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Abstract— Supply-side energy management (SSEM) aims to improve efficiency in operations and strategic planning. Both the cost of
generating electricity and the amount of emissions from that generation are minimized in SSEM. It is required to formulate an optimization
problem with these two competing goals in order to come up with a compromise. Resolving problems with network reliability caused by
peak demand on the electricity system is another goal of SSEM. The ultimate goal of this study is to reduce energy use during peak hours
while also cutting down on power losses, generation costs, and pollution from power plants. In this paper all goals of the smart grid
system are satisfied and addressed optimally through the use of optimal generator scheduling and an improved demand response technique.
To formulate this problem standard IEEE 30-bus system is considered as test boat. The suggested system employs the Cuckoo search
method and its most recent variant, adaptive Cuckoo search, to solve a stochastic non-linear optimization problem. The adaptive Cuckoo
search approach, when combined with the proposed demand side management strategy, reduces fuel costs by 7.84%, emission dispatch by
16.35%, power losses by 10.31%, and peak hour demand by 15.6%.
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1. INTRODUCTION

Load curve flattening is the reduction of power consumption at
peak load hours and increasing the consumption during the low
load periods. It is desired that the load curve to be as flat as
possible. Because it leads various advantages [1, 2] in the operation
of power plants such as reduced equipment’s overloading, reduction
of transmission cost and power losses, minimized consumption of
fossil fuels, generation cost, and emission of greenhouse gases.
Reduction of peak hour’s power demand also helps to reduce the
requirement of peak power plants and avoiding the purchase of
high-priced energy. All these objectives of power system may be
achieved by integrating supply side energy management (SSEM)
programs and demand side management (DSM) programs [3].
SSEM programs take place at supply side or generation side. It
enables the installed generating capacity to provide electricity at
lower cost and to reduce emission of greenhouse gases (GHG) [4].
SSEM is an environmental-driven scheme of energy management.
Its objectives can also be formulated and solved as optimization
problems. On the other hand demand side management (DSM) is
a tool for consumers to help the electrical utilities in management
of electric power demand. DSM has been a subject of research
for the last few years due to the demand for strategic development
in generation, transmission, and distribution in the smart grid. It
has been driven by the increasing demand for electricity [5]. Most
DSM programs are put in place by utilities or end-user consumers.
Programs of DSM can be classified as energy management, load
management (load leveling, peak clipping, valley filling, load
shifting), and load growth & conservation (strategic load growth,
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strategic conservation, flexible load shape) [6]. Form of load
management can be represented by Fig. 1 [7–9].

Direct load control (DLC) and demand response (DR) are two
common tools of DSM those are executed by the utility companies.
Load control is the practice of intermittently cutting off power to
a region by the utility company during times of high demand.
The peak demand management and economic emission dispatch
(CEED) problem for an IEEE 30-bus power system is solved in
[6]. In this case, DSM is implemented via the DLC approach,
wherein power is cut off in the least cost places in order to control
the peak demand condition at generating units. In the DLC method
consumers have to compromise while in the demand response
there is no need to compromise. DR is a type of market-driven
strategy and it can provide short term response to energy market
conditions. It can change the consumer’s power consumption
pattern in response to the variable electricity prices i.e. dynamic
pricing [8]. Table 1 represents overview of DR programs [9–11].
Major programs of demand response are as follows [12–14]:

• Emergency demand response: It is used to reduce the
chance of brownouts or blackouts when demand threatens to
be higher than supply.

• Economic demand response: It is employed by utilities
to avoid the significantly higher costs of producing energy
during peak demand times of the day.

• Ancillary service demand response: It is used to support
the reliable and regulated transmission of electricity to loads.

• Capacity market program: In this program, customers
commit to reduce their load with a pre-specified amount in
order to postpone capacity increase.

• Interruptible service program: In this program consumers
are given rebate for reducing their load in contingency.
Consumers can also be penalized for not reducing their load.

All programs of demand response can be categorized as price-based
or incentive-based programs. Price-based DR programs rely on the
customer’s response (change in energy consumption pattern) to the
electricity price changing with time in order to reduce electricity
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Table 1. Overview of demand response programs

Operational planning Day-ahead scheduling Economic dispatch Real-time dispatch

Price based DR Time of Use (ToU) price Real time pricing (RTP) Critical peak pricing (CPP)

Incentive based DR
Ancillary services market programs (ASMP) Emergency demand response programs (EDRP) Direct load control (DLC)

Capacity market program (CMP) Demand bidding Interruptible service program (ISP)

 

Fig. 1. Forms of load management and load growth

bill costs. On the other hand, incentive-based DR programs depend
on the rebates or penalties applied to consumers for reducing
or raising their power consumption [14]. In the price-based DR
programs changes in electricity prices over time are transmitted to
residential customers via variable electricity tariffs that fluctuate
according to the wholesale electricity price [15]. Consumers may
respond to this variable electricity price in different ways. One
action of consumers could be taken in response to peak price by
reducing their consumption only during peak hours, this result
in peak clipping. Another action could be taken is shifting the
use of electricity from peak hours to off-peak hours [8, 9].
The objectives for shifting the load demand can be different for
different stack holders of power system network. In view of the
electricity suppliers, the objective is to avoid the appearance of a
high peak load demand and a long demand valley i.e. flattening
of the load curve [2, 3]. This objective can be achieved by
implementing load management programs. Many researches have
formulated and solved various single and multi-objective problems
of load management like minimization of consumer’s electricity
bill, reducing peak to average ratio (PAR), maximization of
consumer’s satisfaction, and minimization of peak hour demand
[10–16].

