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Abstract— Vehicle to grid (V2G) is one the most important ways to effectively integrate electric vehicles (EVs) with electric power systems.
The important benefits can be made by V2G such as reducing/increasing the cost/revenue of EV owners and technically sup-porting electric
power systems. Concerning technical and regulatory constraints, EV owners must participate in electricity mar-kets via aggregators. This
paper proposes a robust optimal coordinated charging (OCC) model including bidding ancillary ser-vices for regulation and spinning
reserve markets. The presented work handles the uncertain behavior of the electricity market that are ancillary service prices and their
deployment signals by the robust optimization approach. The aim of optimization is the maximization of the aggregator’s profits from V2G
by joining the ancillary services markets. The recommended robust OCC model which is a robust linear problem (RLP) model is simulated
by the CPLEX solver in GAMS software. An assumed set of 10000 EVs in the electric reliability council of Texas (ERCOT) electricity
markets is considered for doing simulations. Employ-ing the presented model in this test system shows the efficacy of the proposed model
in comparison to other deterministic and stochastic models.

Keywords—Electric vehicles (EVs), electricity market, optimal coordinated charging (OCC), regulation service, robust optimization,
vehicle to grid (V2G)

NOMENCLATURE

Abbreviations
EV Electric Vehicle
GAMS General Algebraic Modelling System
LP Linear Programing
OCC Optimal coordinated charging
PDF Probability Density Function
POP Preferred Operating Point
RER Renewable Energy Resource
RLP Robust Linear Programing
SOC State of Charge
V2G Vehicle to Grid
Indices
i Indices of the EVs
m Indices of the objective function and constraints
n Indices of the decision variables
t Index of the time (in this study it is one hour)
Parameters

β(m) Amount of the preservation level for either fitness
function (m = 0) or restriction m

δ Fix price of selling electrical power to EVs owner
($/MWh)

d̂ (n) Amount of the deviance of the indeterminate
element of the control variable n
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ê (m,n) Amount of the deviance of the indeterminate
element of among the control variable n and
restriction m

d (n) Nominal amount of the indeterminate element of
the control variable n

e (m,n) Nominal amount of the indeterminate element of
among the control variable n and restriction m

AV (i) Availability of EV i for contribution in V2G (1 if
EV is available, otherwise, 0)

Creal
mar (t) Real time price of the energy market at hour t

($/MWh)
Cup

reg (t) Market price of regulation up at hour t ($/MWh)
Cdw

reg(t) Market price of regulation down at hour t
($/MWh).

Csr (t) Market price of regulation down at hour t
($/MWh)

d(n) Indeterminate element of the control variable n
D (t, i) Percentage of unscheduled departure of EV i at

hour t
E(.) Operator of expected value
e(m,n) Indeterminate element of among the control

variable n and restriction m
Edw

reg Percentage of EV’s deployment for contribution
in regulation down

Esr
red Percentage of EV’s deployment for contribution

in spinning reserve
Eup

reg Percentage of EV’s deployment for contribution
in regulation up

lx(n) Inferior bound of the control variable n
Pmax(i) Maximum electrical power charging of EV i (MW)
Ttrip(i) Trip time of EV i (h)
ux(n) Higher bound of the control variable n
z, p, θ Supplementary variables of the robust optimization

modelling
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βcom (t, i) Compensation factor for unscheduled departure of
EV i at hour t

ηch (i) Charging efficiency of EV i
ρstEV (t) Expected percentage of staying EVs to do charge

at hour t
SoCdfin(i) Desired final SoC of EV i (MWh)
SoCini(i) Initial SoC of EV i (MWh)
SoCmax(i) Maximum SoC of EV i (MWh)
Sets
Ψ (m) Set of indeterminate parts of the fitness function

(m = 0) and limitation m picking up values from
vagueness interval

Θ (m) Indeterminate parts of the fitness function (m = 0)
and limitation m picking up values from the
shortened vagueness interval

