currents and
three-phase instantaneous line to ground voltages on both sides of
the TL. The moving window is updated with the latest thirty-two
samples after the fault instant in the current study, as illustrated in
Fig. 1. Time series and frequency series parameters are generated
from the values recorded in the moving window. These parameters
are used as features in the SVM algorithm for training and testing.
Minimum, maximum, average, root mean square, peak to peak
values of all three-phase voltages and currents on both sides of the
transmission line are among the time-series properties.

The DC value, magnitudes, and phase angles of the fundamental
signal or first harmonic up to the seventh harmonic are all
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Table 1. Variation in important fault parameters for simulation of the fault and non-fault scenarios

Parameter Range of Values Step size Count

Fault Type no-fault, AG, BG, CG, AB, AC, BC, ABG, ACG, BCG, and ABCG NA 11
Fault Resistance 0 Ω to 60 Ω 5 Ω 13
Fault Location 0 km to 100 km 10 km 11
Fault Inception Angle 0◦ deg to 360◦ deg 22.5◦ deg 16

Total Fault scenarios studied in this work (10x13x11x16) 22,880
Total Non-Fault scenarios studied in this work (1x13x11x16) 2,288

Table 2. Formulae of evaluation metrics

Metric Accuracy Precision F1-score Recall

Order of Preference 1 2 3 4
Formula (TP+TN)

(T+N)
TP

(TP+FP )
(2∗Precision∗Recall)/
(Precision + Recall)

TP
(TP+FN)

Table 3. Quantitative values of evaluation metrics for the full cycle moving
window data sets without any noise

Fold Accuracy F1 score Precision Recall

1 1 1 1 1
2 1 1 1 1
3 1 1 1 1
4 1 1 1 1
5 1 1 1 1
6 1 1 1 1
7 1 1 1 1
8 1 1 1 1
9 1 1 1 1
10 1 1 1 1
Avg 1 1 1 1

Table 4. Ten-fold average quantitative values of evaluation metrics for data
with different noise levels

Noise Level Accuracy F1 score Precision Recall

30 dB 0.99996 0.99996 0.99996 0.99996
35 dB 1 1 1 1
40 dB 1 1 1 1

included in the frequency series. These frequency series features
are estimated for all three-phase voltages and currents on both
sides of the transmission line.

4. DATA GENERATION FOR TRAINING AND TESTING
OF THE SVM MODEL

The transmission line connecting buses 7 and 8 is considered
to simulate a variety of fault and non-fault scenarios. To simulate
faults at various locations along the transmission line, including
bus seven and bus eight, the line comprises ten equal portions. All
possible faults, i. e. No-fault, A phase to Ground fault (AG), B
phase to Ground (BG), C phase to Ground (CG), A phase to B
phase to Ground (ABG), A phase to C phase to Ground (ACG),
B phase to C phase to Ground (BCG), A phase to B phase to C
phase to Ground (ABCG), A phase to B phase (AB), A phase
to C phase (AC) and B phase to C phase (BC) are simulated
at each location of the transmission line. Each type of fault at
each location is simulated to accommodate all possible variations
of fault parameters like fault resistance and fault inception angle.
Fault resistance varies from 0 Ω to 60 Ω in steps of 5 Ω, and fault
inception angle varies from 0 deg to 360 deg in 22.5 deg. The
parameters, varied to simulate all fault and non-fault scenarios, are
summarized in Table 1.

5. DATA VALIDATION BEFORE EMPLOYING THE
DATA IN TRAINING AND TESTING

In any machine learning or artificial intelligence method, data is
of utmost importance as the output of the model is as good as the
data used for the training and testing. This section will describe
the visual inspection of the generated data before training and
testing. All other parameters, such as fault location and inception
angle, should remain constant when the fault resistance values
grow from 0 to 60 in step 5. The variations in the fault voltages
and fault currents measured on TL near bus 7 for fault resistances
of 0 Ω and 60 Ω, respectively, are shown in Fig. 2. Fig. 2(a)
and Fig. 2(b) show the variations in fault voltages and currents
for the LG fault. Fig. 2(a) and Fig. 2(b) show that the fault
current values will decrease and fault voltage values will increase,
respectively, for an increase in fault resistance value. Figures 2(c)
and 2(d) show the variations in fault voltages and fault currents
for LLG fault. Figures 2(c) and 2(d) show that the fault voltages
and currents behave the same way as the LG fault. Figures 2(e)
and 2(f) show the fault voltages and fault current variations for the
LLLG fault. Figures 2(e) and 2(f) reiterate that the fault voltage
magnitude increases with the increase of fault resistance and vice
versa. Figures 2(e) and 2(f) also reiterated that the fault current
magnitudes decrease with the increase of fault resistance value and
vice versa. Similar behaviour will be observed in the fault currents
and voltages measured at bus 8 for different types of faults.