Optimization of objectives of SSEM is as important as load
management for smart grid. Objectives of SSEM can also
be formulated individually or with the objectives of DSM.
Like multi-objective models are proposed by [17, 18] wherein
an objective function of generation cost along with emission
dispatch as supply side objectives and consumer’s electricity
bill, user’s satisfaction, incentive costs for different kinds of
loads are incorporated as demand side objectives [3, 4, 6]. In

these models multi-objective problems are solved by quadratic
programming, multi-objective PSO (MOPSO) [19, 20], and non-
dominated sorting genetic algorithm-II (NSGA-II) [21]. There
are several optimization algorithms available and proposed by
various researchers for the solution of different objectives of
energy management viz. genetic algorithm (GA) [4, 5], harmony
search algorithm (HSA) [22], wind-driven optimization (WDO),
genetic harmony search algorithm (GHSA) [23], Jaya algorithm
[18], whale optimization [9] Strawberry algorithm, and teaching
& learning based optimization (TLBO) [24, 25] etc. Table 2
summarizes various optimization models proposed by different
researchers for the solution to the objectives of DSM and SSEM.

[28] proposed solution of economic emission dispatch problem
using GAMS software for a small microgrid system integrated with
DR and RES. Here, peak hour demand problem for conventional
generators is not considered. [29] solved the problem of peak hour
demand for a modified IEEE 30-bus system integrated with RES
but there is no use of any DSM program. [30] proposed a solution
for cost minimization and peak demand management by reducing
the power consumption using DR program with time-of-use (ToU)
price.

A. Contribution of the Research Work

Integration of DSM programs with SSEM has been resulted in
benefits for the power system. But still there is a scope to enhance
the DSM strategies that can help to improve the efficiency of smart
grid. In this paper solution to the problem of economic emission
dispatch and peak hour demand management is proposed using
enhanced demand response strategy with the application of real
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Table 2. Solution to objectives of DSM and SSEM using different approaches

S. No. Models and objectives References Solution method

1 Minimized power generation cost and carbon emission, considered consumer’s behavior [21] Bi-level optimization using NSGA-II; Improved NSGA-II

2 Peak load minimization by mono-objective function in DSM [25] Quadratic programming (QP)

3 Multi-objective dynamic economic & emission dispatch [19] Multi-objective PSO

4 Reduction of customer’s electricity bill cost [24] TLBO and Shuffled frog leaping (SFL) optimization

5 Minimizing peak demand, power loss & consumer’s bill using variant energy sources (RES) [26, 27] Optimization at two stages using genetic algorithm (GA)

6 Minimization of peak load as well as customer’s electricity bill cost [22, 23] GA, HAS, and crow search algorithm (CSA)

time price (RTP). The key contributions of this research work are
summarized as follows:

• This research work deals with integrating the objectives of
SSEM and demand side management (DSM) programs.

• The performance of CS and ACS algorithms is tested in
finding optimal solutions for the problem of DEED.

• Accounting for the optimal effects of enhanced DR strategy
as DSM measures in peak load management

• Proposes a real-time electricity price, i.e., day-ahead real-time
price (DA-RTP), to calculate the objective load curve.

• A comparative analysis of the accuracy of the objective load
curve obtained through different dynamic prices, viz., ToU
and DA-RTP.

The proposed strategy resulted into improved accuracy of objective
load curve and optimal load curve. It further resulted into
optimized fuel cost, emission of harmful gases, power loss, peak
hour demand, and reduced electricity bill cost for consumers.

2. PROBLEM FORMULATION
B. Dynamic Economic Emission Dispatch (DEED)
DEED aims to minimize fuel cost and volume of greenhouse

gases by optimal scheduling of committed generators to mitigate
certain load demand in a specified interval. Objectives of DEED
problem can be formulated mathematically and given by nonlinear
equations (1) and (2) [31].

f cost
(t) =

NG∑
i=1

(
aiPg

2
i,t + biPgi,t + ci

+
∣∣∣di ∗ sin{ei ∗ (Pgmin

i − Pgi,t
)}∣∣∣ ) (1)

femission
(t) =

NG∑
i=1

(
piPg

2
i,t + qiPgi,t + ri + si exp(tiPgi,t)

)
(2)

Here, f cost
(t) and femission

(t) represent total cost of power generation
and emission dispatch at interval t by all the generating units.

C. Peak Hour Demand Management
In order to reduce the energy consumption in peak hours,

minimized the objective function of difference between objective
load and optimal load given in (3) [4].

Minimize f1 =

T∑
t=1

xt(d)−Objt(d) (3)

Here, T is total number of time slots in a day i.e. 24. xt(d), and
Objt(d) denotes the optimal power consumed and objective load
in time slot t respectively on day d∈N . xt(d), and Objt(d) can
be given by (4) and (5) respectively [9].

xt(d) =

£∑
`=1

xt`(d) (4)

Objt(d) =

1/
pt(d)∑T

t=1 p
t(d)

T∑
t=1

yt(d) (5)

In the (4), xt` represents the energy consumption schedule for a
load ` ∈ £ at time slot t of a day d∈N . Here, £ denotes the full
set of available loads (deferrable and non-deferrable). In the (5)
yt(d) is the forecasted demand at interval t. Here, it is considered
that end-user is served by a utility which employs dynamic pricing
of electricity which is known to the customer in advance for the
day. The price at time slot t on the day d is denoted by pt(d).