J(m) Set of indeterminate parts of the fitness function
(m = 0) and limitation m

M Set of the fitness function and the restrictions
NEV Set of EVs
T Set of hours
Variables
Pmax
dif (t, i) Maximum differential electrical power drawn by

EV i at hour t (MW)
Pmax
inc (t, i) Maximum incremental electrical power drawn by

EV i at hour t (MW)
P dw
reg (t) Electrical power of regulation down at hour t

(MW)
P sr
red(t, i) Reduction in electrical power
Pup
reg (t) Electrical power of regulation up at hour t (MW)
PEV (i, t) Charging power of EV i at hour t (MW)
Psr (t) Electrical power of spinning reserve at hour t

(MW)
POP (t, i) Preferred operating point EV i at hour t (MW).
Revenue Revenues achieved by EVs aggregator in day

ahead
SoCfin(i) Final SoC of EV i (MWh)
SoCTrip

red (i) SoC reduction initiated by trip EV i (MWh)
xn Decision variable n

1. INTRODUCTION

1.1. Motivation
EVs can integrate with electric power systems via V2G in

a reliable, cost-effective, and beneficial way [1, 2]. If the V2G
mechanism is properly implemented, the negative impact of
uncontrollable RERs will be reduced, and also the aging electric
power system will be delayed [3, 4]. They also can play a vital
role to support energy and ancillary services and make bilateral
benefits for both electric power systems and EVs owners [5].
Furthermore, EVs can make positive environmental impacts on
world decarbonization and can offer several financial benefits for
various market players [6–8].

Aggregation of EVs is essential to contribute to ancillary service
and electrical energy markets as OCC [9]. This is due to the fact
that the least bid capacities in the range of MW are required
by current electric market regulations, while an EV individually
doesn’t have this size [10]. On the other hand, each player in
the ancillary service market should have an essential level of
availability and reliability, while an EV cannot individually make
these levels without creating troublesomeness for EV’s owner [11].

The V2G can be unidirectional or bidirectional [12, 13]. The
latter is more effective for regulation and supporting spinning
reserve [14], while the former has simplicity for implementation
and makes fewer challenges for both aggregator and the EV owner
[15]. From the point of view of the aggregator, there are several
papers on the topic of participating in ancillary service markets
in the day-ahead including the regulation market and spinning
reserve market [16]. Nevertheless, the majority of them deal
with deterministic modeling and don’t consider the uncertainties

in aggregated bidding [17, 18]. Therefore, this paper wants to
include the uncertainties pertaining to the electricity market that
are ancillary service prices and the deployment signals as well as
EVs aggregators as a robust OCC model.