In a fault scenario, as the fault inception angles are increased,
keeping the fault resistance and fault location constant- depending
on the load and other conditions in the grid, the values of the
fault currents and fault voltages also change as shown in Fig. 3.
Fig. 3 shows the variation in the fault voltages and fault currents
measured at bus seven due to the change of fault inception angle
for LG, LLG and LLG faults. Similar behaviour will be observed
in the fault currents and voltages measured at bus 8 for different
types of faults.

6. RESULTS AND DISCUSSIONS

In this work, a total of 11 classes are present: no-fault, AG,
BG, CG, AB, AC, BC, ABG, ACG, BCG, and ABCG. Suppose
the classification algorithm predicts a data point that belongs to
AG as AG. In that case, this result can be called true positive
(TP). Suppose the classification algorithm predicts a data point
that belongs to AG, as any other class except AG. In that case, this
result can be called true negative (FN). Suppose the classification
algorithm predicts a data point that belongs to any other class
except AG, as AG. In that case, this result can be called a false
positive (FP). Suppose the classification algorithm predicts a data
point that belongs to any other class except AG as any other class.
In that case, this result can be called true negative (TN).
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 Fig. 2. Variations in voltage and current signals measured on TL near bus seven due to change in fault resistance values for LG, LLG, and LLLG faults
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 Fig. 3. Variations in voltage and current signals measured on TL near bus seven due to change in fault inception angle values for LG, LLG, and LLLG faults
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Table 5. Performance comparison of the proposed method with other ML algorithms for (a) data set without any noise, (b) data set with 30dB SNR noise
level, (c) data set with 35dB SNR noise level and (d) data set with 40dB SNR noise level

Noise Algorithm Accuracy F1 Score Precision Recall

No noise ABC 0.782 0.70888 0.67253 0.78163
No noise DT 0.99984 0.99984 0.99984 0.99984
No noise GNB 1 1 1 1
No noise KNN 0.99217 0.99217 0.99221 0.99217
No noise RF 0.99869 0.99869 0.99871 0.99869
No noise SVM 1 1 1 1

30 dB ABC 0.72703 0.6361 0.59067 0.72703
30 dB DT 0.98057 0.98057 0.98065 0.98057
30 dB GNB 0.93818 0.93766 0.94511 0.93818
30 dB KNN 0.99074 0.99074 0.9908 0.99074
30 dB RF 0.74837 0.68218 0.84737 0.74837
30 dB SVM 0.99996 0.99996 0.99996 0.99996

35 dB ABC 0.72703 0.6361 0.59067 0.72703
35 dB DT 0.98411 0.98411 0.98417 0.98411
35 dB GNB 0.94271 0.94242 0.94677 0.94271
35 dB KNN 0.99146 0.99146 0.99149 0.99146
35 dB RF 0.74289 0.67201 0.80756 0.74289
35 dB SVM 1 1 1 1

40 dB ABC 0.72703 0.6361 0.59067 0.72703
40 dB DT 0.98633 0.98633 0.98643 0.98633
40 dB GNB 0.95311 0.95304 0.95446 0.95311
40 dB KNN 0.99166 0.99166 0.9917 0.99166
40 dB RF 0.74348 0.67359 0.84067 0.74348
40 dB SVM 1 1 1 1

Table 6. Performance comparison of the proposed method with other existing methods in the literature

Parameter Proposed Method [34] [35] [36] [37]

Number of the fault and non-fault scenarios 25168 12474 1485 59825 24948
Accuracy 100% 99.34 100 98.9 99.29
Noise Levels Considered 30 dB, 35 dB and 40 dB 20 dB, 30 dB and 40 dB Not considered Not considered Not considered

The performance of the proposed model is evaluated with the
help of popular classification metrics such as accuracy, precision,
F1-score and Recall. The formulae for the metrics are provided
in Table 2. Classification accuracy is the ratio of total correct
predictions to the total number of predictions.