A smart home energy controller connected at consumer’s
premises is responsible for the optimal scheduling of deferrable
appliances based on the objective load curve considering consumer’s
preferences and their comfort. The proposed algorithm determines
the objective power demand and optimal power consumption for
each interval on behalf of dynamic price for that interval and
consumer’s pattern of using appliances so that the difference
between optimal and objective demand is minimized. As the
objective demand represented in (5) is inversely proportional to
the price, so that it helps to obtain an objective demand curve with
high power demand in low price hours and low demand in high
price hours [4, 9]. In literature time-of-use price is used as the
dynamic price in [5] but it can’t represent the actual condition of
power demand in system whereas the real time price can represent
the actual condition of power demand and available generating
capacity more accurately.

D. Equality Constraints:
• Power balance equation is given by (6) as an equality

constraint [21].

NG∑
i=1

(Pgi,t) =

NB∑
j=1

(Pdj,t) + Plt (6)

Here, Pgi,t is power output by generating unit i, Pdj,t is
power demand at bus j, and Plt is total power loss at
time slot t. NG and NB also denote number of conventional
power generators and total number of buses present in power
system respectively.

• Scheduling of the appliances also has some equality and
inequality constraints. Such as energy consumption schedule
of appliances for the time slots other than their operational
time is zero [6].

xt`(d) = 0 t /∈ T` (7)

• Energy scheduled should also meet with energy requirement
of the day d∈N , denoted by (DR`) [10].

24∑
t=1

xt`(d) = DR` ` ∈ £ (8)

E. Inequality Constraints:
• Min.-Max limits of power generation given by (9) and ramp

rate limits of ith unit given by (10) and (11) are also
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considered as inequality constraint [30].

Pgmin
i < Pgi < Pgmax

i (9)

Pgti − Pg
(t−1)
i ≤ URi t = 2, . . ., T (10)

Pg
(t−1)
i − Pgti ≤ DRi t = 2, . . ., T (11)

Here, Pgti and Pg(t−1)
i are the power outputs of ith unit at

the tth time interval and (t− 1)th interval respectively. UR
and DR are the up and down ramp-rate limits of the ith unit
in MW/hour.

• The load which belongs to power deferrable category can
operate within a certain minimum and maximum power limit.

xmin
` ≤ xt`(d) ≤ xmax

` t ∈ T` (12)

• Other type of loads that operate at fixed power level (P`),
only ON-OFF control is allowed [18].

xt`(d) ∈ {0, P`} t ∈ T` (13)

3. SOLUTION TECHNIQUES
Objective functions of DEED problem are highly non-linear

and non-differential too. This requires highly robust algorithms
to avoid getting stuck at local optimum solutions. In this paper
cuckoo search (CS) algorithm is used to optimize the objective
functions and its results are compared with adaptive cuckoo search
algorithm. Optimal scheduling of appliances is obtained by binary
particle swarm optimization (BPSO).

F. Cuckoo search algorithm
Cuckoo search (CS) is one of the popular meta-heuristic type

stochastic algorithms. This algorithm is inspired by obligate brood
parasitism of cuckoo species. In this algorithm most optimal
solution of the optimization problem is found on the basis of
breeding behavior of cuckoos. The brooding behavior of cuckoo
birds is represented in Fig. 2.

G. Adaptive cuckoo search (ACS) algorithm
Performance of CS method is improved in ACS method by

adding new equations for adaptive adjustments of inertia weight
(w); step size (α); and skewness parameter (λ) [33].

w = 1− e−
1
t (14)

αi(t) = 0.5 + 1.5(
1√
t
)

∣∣∣∣ f t
best − f t

i

f t
best − f t

worst + ε

∣∣∣∣ (15)

λi(t) = 0.5 + 0.1

∣∣∣∣ f t
best − f t

i

fbest − fworst + ε

∣∣∣∣t (16)

fbest and fworst are global best and global worst fitness values
of functionf respectively; t is the iteration count. Fig. 3 shows the
Pseudo code of CS algorithm [32, 33].

H. Binary PSO algorithm
Discrete or binary PSO (BPSO) was proposed in 1995 by

Kennedy and Eberhart. This version of PSO algorithm adopts
the swarming approach to solve optimization problems where the
decision variables have discrete values. Fig. 3 shows the Pseudo
code of BPSO [34].

In the BPSO, a decision variable (xi) is either 0 or 1 and the
corresponding (νi) is used to determine the state of (xi) using a
sigmoid function (S(νi)) given by (17).

S(νi) =
1

1 + exp(−νi)
(17)

Table 3. Min-Max power limits of IEEE 30-bus system

Gen. unit Pmin
g (MW) Pmax

g (MW) DR (MW/h) UR (MW/h)

1 50 120 80 60

2 20 80 28 15

3 15 50 20 10

4 12 30 10 5

5 10 25 10 5

6 10 25 10 5

Table 4. Hourly power demand in IEEE 30 bus system before applying
DSM

Time slot Load (MW) Time slot Loade (MW) Time slot Load (MW) Time slot Load (MW)

T1 62.32 T7 208.09 T13 219.95 T19 210.25

T2 68.28 T8 260.01 T14 221.48 T20 218.32

T3 70.16 T9 262.25 T15 219.83 T21 261.41

T4 50.84 T10 261.95 T16 185.06 T22 195.86

T5 74.43 T11 309.6 T17 120.97 T23 153.69

T6 126.64 T12 298.84 T18 240.93 T24 69.54

(S(νi)) is mapped to a real value generated randomly between 0
and 1. The value of (xi) is determined by (18).

xi =

{
1, if (S(νi)) > ρ

0, if (S(νi)) ≤ ρ
(18)

Here, ρ is the random number generated by uniform distribution
between 0 to 1 using rand(). The procedure of BPSO is given in
Fig. 4 [34, 35].