1.2. Literature review
Recently, various optimization models have been proposed to

deal with uncertainties related to electricity markets in presence
of EVs aggregators as OCC. For example, Ref. [19] presents a
comparative study of power management strategies for secondary
frequency regulation (SFR) employing a fleet of EVs is presented.
A hierarchical control scheme is employed to compare two
cases, namely control at the charging station level and control
at the EVs level. Ref. [20] proposes optimal scheduling of
ancillary services provided by an electric vehicle aggregator. It
suggests an optimization approach for EVs aggregators that jointly
considers the most important aspects influencing EVs profitability,
such as uncertainty, drivers’ patterns, capacity constraints, state
of charge constraints, regulation demand constraints, regulation
offer constraints, regulation bounds constraints, and power-system
security constraints. Ref. [21] introduces a stochastic programming
model to formulate a unit commitment problem subjected to
security-based constraints in a power system equipped with a high
penetration level of EVs. However, it doesn’t consider the electricity
market. Sequential linear programming is proposed by [22, 23]
to optimize EV charging. However, they don’t take into EVs
aggregator revenues consideration. Ref. [24] proposes a stochastic
offering regulation service mechanism for EV aggregators in the
electricity market. It considers regulation capacity and price in a
deterministic way while it uses Monte Carlo simulations to model
the uncertainties related to the EV driving patterns, energy market
prices, and regulation energy requirements. It divides the total
problem into multiple reduced sub-problems and consequently
may cause a sub-optimal solution. Ref. [25] presents coordinated
bidding of EVs aggregators in the electricity market considering
uncertainties using fuzzy optimization. It uses the autoregressive
integrated moving average model to predict electricity market
parameters. Ref. [5] briefly reviews the interrelation of ancillary
services and EVs aggregators which can increase the flexibility
of power system operation. In Ref. [11], regarding the pattern of
EVs’ charging and power system’s regulation signal, a data-driven
method is presented to optimize EV’s contribution to the ancillary
service market. Ref. [26] presents an EV aggregator that is an EVs
charging station equipped with a photovoltaic installation. The
aggregator interacts with the power system such that optimizes the
contribution of this solar powered EVs aggregators in electrical
energy and ancillary services markets. In Ref. [27] an ancillary
service bidding is proposed based on fuzzy linear programming
such that the uncertain operation of bidirectional V2G of EVs
aggregator is optimized. Ref. [28] presents a stochastic model
to use EVs aggregator for the provision of ancillary services.
This model uses stochastic pro-gramming considering the optimal
bidding and deterministic EV’s behavior. Some references evaluate
the contribution of the bidirectional V2G on ancillary services
based on EVs aggregator framework in numerous real word
power systems [2, 29–32]. In Ref. [33] a decision support tool
is presented for EVs aggregators that can specify the optimal
bidding strategy to contribute to the energy and ancillary service
markets. It models the stochastic behavior of EVs as a stochastic
programming model, where risk aversion is demonstrated by the
conditional value-at-risk.

It can be noted that most above mentioned references model the
behavior of EV owners in different ways such as deterministic,
stochastic scenario-based, and stochastic fuzzy based. The scenario-
based approach needs rich data about the PDF of the un-certain
parameters. Consequently, if there is no adequate information about
the PDF of indeterminate parameters, the proposed model will
fail to obtain optimal results. Also, the nature of scenario-based
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stochastic optimization is multi-stage stochastic optimization and
the combinatorial growth of computation burden. On the other
hand, fuzzy optimization needs a membership function and solving
the problem for multiple values of cuts and is computationally
expensive. Therefore, in this paper, the pro-posed model is
solved by robust optimization which shows its capability in other
applications.

1.3. Contributions and organization
This paper models the uncertainties of bidding EV aggregators

into energy and ancillary service markets by robust OCC model,
which has less been previously paid attention to them. The
proposed EV aggregator model is based on RLP that coordinates
the provision of ancillary services of electricity markets that are
regulation and spinning reserves using unidirectional V2G. It
also considers numerous electricity market uncertainties that are
the ancillary service prices and the ancillary service deployment
signals. One of the most important features of the robust OCC
proposed model is to capably include uncertainties while keeping
the manageability of the problem size. This is due to the fact that
unlike the work done in Ref. [24], robust optimization doesn’t
want to denote each indeterministic parameter by a number of
scenarios. Also, unlike Ref. [25], RLP doesn’t need a membership
function and working out the problem for multiple values of cuts.
Therefore, it can optimize the charging of all EVs at the same
time. It also treats market aspects that were omitted in [21], and
it maximizes EVs aggregator revenues, which is not treated by
[22, 23].

The aims of the presented work are as follows:
• Scrutinizing a robust OCC model to assess uncertainties of

bidding EV aggregators into energy and ancillary service
mar-kets,

• Coordinating the provision of ancillary services of electricity
markets that are regulation and spinning reserves, and

• Modelling uncertainties that are behaviour of the EVs owner,
ancillary service prices, and the ancillary service deployment
signals.