This metric is the most popular and frequently used metric to
quantify the classification accuracy of any classification algorithm.
Accuracy talks about the classification algorithm’s ability to
make correct predictions. Precision is the ratio of true positive
predictions to the sum of true positive predictions and false-positive
predictions. Precision quantifies the ability of the classification
algorithm in terms of correct positive predictions. Recall or
sensitivity is the ratio of true positive predictions to the sum
of true positive predictions and false-negative predictions. Recall
quantifies the ability of the classification algorithm in terms of
exact prediction. F1-score is the harmonic mean of precision
and recall. F1-score is considered a very important metric for
quantifying the ability of the classification algorithm in some
situations where the trade-off between precision and recall cannot
be decided. Here in this work, the order of preference for the
evaluation metrics is Accuracy, Recall, Precision and F1-score.
The evaluation is carried out using a ten-fold cross-validation
procedure. The range of values for all the evaluation metrics is
0 to 1.0, and 0 indicates the worst performance. In contrast, 1
indicates the best possible performance.

6.1. Performance of the proposed method with actual data

The result of the proposed method for full-cycle data is provided
in Table 3. As shown in Table 3, all the metrics, i. e., accuracy,
precision, recall and F1-score, are equal to 1, indicating that all
the classes are accurately classified.

6.2. Performance of the proposed method with polluted data
To test the robustness of the proposed model, the model is tested

with data sets which consist of polluted data of different levels.
The pollution in any given data is measured by a signal-to-noise
ratio (SNR) generally measured in dB. The lower the value of the
SNR in dB, the higher the pollution in the given data. Three data
sets are created for full-cycle data with different noise levels such
as 30dB, 35dB and 40dB. The average values (for the ten folds)
of the classification evaluation metrics full-cycle moving window
with the noise level of 30dB, the most polluted data set, are
provided in Table 4. The accuracy, F1-score, precision and recall
values are the same for the full cycle data and equal to 0.999960.
For 35 dB and 40 dB, all the evaluation metrics have a value of
one. The proposed method can classify the faults with 100 per
cent accuracy for the data sets with 35 dB and 40 dB noise.

Table 4 Ten-fold average quantitative values of evaluation
metrics for data with different noise levels.

6.3. Comparison of the performance of the proposed
method with that of the other Machine Learning Algorithms
The performance of the proposed method is compared with that

of the other popular Machine Learning classification algorithms
such as the Decision Tree algorithm (DT), Random Forest
algorithm (RF), k-Nearest Neighbours algorithm (KNN), Adaptive
Boosting Classifier algorithm (ABC) and Gaussian Nave Bayes
classification algorithm (GNB) to validate the performance of
the proposed method. The average values of the classification
evaluation metrics for full-cycle moving window data without any
noise are presented in Table 5. The net values of the classification
evaluation metrics for full-cycle moving window data with 30dB,
35 dB and 40 dB noise are also provided in Table 5. From the
table, it can be seen that the proposed algorithm outperformed
the remaining ML algorithms in each case. GNB performed well
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in the case of data with no noise, but its performance, compared
to the performance of SVM, is rather poor. The proposed SVM
achieved 100 % accuracy in every case except with high polluted
noise of 30 dB noise case.

6.4. Comparison of the performance of the proposed
method with that of the other existing methods in the
literature
Table 6 shows the proposed method’s performance with that of

the other existing literature. The proposed method uses 25168 fault
and non-fault scenarios for the training and testing of the proposed
method. Noise analysis for noise with 30 dB, 35 dB and 40 dB
is also performed. The proposed method gives a 100 % accurate
classification of faults and non-faults. Authors in [34] used 12474
scenarios and also performed noise analysis with 20 dB, 30dB
and 40 dB. They have achieved an accuracy of 99.34%. Noise
analysis is not performed in [35–37]. Authors in [36] used 59825
scenarios and achieved 98.9% of accurate results. Performance
comparison of the proposed method with other existing methods
in the literature

7. CONCLUSIONS

This work proposes a new method for fault classification of
transmission line faults using SVM with the help of time-series
and frequency series parameters. The performance of the proposed
method is checked with data derived from all possible situations.
This data includes the variations of fault resistance, fault locations
and inception angles. The algorithms performance is also tested by
adding noise of different SNR levels.

The proposed model can classify the transmission line faults
with 100% accuracy for all the full cycle moving window data
without any noise. The proposed model can achieve a classification
accuracy of approximately 100% even for 35 dB and 40 dB noise
data. The proposed model achieves a classification accuracy of
99.996%, even with the most polluted data set. The proposed
model can classify the transmission line faults even under the wide
variations of fault resistance, fault inception angle and location.
The proposed model performs well even under noise in the data
sets. The performance of the proposed method is also tested by
comparing it with the performance of other popular classification
methods. The classification accuracy of the proposed method is
far better than that achieved with ABC, DT, GNB, kNN, and RF
algorithms.
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