4. TEST SYSTEM

Problem of DEED with and without implementing DSM is
tested on standard IEEE 30-bus system with six generating units.
Table 3 gives the power output limits and ramp rate limits for all
the generating units in IEEE 30-bus system. Standard values of fuel
cost coefficients, emission coefficients, and line loss coefficients
for IEEE 30-bus system are considered as given in [21]. Both the
objective functions are converted into a composite function (CF)
with the help of price penalty factors [19] and optimized by CS and
ACS techniques using MATLAB-2013. Here, Gauss-Seidel method
is used for power flow solutions. Table 4 gives the information of
hourly power demand (MW) by all the consumers in IEEE 30-bus
system [10]. Table 5 gives the information of power consumption
in 24 hours by the different residential consumers present in IEEE
30 bus system. It also gives the information of their deferrable
and non-deferrable appliances. Here, total number of consumers
including all the categories is assumed as 15000.

Table 5. Power consumption and appliance information of consumers

Category of Range Power consumption Total Deferrable
consumer (kWh/month) (kWh) appliances appliances

1 < 600 18.62 8 3

2 601 – 750 21.82 9 3

3 751 – 1000 31.58 14 6

4 1001 – 1250 38.08 14 6

5 1251 – 1500 43.75 12 7

6 1501 – 2000 57.75 14 9

7 2001 – 2500 79.75 15 10
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Fig. 2. Brooding behavior of Cuckoo birds

  

Fig. 3. Pseudo code for CS algorithm

5. SIMULATION RESULTS AND ANALYSIS
I. Formation of objective load and reduction of peak hour
demand in IEEE 30-bus system:
To manage the power demand in peak hours, difference between

the objective and optimal load curve is reduced with the help of
optimization function given by (3). Objective load can be obtained
by (5) using dynamic pricing scheme. In literature ToU is used to
find the objective load curve. But ToU price is designed prior a
period of time and remains fixed during this time period whereas
DA-RTP is decided prior a day based on forecasted demand
and generation. So that DA-RTP can represent the condition of
power demand and supply in power system more accurately in
comparison of ToU price. In this research work it is proposed
to find the objective load with the help of DA-RTP in place of
ToU price. In the Table 6 ToU price, DA-RTP, and hourly power
demand for 24 time slots is given. In the ToU price structure peak
demand hours are from time slots T12 to T17. Here, it can be
observed that in the hourly demand peak hours are from T8 to
T12 which can be more accurately represented by DA-RTP.

Table 7 gives the objective power demand observed by (2) using
ToU price and DA-RTP as the dynamic pricing schemes. Fig.
5 represents the comparison of mean absolute error (MAE) and

 

begin 

Objective function f(x) ,  
T

1 2 dx=(x ,x ,.....x )    

Random initialization of solution vector ix , and velocity vector iv    

Transform the solution vector ix into binary position using sigmoid 

function,  iS v  

Evaluate objective function f(x)  for solution vector ix  

Find local optimum 
t

b estP and global optimum
t
b estG as per PSO 

 
while  (t < Maximum Iteration) 

Calculate velocity of particles by PSO using the equation 

t+1 t t t t t
i i 1 1 best i 2 2 best iv =wv +c R (P -x )+c R (G -x )  

Position update of ix by adding updated velocity 
t+1
i(v )  

Evaluate objective function again for updated solution vector 

Update the values of 
t

b estP  as well as 
t
b estG  

end while 

Post process results and visualization 

Fig. 4. Pseudo code for BPSO

mean absolute percentage error (MAPE) between actual hourly
demand of power and objective load obtained with ToU price and
DA-RTP. From this figure it can be observed that objective power
demand obtained with the help of ToU resulted into 66.63 MW
MAE and 38.16 % MAPE. In comparison of this objective power
demand obtained with DA-RTP resulted into 51.61 MW MAE and
28.89% MAPE. By this comparative analysis it can be said that
objective load curve calculated with the help of DA-RTP is more
accurate.

In order to reduce the energy consumption in peak hours,
objective function given by (3) is minimized using BPSO algorithm
and optimal load for 24 hours is obtained. The smart home energy
controller connected at consumer’s premises receive the information
of electricity price sent by the utility and artificial intelligence
based algorithm (BPSO) finds the optimal scheduling of deferrable
appliances based on the objective load curve and consumer’s
preferences of using appliances. The BPSO algorithm determines
the hourly optimal power consumption in order to minimize the
difference between optimal and objective demand with satisfying
the equality and inequality constraints. This version of the PSO
algorithm uses discrete valued (0 or 1) decision variables that
helps to find the on/off state of deferrable appliances. Table 8
gives the optimal power demand for 24 hours obtained for all
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Table 6. Variation of hourly pricing and power demand

Time slot ToU price DA-RTP Hourly power Time slot ToU price DA-RTP Hourly power
(Cents/kWh) (Cents/kWh) demand (MW) Time slot (Cents/kWh) (Cents/kWh) demand (MW)