The paper is continued as follows: Section 2 states the problem
formulation for the proposed model. At that time, Section 3
re-develops the anticipated model handling the robust optimization
vagueness modeling. Next, the solution algorithm and flowchart
are stated in Section 4. Later, Section 5 precisely discusses
simulation outcomes and results. Last, Section 6 depicts the
paper’s conclusion.

2. PROBLEM FORMULATION FOR PROPOSED OCC
This section elucidates the definition of the OCC model,

assumptions, objective function, and the problem’s restrictions as
follows:

2.1. Proposed OCC
It is clear that in unidirectional V2G, EVs are not capable of

discharging into the power systems. Thereby, the EVs aggregator
offers its ancillary service capacities regarding POP which is the
amount of difference between the actual and scheduled charging
rate of each EV. The EVs aggregator has to optimize its POP
and consequently its ancillary service capacities such that makes
the most of income. It is assumed that the EVs aggregator has to
submit its bids for the day ahead. Consequently, it faces numerous
uncertainties related to the electricity market that they should be
considered for the day ahead bidding. The main goal of the EVs
aggregator is to harvest maximum revenues via contributing to
ancillary service markets. This paper assumes that the EVs owners
charge their EVs with a fixed energy price so that they don’t
face the variation in the real-time energy price in the market [13].
Indeed, the benefits of EVs aggregator are originated by both

contributing to ancillary service markets and the price differences
among the fixed electrical energy rate for charging EVs and the
market energy price.

2.2. Assumptions for the optimization model

Numerous assumptions are considered for the suggested
optimization model as follows:
• The mechanism of the V2G is unidirectional, therefore, EVs

aggregator cannot sell electrical energy to the market.
• The bids are announced by EVs aggregator to the energy

market for the day ahead.
• The EVs aggregator sells electrical energy to EVS owners at

a fixed energy price while it purchases electrical energy from
the electricity market at real-time prices.

• The assumed fixed energy price is lower than the average
real-time energy price in market until it makes motivation for
EV owners that give their charging control to EVs aggregator
and contribute to the V2G scheme.

2.3. Objective function
The proposed OCC has an objective function as (1) that

is revenue of EVs aggregator within day ahead. The objective
function includes two parts. The first part is the aggregator’s income
including contribution to regulation and spinning reserve market
and selling electrical energy to EVs owner with a fixed price,
while the second part is the aggregator’s cost related to purchasing
elec-trical energy from the electricity market in real-time price.
It can be noted that other costs of EVs aggregator comprising
infra-structure cost of charging station, communication costs, and
personal costs are taken fixed into consideration notwithstanding
variation of the amount of the daily bids [25].

max {Revenue} = max

{[∑
t∈T

[
C
up
reg (t)× Pupreg (t) + C

dw
reg (t)×

P
dw
reg (t) + Csr (t)× Psr (t) + δ ×

∑
i∈NEV

E(PEV (i, t))

]
× ρstEV (t)

]

−

∑
tεT

 ∑
iεNEV

E(PEV (i, t))× Crealmax (t)

× ρstEV (t)

} (1-a)

P
up
reg (t) =

∑
iεNEV

P
max
inc (t, i) ∀ t ∈ T (1-b)

P
down
reg (t) =

∑
i∈NEV

P
max
dif (t, i) ∀ t ∈ T (1-c)

Psr (t) =
∑

iεNEV

P
sr
red(t, i) ∀ t ∈ T (1-d)

E (PEV (i, t)) = P
max
inc (t, i)× Eupreg + POP (t, i)− Pmax

dif (t, i)× Edownreg

− P srred(t, i)× E
sr
red ∀t ∈ T, ∀ i ∈ NEV (1-e)

ρ
st
EV (t) =

{
1−

∑t
tt=1

∑
iεNEV

D (tt, i) t < Ttrip(i)

1−
∑t
tt=Ttrip(i)

∑
iεNEV

D (tt, i) t ≥ Ttrip(i)
∀ t ∈ T

(1-f)

2.4. Constraints
The constraints formulated for the proposed OCC problem

are outlined as follows [25]:

Ttrip(i)∑
t=1

E (PEV (i, t))× βcom (t, i)× ηch (i) + SoC
ini

(i) ≤ SoCmax
(i)

∀ i ∈ NEV (2-a)∑
t∈T

E (PEV (i, t))× βcom (t, i)× ηch (i) + SoC
ini

(i)− SoCTripred (i)

≤SoCmax(i) ∀ i ∈ NEV (2-b)

β
com

(t, i) = 1 +
D (t, i)

1−D (t, i)
∀ t ∈ T, ∀ i ∈ NEV (2-c)[

P
max
inc (t, i) + POP (t, i)

]
× βcom (t, i)× ηch (i) + SoC

ini
(i)

≤SoCmax(i) ∀ t ∈ T, ∀ i ∈ NEV (2-d)
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P
sr
red (t, i) ≤ POP (t, i)− Pmaxdif (t, i) ∀ t ∈ T, ∀ i ∈ NEV (2-e)[
P
max
inc (t, i) + POP (t, i)

]
× βcom (t, i)≤Pmax(i)× AV (i)

∀ t ∈ T, ∀ i ∈ NEV (2-f)

SoC
fin

(i)≥SoCdfin(i) ∀ i ∈ NEV (2-g)

SoC
fin

(i)=SoC
ini

(i) ∀ i ∈ NEV (2-h)

P
max
inc (t, i) ≥ 0, POP (t, i) ≥ 0, P

max
dif (t, i) ≥ 0, P

sr
red(t, i) ≥ 0

∀ t ∈ T, ∀ i ∈ NEV (2-i)

The constraints (2-a)-(2-h) show some restrictions for
batteries of EVs. Restrictions (2-a), (2-b), and (2-d)
guarantee that EV’s battery will not overcharge earlier than
the initial travel trip, during the daily trip, and throughout
the mid-scheduling period, respectively. The rate restrictions
of the EV’s battery are expressed by (2-e) and (2-f).
AV (i) in (2-f) shows the availability of EVs in the day
ahead. If EVs are available and contribute to the electricity
market, AV (i)=1 otherwise, 0. Departure availability that
is D (t, i) in (2-c), models the probability that the EVs
cannot connect to the grid for that whole hour. It helps
the aggregator to model and to schedule EVs regarding
the behavior of EV’s owner. Eq. (2-g) guarantees that the
charging amount of the EV’s battery will be reached to the
anticipated level at the end of the day ahead. Indeed, this
restriction leads to announcing the needed minimum SoC
by EV’s owner to the aggregator. This needed amount can
change for each weekday. Constraint (2-h) expresses that
final and initial SoC of EVs are same on the simulation.
Regarding unidirectional bidding, (2-i) represents the EV’s
battery variables and restrictions should be positive.

3. ROBUST OPTIMIZATION METHOD

Different optimization methods can handle uncertainties.
For example, probabilistic optimization, stochastic
programming, interval optimization, and robust optimization
[34]. It can be noted that the latter is very well-known
to scholars and planners because of its prevailing risk
management, high robustness, and low computational load
[34]. It can be noted that the most important advantage of
robust optimization in comparison with other approaches is
the lack of need for PDF or membership functions of the
uncertain inputs [35].

The succeeding equations depict a typical LP optimization
model as [35]:

Min
∑
n∈N

d(n)× x(n) (3)

Subject to∑
n∈N

e(m,n)× x(n) ≤ f(m) ∀ m ∈M (4-a)

lx(n) ≤ x(n) ≤ ux(n) ∀ n ∈ N (4-b)
x (n) ∈ Z; ∀n = 1, 2, . . . , k and

x (n) ∈ R; ∀n = k + 1, k + 2, . . . (4-c)

This approach considers limited intervals to model the input
uncertainties. These intervals are determined concerning

sets of uncertainties. Thereby, d (n) and e(m,n) as the
uncertain elements are written as follows [35]:

d (n) =
[
d (n)− d̂ (n) , d (n) + d̂ (n)