T1 6.50 6.50 62.32 T13 13.40 11.30 219.95
T2 6.50 6.40 68.28 T14 13.40 10.20 221.48
T3 6.50 6.40 70.16 T15 13.40 6.60 219.83
T4 6.50 6.40 50.84 T16 13.40 6.60 185.06
T5 6.50 6.40 74.43 T17 13.40 7.90 120.97
T6 6.50 6.50 126.64 T18 9.40 7.90 240.93
T7 6.50 6.60 208.09 T19 9.40 7.90 210.25
T8 9.40 9.80 260.01 T20 6.50 8.10 218.32
T9 9.40 9.80 262.25 T21 6.50 8.10 261.41
T10 9.40 10.50 261.95 T22 6.50 6.50 195.86
T11 9.40 10.40 309.6 T23 6.50 6.50 153.69
T12 13.40 11.30 298.84 T24 6.50 6.50 69.54

Off-peak hours Peak hours Mid-peak hours

Table 7. Objective load obtained with ToU price and DA-RTP in IEEE 30-bus system

Time slot Objective load (MW) Time slot Objective load (MW) Time slot Objective load (MW)
ToU DA-RTP ToU DA-RTP ToU DA-RTP

T1 132.25 148.65 T9 191.25 224.12 T17 272.62 180.65
T2 132.25 146.36 T10 191.25 240.12 T18 191.25 180.65
T3 132.25 146.36 T11 191.25 237.84 T19 191.25 180.65
T4 132.25 146.36 T12 272.62 258.41 T20 132.25 185.24
T5 132.25 146.36 T13 272.62 258.41 T21 132.25 185.24
T6 132.25 148.65 T14 272.62 233.26 T22 132.25 148.65
T7 132.25 150.93 T15 272.62 150.93 T23 132.25 148.65
T8 191.25 224.12 T16 272.62 150.93 T24 132.25 148.65
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the consumers after applying demand response. Fig. 6 represents
the comparison of optimal power demand and objective load
with DA-RTP. As a result reduced MAE between objective and
optimal load curve is 21.28 MW and MAPE is 12.24 %. Fig. 7
represents the comparison of peak hour’s demand before and after
application of DSM in IEEE 30-bus system. It is observed that by
the application of DR and optimal scheduling, peak hour’s demand
can be reduced from 1834.08 MW to 1547.16 MW.

J. Fuel cost and emission dispatch before optimal scheduling
of generators in IEEE 30-bus system:
Hourly fuel cost ($/h) and emission dispatch (Kg/h) before

optimization for the power generation required for 24 hours are
calculated using (1) and (2) and given in Table 9. Power generation
scheduling of all the six generators for the power demand given
in Table 4 is also given in Table 9. Here, total power demand
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Table 8. Optimal hourly power demand after applying DSM

Time slot Optimal load (MW) Time slot Optimal load (MW) Time slot Optimal load (MW)
T1 111.87 T9 230.71 T17 198.78
T2 110.82 T10 235.78 T18 215.67
T3 123.08 T11 228.69 T19 215.65
T4 134.95 T12 208.12 T20 184.58
T5 135.02 T13 208.14 T21 184.70
T6 157.21 T14 218.28 T22 162.50
T7 155.23 T15 217.80 T23 158.65
T8 217.44 T16 200.30 T24 156.31

and power loss for 24 hours are 4370.7 MW and 154.80 MW
respectively. As per the power balance condition given in (6),
required power generation is 4525.50 MW (load+loss) but the
actual generation is 4830.93 MW. Because of power generation
scheduled is higher than the power required at low load periods
due to the inequality constraint given by (9).

K. Optimal solution of DEED in IEEE 30-bus system without
use of DR:
Table 10 shows the optimal scheduling of all the six generators

by ACS algorithm as the solution of DEED problem for the hourly
power demand given in Table 4. Fuel cost and gases emission
are minimized using objective functions given in (1) and (2)
using CS and ACS. The optimal scheduling of generators using
CS minimized fuel cost as well as gases emission by 4284.60
$ and 1568.05 Kg. as compared to the results before optimal
scheduling. In comparison of this ACS algorithm reduced the
fuel cost as well as gases emission by 5106.96 $ and 2254.74
Kg. respectively. Optimal setting of control variables also resulted
into reduced total power generation and power loss. As shown
in Table 10 total power demand and power losses for 24 hours
are 4370.7 MW and 149.83 MW respectively. As per the power
balance condition required power generation is 4520.53 MW but
the actual generation is 4821.12 MW. Because of the minimum
power generation limits of generating units, there is generation of
extra power of 305.43 MW before optimal scheduling and 300.59
MW after optimal scheduling during low load periods. This extra
power generation also results into higher power generation cost
and emission of harmful gases.

There are two solutions to this problem. One is at the macro
level where different states/utilities can share load so that the load
curve is consistent in power system. This solution is more complex
& time consuming due to various economic and political hurdles.
Another solution is at the micro level where the application of
DSM programs can modify the load curve by the help of dynamic
pricing schemes. This not only minimizes the imbalance between
load demands during different times but also helps in peak shaving.
This approach helps both the customers to lower down there
monthly billing cost and also reduce operational cost for utilities.

L. Optimal solution of DEED in IEEE 30-bus system with
use of DR:
This optimal power demand is distributed among committed

generating units. Hourly scheduling of generating units is also
obtained in order to minimize the fuel cost and emission dispatch.
Power generation scheduling of all six generators obtained by
CS and ACS algorithms for the optimal power demand. Optimal
scheduling by ACS algorithm and resulted power loss, fuel cost
and emission dispatch is given in Table 11. From the optimal
results given in Table 11, it can be observed that total power
demand and power loss for 24 hours are 4370.7 MW and 138.66
MW. Here, required power generation is 4509.36 MW (load+line
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Fig. 8. Saving in fuel cost by optimal scheduling of generators with and
without DR

losses) on the other hand total power generation is 4519.36 MW.
In comparison of this optimal scheduling by CS algorithm resulted
into 152.89 MW and 142.52 MW line losses before and after
applying DR respectively. Similarly actual power generation by CS
before and after applying DR is 4825.64 MW and 4535.84 MW as
comparative results given in Table 12. The optimal scheduling of
generators after application of DR minimized fuel cost as well as
gases emission by 7615.51 $ and 3058.46 Kg. using CS algorithm.
In comparison of this ACS algorithm further reduced the fuel cost
as well as gases emission by 8366.75 $ and 3400.45 Kg.

Comparison of performance evaluation of CS and ACS in
minimization of generation cost and emission dispatch with and
without applying DSM is given by Fig. 8 and Fig. 9 respectively.
From these graphical representations it can be observed that
optimal scheduling of generating units in IEEE 30-bus system
minimized the generation cost and emission dispatch 4.78% and
10.84% respectively by ACS algorithm and 4.01% and 7.54%
by CS algorithm. In comparison of this application of enhanced
DSM strategy (demand response with real time price) resulted
into further minimization of power generation cost and emission
dispatch by 7.84% and 16.35% with optimal scheduling of
generating units by ACS algorithm and 7.13% and 14.71% by
CS. From the Table 12 it can also be observed that by the
application of DR consumers are also benefited in term of reduced
electricity bill cost by 3985.27 $ per day. Table 13 gives
comparison of results obtained for similar objectives of SSEM
by different optimization algorithms with or without integrating
DSM measures with optimal results given ACS algorithm with
integrating proposed DSM program. From the Table 13 it can be
noticed percent reduction in fuel cost and emission dispatch is
more in [4] and [25] using GA as optimization algorithm. Here, in
[4] objective function are minimized using DR as DSM measures.
In this paper renewable energy sources (RES) are also integrated
in the system like PV systems, and wind turbines (WT). RES
are economic and emission free. In the research papers [6] and
[25] optimal direct load control (DLC) has been applied as the
DSM measure. It results into reduced peak demand, fuel cost as



G.R. Goyal and S. Vadhera: Solution to Objectives of Supply Side Energy Management by Integrating Enhanced Demand Response Strategy 276

Table 9. Fuel cost and emission dispatch for hourly power consumption before optimization (case study-1)

Time Load Pg1 Pg2 Pg3 Pg4 Pg5 Pg6 Loss Total gen Fuel Cost Emission dispatch
slot (MW) (MW) (MW) (MW) (MW) (MW) (MW) (MW) (MW) ($/h) (Kg/h)
1 62.32 50.00 20.00 15.00 12.00 10.00 10.00 2.202 117.00 3471.80 417.74
2 68.28 50.00 20.00 15.00 12.00 10.00 10.00 2.413 117.00 3471.80 417.74
3 70.16 50.00 20.00 15.00 12.00 10.00 10.00 2.479 117.00 3471.80 417.74
4 50.84 50.00 20.00 15.00 12.00 10.00 10.00 2.153 117.00 3471.80 417.74
5 74.43 50.00 20.00 15.00 12.00 10.00 10.00 2.630 117.00 3471.80 417.74
6 126.64 54.32 19.43 16.70 16.07 11.94 13.05 4.475 131.52 3670.72 450.89
7 208.09 81.08 65.91 24.28 15.70 12.77 15.51 7.353 215.25 4629.12 884.20
8 260.01 118.83 60.46 40.46 21.00 14.10 14.59 9.188 269.44 5160.17 1365.53
9 262.25 117.83 70.61 35.23 20.48 15.10 12.59 9.267 271.51 5139.90 1404.00

10 261.95 115.83 65.46 37.46 22.40 16.10 14.26 9.256 271.84 5186.54 1348.06
11 309.6 119.59 78.14 48.84 26.89 24.64 23.75 10.940 321.85 5640.89 1571.73
12 298.84 119.54 60.88 54.36 27.81 24.32 23.59 10.560 310.50 5611.78 1467.09
13 219.95 85.64 60.92 38.54 18.14 10.44 14.66 7.772 228.34 4817.97 931.69
14 221.48 106.9 51.66 30.33 12.45 18.29 10.61 7.826 230.24 4828.35 1110.68
15 219.83 82.64 62.92 38.54 18.14 12.44 13.66 7.768 228.34 4814.71 913.60
16 185.06 72.37 27.67 34.09 25.23 18.33 14.55 6.539 192.24 4475.36 655.77
17 120.97 54.9 18.46 15.84 13.02 12.85 11.68 4.275 126.75 3628.06 449.84
18 240.93 105.38 77.4 24.31 18.31 12.07 13.3 8.513 250.77 4902.93 1254.57
19 210.25 88.62 40.89 36.67 19.55 17.88 14.44 7.429 218.05 4775.81 860.77
20 218.32 82.64 62.92 36.54 18.14 10.44 16.66 7.714 227.34 4793.55 909.67
21 261.41 113.83 67.46 40.46 21.89 14.1 14.09 9.237 271.83 5186.38 1339.82
22 195.86 80.04 35.02 37.17 22.85 12.51 14.75 6.921 202.34 4589.09 749.90
23 153.69 73.49 25.91 22.15 15.45 13.31 10.48 5.431 160.79 4085.12 618.48
24 69.54 50.00 20.00 15.00 12.00 10.00 10.00 2.457 117.00 3471.80 417.74