]
∀n ∈ N (5-a)

e (m,n) = [e (m,n)− ê (m,n) , e (m,n) + ê (m,n)]

∀n ∈ N, ∀m ∈M (5-b)

The proposed RLP problem is formulated by introducing
an integer parameter β(m) which controls the conservation
level and it belongs to the interval [0, |J(m)|]. Surely, J(m)
is a set of uncertain elements of not only the objective
function (m = 0) that is J(0) = {n |d(n) > 0} but also
the restriction m that is J (m) = {n |e(m,n) > 0} [36].
Considering that all the uncertain elements cannot deviate
from their nominal values at the same time, this paper
assumes that up to β (m) of these variables can change
within specified intervals defined by (5), although the
deviation of one of them is circumscribed by subsequently
reduced intervals [36]:

dt (0) =
[
dt (0)− (β (0)− β (0))×d̂t (0) , dt (0) + (β (0)− β (0))× d̂t (0)

]
∀dt (0) ∈ J (0) ,m = 0 (6-a)

et (m,n) =
[
et (m,n)− (β (m)− β (m))×êt (m,n) , et (m,n) +

(
β (m)

− β (m)
)
×êt (m,n)

]
∀ et (m,n) ∈ J(m), ∀ m ∈M (6-b)

where β(m) is a real number. For instance, if β(m) is
equal to 2.5, it can be deduced that uncertain elements of
two restrictions can change inside the complete range of the
defined limits, although, uncertain elements of one of the
restrictions have a disparity inside half range.

The RLP model of the suggested LP expressed as (1) is
assumed as [35]:

Max
∑
n∈N

d(n)× x(n)+

max{Ψ(0)∪{Θ(0)}|Ψ(0)⊆J(0),Ψ(0)=Υ(0),Θ(0)∈J(0)/Ψ(0)}{ ∑
n∈Ψ(0)

d̂(n)× |x(n)|+ (Υ (0)−Υ (0))× d̂t(0)× |xt (0)|
}
(7)

Subjected to∑
n∈N

e (m,n)× x(n)+

max{Ψ(m)∪{Θ(m)}|Ψ(m)⊆J(m), Ψ(m)=Υ(m),Θ(m)∈J(m)/Ψ(m)}{ ∑
n∈Ψ(0)

ê(m,n)× |x(n)|+ (Υ (0)−Υ (0))× êt (m,n)×

|xt (m)|
}
≤ f(m) ∀m ∈M (8)

Moreover, (4-b) and (4-c).
Eqs. (7)-(8) and (4-b)-(4-c) represent a robust nonlinear

problem that is linearized by duality theory [35], and
thereby, the final RLP is specified as [35]:

Min
∑
n∈N

d(n)× x(n) + z(0)× β (0) +
∑

n∈J(0)

p(0, n) (9)

Subjected to∑
n∈N

e (m,n)× x(n) + z(m)× β (m) +
∑

n∈J(m)

p(m,n) ≤ f(m)

∀m ∈M (10-a)

z (0) + p(0, n) ≥ d̂(n)× θ(n) ∀n ∈ J(0) (10-b)
z (m) + p(m,n) ≥ ê(m,n)× θ(n) ∀n ∈ J (m) , ∀m ∈M

(10-c)
− θ(n) ≤ x(n) ≤ θ(n) ∀n ∈ N (10-d)
lx(n) ≤ x(n) ≤ ux(n) ∀n ∈ N (10-e)
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p (m,n) ≥ 0, ∀n ∈ J (m) , ∀m ∈M (10-f)
θ(n) ≥ 0 ∀n ∈ N (10-g)
z(m) ≥ 0 ∀m ∈M (10-h)
x (n) ∈ Z; ∀n = 1, 2, . . . , k and

x (n) ∈ R; ∀n = k + 1, k + 2, . . . (10-i)