Total 4370.7 154.80 4830.93 106767.23 20792.72

Table 10. Fuel cost and emission dispatch by optimal scheduling of generators (without DR) by ACS algorithm (case study-2)

Time Load Pg1 Pg2 Pg3 Pg4 Pg5 Pg6 Loss Total gen Fuel cost Emission dispatch
slot (MW) (MW) (MW) (MW) (MW) (MW) (MW) (MW) (MW) ($/h) (Kg/h)
1 62.32 50.03 20.07 15.12 12.08 10.10 10.02 2.202 117.42 3177.36 417.23
2 68.28 50.10 20.04 15.06 12.10 10.15 10.01 2.413 117.46 3178.13 417.57
3 70.16 50.11 20.08 15.05 12.11 10.06 10.19 2.479 117.60 3179.30 418.75
4 50.84 50.15 20.14 15.10 12.09 10.20 10.12 2.153 117.80 3182.36 417.15
5 74.43 50.11 20.10 15.21 12.10 10.15 10.06 2.630 117.73 3181.56 416.89
6 126.64 51.23 24.52 17.65 13.72 11.85 12.12 4.475 131.09 3350.82 421.68
7 208.09 90.69 52.96 20.12 17.85 16.36 17.15 6.235 215.13 4513.90 671.04
8 260.01 118.74 74.10 33.64 17.24 12.42 13.25 9.188 269.39 5107.54 1173.95
9 262.25 118.96 68.17 24.03 23.45 14.84 22.20 9.267 271.63 5120.92 1228.69

10 261.95 117.90 67.24 22.30 29.24 20.35 14.31 9.256 271.33 5105.92 1208.66
11 309.6 119.93 75.53 45.94 29.40 24.99 24.65 10.126 320.44 5348.16 1436.00
12 298.84 120.00 79.88 45.13 21.58 24.67 17.97 9.560 309.22 5290.07 1389.26
13 219.95 80.82 64.49 25.11 29.40 16.16 11.61 7.772 227.59 4803.18 845.16
14 221.48 117.56 42.40 21.21 22.57 10.02 15.55 7.826 229.31 4733.59 861.41
15 219.83 80.82 64.49 25.11 29.40 16.16 11.61 7.768 227.59 4653.18 816.66
16 185.06 62.60 34.00 53.00 15.70 12.22 14.22 6.539 191.75 3859.37 630.16
17 120.97 53.48 24.76 15.00 12.00 10.00 10.00 4.275 125.25 3283.97 430.57
18 240.93 118.76 56.09 22.07 22.16 16.28 13.08 7.561 248.44 4930.39 1160.58
19 210.25 51.49 72.74 35.14 18.80 15.89 22.56 6.349 216.62 4528.40 673.65
20 218.32 67.41 65.79 32.15 21.77 24.65 14.88 7.714 226.65 4679.91 809.49
21 261.41 119.96 68.73 30.13 25.46 13.42 12.95 9.237 270.65 5116.53 1232.44
22 195.86 71.10 40.45 37.79 25.27 11.14 17.13 6.921 202.88 4572.34 575.90
23 153.69 56.71 24.84 30.28 14.30 10.58 23.44 5.431 160.16 3609.81 466.94
24 69.54 50.30 20.15 15.30 12.03 10.14 10.08 2.457 118.00 3153.54 418.16

Total 4370.7 149.83 4821.12 101660.27 18537.98
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Table 11. Fuel cost and emission dispatch by optimal scheduling of generators (with use of DR) by ACS algorithm (case study-3)

Time Load Pg1 Pg2 Pg3 Pg4 Pg5 Pg6 Loss Total gen Fuel cost Emission dispatch
slot (MW) (MW) (MW) (MW) (MW) (MW) (MW) (MW) (MW) ($/h) (Kg/h)
T1 111.87 50.11 20.05 15.01 12.13 10.06 10.10 2.202 117.00 3171.80 417.74
T2 110.82 50.08 20.14 15.20 12.16 10.07 10.05 2.413 117.00 3171.80 417.74
T3 123.08 53.09 21.02 16.20 12.70 12.19 11.91 3.978 127.11 3217.62 442.24
T4 134.95 57.06 21.62 17.37 15.38 15.62 12.22 4.361 139.26 3417.36 475.40
T5 135.02 53.86 25.14 22.60 15.69 11.41 10.68 4.364 139.37 3419.98 464.45
T6 157.21 72.61 18.45 19.83 19.88 13.55 18.11 5.081 162.44 3613.78 604.03
T7 155.23 58.82 22.62 27.09 16.66 19.85 15.93 5.017 160.97 3558.59 513.56
T8 217.44 68.76 46.49 44.60 21.60 22.25 20.98 7.027 224.67 4683.06 734.37
T9 230.71 115.11 40.68 25.45 19.85 18.70 18.82 7.456 238.61 4803.35 1178.39
T10 235.78 118.88 55.50 22.63 12.03 16.44 18.15 7.620 243.63 4861.28 1292.54
T11 228.69 93.19 71.92 19.82 12.35 21.11 18.06 7.391 236.45 4827.09 1062.14
T12 208.12 100.70 27.83 26.94 19.34 19.86 20.25 6.726 214.92 4537.51 946.06
T13 208.14 63.79 72.07 17.89 26.01 11.01 24.10 6.727 214.87 4525.67 789.81
T14 218.28 111.86 28.95 20.93 28.89 17.88 16.81 7.054 225.32 4752.66 1093.69
T15 217.80 100.80 30.97 29.67 29.38 18.95 15.27 7.039 225.04 4728.20 967.79
T16 200.30 78.27 61.46 15.88 13.29 14.72 23.18 6.473 207.21 4434.71 830.20
T17 198.78 64.42 42.75 32.56 28.83 14.15 22.67 6.424 205.38 4477.65 649.47
T18 215.67 61.26 62.42 32.50 26.91 24.65 14.87 6.970 223.01 4718.05 732.37
T19 215.65 70.84 52.07 37.88 30.14 16.88 14.84 6.969 222.69 4725.18 755.93
T20 184.58 66.32 45.58 32.51 15.67 10.56 19.94 5.965 190.61 3895.73 654.46
T21 184.70 80.55 21.36 22.22 21.63 22.53 22.37 5.969 190.86 3907.54 706.19
T22 162.50 64.35 38.66 18.67 14.34 17.27 14.45 5.252 167.80 3741.80 581.70
T23 158.65 55.86 26.34 22.60 26.67 16.41 15.90 5.127 163.79 3628.62 501.05
T24 156.31 69.61 20.45 19.83 19.44 13.85 18.16 5.052 161.35 3581.45 580.95

Total 4370.70 138.66 4519.36 98400.478 17392.27

Table 12. Comparison of optimal results by generator’s scheduling in IEEE 30-bus system with & without use of DR

S. No Parameter Before optimization Optimal solution by ACS algorithm Optimal solution by CS algorithm
Without DR With DR Without DR With DR

1 Load (MW) 4370.70 4370.70 4370.70 4370.70 4370.70
2 Line loss (MW) 154.80 149.83 138.66 152.89 142.52
3 Load + Loss (MW) 4525.50 4520.53 4509.36 4523.59 4513.22
4 Total gen. (MW) 4830.93 4821.12 4519.36 4825.64 4535.84
5 Fuel cost ($/h) 106767.23 101660.27 98400.48 102482.63 99151.72
6 Emission dispatch (Kg/h) 20792.72 18537.98 17392.27 19224.67 17734.26
7 Peak hour demand (MW) 1834.08 1834.08 1547.16 1834.08 1547.16
8 Saving in fuel cost ($) 5106.96 8366.75 4284.60 7615.51
9 Reduction in emission dispatch (Kg) 2254.74 3400.45 1568.05 3058.46

10 Cost saving by consumers in 24 hours after applying DR 3985.27 $
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Fig. 9. Reduction in emission dispatch by optimal scheduling of generators
with and without DR

well as emission dispatch. But in the DLC method optimal load
is shaded, that leads to consumer’s compromise. In comparison of
this there is no power cut in the DR program and its application
with DA-RTP using ACS algorithm demonstrated its effectiveness
in the optimization of objectives of SSEM.

6. CONCLUSION
This research work focused on integrating supply side energy

management system with demand response programs. In this
paper two conflicting objectives of dynamic economic-emission
dispatch problem are considered for the study and formulated
an optimization problem with the help of price penalty factors.
A compromised solution for both the objectives is also obtained
by cuckoo search and adaptive cuckoo search algorithm. In this
paper peak hour’s demand and overloading condition of generating
units is also resolved by integrating enhanced DR program using
DA-RTP. The proposed approach is implemented on IEEE 30-bus
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Table 13. Comparison of results by different optimization techniques for similar objectives with/without DSM measures (for IEEE 30-bus system)

S. No. Method % Min. of power loss % Min. of fuel cost % Min. of emission dispatch % Min. of peak hour demand
1 Multi-objective PSO (MOPSO) [19] 3.54 % 3.12 % 4.53 % —

2
Bi-level optimization using NSGA-II

– 7.25 % 8.12 % –
with DSM using time of use tariff [21]

3 GA with (EE+ DR+ RES) [4] – 10.6 % 11.51 % 9.6%

4 GA with optimal load control [25] – 9.41 % 10.64 %

5 CSA with optimal load control [6] – 5.63 % 11.12 % 10.61 %

6 ACS without DSM 3.21 % 4.78 % 10.84 % –

7 ACS with DSM (Proposed scheme) 10.31 % 7.84 % 16.35 % 15.64 %

system. Implementation of dynamic pricing on consumers also
benefitted them in terms of reduced electricity bill. This research
work is divided into three case studies and their comparative result
analysis is also given. The proposed solution of DEED problem
and peak hour demand management resulted into reduced power
generation cost and harmful gases, reduced peak hour demand,
reduced power losses, and beneficial for both customers as well as
utility. The following are suggestions for future research direction
in this area:

1) Implementation of DR programs for different types of load
viz. residential, industrial, and commercial.

2) Implementation of DSM programs integrated with different
functionalities of smart grid to make the system more
efficient.
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