Thereby, Eqs. (1)-(2) in deterministic form can be
reformulated by (9)-(10) as follows:

maxRevenue = max

{[∑
t∈T

[
C
up
reg(t)× P

up
reg(t) + C

dw
reg(t)× P

dw
reg(t)

Csr (t)× Psr (t) + δ ×
∑

i∈NEV

E(PEV (i, t))
]
× ρstEV (t)

]
−
[∑
t∈T

[
∑

i∈NEV

E(PEV (i, t))× Crealmar (t)
]
× ρstEV (t)

]}
+ z

C
up
reg

0 × β
C
up
reg

0 +

z
Cdwreg
0 × β

Cdwreg
0 + z

Csr
0 × βCsr0 +

∑
t∈T

[
p
C
up
reg

0 (t) + p
Cdwreg
0 (t) + p

Csr
0 (t)

]
(11-a)

Also, (1-b)− (1-d), and (1-f) (11-b)

E (PEV (i, t)) =

[
P

max
inc (t, i)× Eupreg + POP (t, i)− Pmax

dif (t, i)×

E
dw
reg − P

sr
red(t, i)× E

sr
red

]
+ z

E
up
reg

0 × β
E
up
reg

0 + z
Edwreg
0 × β

Edwreg
0 +

z
Esrred
0 × β

Esrred
0

∑
t∈T

[
p
E
up
reg

0 (t) + p
Edwreg
0 (t) + p

Esrred
0 (t)

]
∀t ∈ T, ∀i ∈ NEV

(11-c)

Subjected to

(2) (12-a)

z
C
up
reg

0 + p
C
up
reg

0 (t) ≥ Ĉupreg (t)× θC
up
reg (t) ∀t ∈ T (12-b)

z
Cdwreg
0 + p

Cdwreg
0 (t) ≥ Ĉdwreg (t)× θC

dw
reg (t) ∀t ∈ T (12-c)

z
Csr
0 + p

Csr
0 (t) ≥ Ĉsr (t)× θCsr (t) ∀t ∈ T (12-d)

z
E
up
reg

0 + p
E
up
reg

0 (t) ≥ Êupreg (t)× θE
up
reg (t) ∀t ∈ T (12-e)

z
Edwreg
0 + p

Edwreg
0 (t) ≥ Êdwreg (t)× θE

dw
reg (t) ∀t ∈ T (12-f)

z
Esrred
0 + p

Esrred
0 (t) ≥ Êsrred (t)× θE

sr
red (t) ∀t ∈ T (12-g)

P
up
reg (t) ≤ θC

up
reg (t) ; z

C
up
reg

0 ≥ 0; p
C
up
reg

0 (t) ≥ 0; ∀t ∈ T (12-h)

P
dw
reg (t) ≤ θC

dw
reg (t) ; z

Cdwreg
0 ≥ 0; p

Cdwreg
0 (t) ≥ 0; ∀t ∈ T (12-i)

Psr (t) ≤ θCsr (t) ; z
Csr
0 ≥ 0; p

Csr
0 (t) ≥ 0; ∀t ∈ T (12-j)

P
max
inc (t, i) ≤ θE

up
reg (t) ; z

E
up
reg

0 ≥ 0; p
E
up
reg

0 (t, i) ≥ 0; ∀t ∈ T, ∀i ∈ NEV
(12-k)

P
max
dif (t, i) ≤ θE

dw
reg (t) ; z

Edwreg
0 ≥ 0; p

Edwreg
0 (t, i) ≥ 0; ∀t ∈ T, ∀i ∈ NEV

(12-l)

P
sr
red(t, i) ≤ θ

Esrred (t) ; z
Esrred
0 ≥ 0; p

Esrred
0 (t, i) ≥ 0; ∀t ∈ T, ∀i ∈ NEV

(12-m)

It can be noted that the non-linear terms in (12) will
be linear by the duality theory. The indeterminate inputs
i.e. market price and percentage of EV’s deployment for
contribution in regulation up, regulation down, and spinning
reserve are demonstrated by symmetric limited intervals as
follows:

C
up
reg (t) =

[
C
up
reg (t)− Ĉupreg (t) , C

up
reg (t) + Ĉ

up
reg (t)

]
∀t ∈ T (13-a)

C
dw
reg (t) =

[
C
dw
reg (t)− Ĉdwreg (t) , C

dw
reg (t) + Ĉ

dw
reg (t)

]
∀t ∈ T (13-b)

Csr (t)=
[
Csr (t)− Ĉsr (t) , Csr (t) + Ĉsr (t)

]
∀t ∈ T (13-c)

E
up
reg (t) =

[
E
up
reg (t)− Êupreg (t) , E

up
reg (t) + Ê

up
reg (t)

]
∀t ∈ T (13-d)

E
dw
reg (t) =

[
E
dw
reg (t)− Êdwreg (t) , E

dw
reg (t) + Ê

dw
reg (t)

]
∀t ∈ T (13-e)

E
sr
red (t)=

[
E
sr
red (t)− Êsrred (t) , E

sr
red (t) + Ê

sr
red (t)

]
∀t ∈ T (13-f)

The (11)-(13) denote the proposed RLP.

4. THE APPLICATION OF THE SOLUTION ALGORITHM
TO THE OCC MODEL

With increasing the historical data about EV behavior,
some uncertain parameters tend to be deterministic. As
an illustration, Ref. [37] represents that when the number
of EVs succeeds from 10000, the EV’s aggregator can
deterministically operate such as a conventional power plant
in the electricity market. Therefore, this paper considers
some parameters related to EVs as deterministic parameters
instead of stochastic. This paper assumes the EV’s aggregator
is one of the numerous participants in the robust ancillary
service market. The variables of the suggested optimal
operation model are continuous variables that are electrical
power of regulation up and regulation down as well as
electrical power of spinning reserve and POP at each hour.
Deci-sion variables are as follows:
Y (t) =

[
P
up
reg (t) , P

dw
reg (t) , Psr (t) , POP (t, i)

]
∀t ∈ T, ∀i ∈ NEV

(14)

The suggested model is solved by a GAMS-based solver that
is CPLEX 12.1 with a MIP gap of 0.1%. this solver has an
appropriate efficacy to solve LP problems [37]. PC utilized
for running simulations has appropriate structures including
Intel Core i7, 2.5GHz CPU with 12 GB of RAM. Fig. 1
illustrates the performance flow diagram of the suggested
model. There are three stages in this method. First of all,
β(m), which is the robustness monitoring parameter, is set
to zero. Then, β(m) is augmented by a step ξ = 0.1 through
a loop, which is ended every time the robustness monitoring
parameter surpasses its superior boundary. Lastly, the results
relating to β (m) = 0 are called deterministic results and
β (m) 6= 0 makes robust results.

5. SIMULATION RESULTS

This section presents simulation results of proposed OCC
model on the ERCOT electricity market considering 10000
EVs [25, 39].

5.1. The under-study electricity market

The ERCOT electricity market is treated as a market
that evaluates the efficacy of the advised OCC model. The
database of ERCOT is used to harvesting the needed data
for simulations [25, 39]. This data is electrical demand
data, ancillary services signals, and electrical energy prices.
The resolution of ancillary service deployment signals are
5 minutes. However, an EV can follow the signals with
much higher resolution [40]. The electrical demand data of
ERCOT is generated based on the procedure described by
[41, 42]. The proposed OCC model doesn’t need demand
profile during optimization. Nevertheless, this data is used
to evaluate effects of the proposed OCC on the electrical
demand of the under-study market. Figs. 2 and 3 illustrate
averaged ancillary service prices and deployment signals
for ERCOT, respectively [25, 43, 44]. The availability of
EVs is shown in Fig. 4. This figure is obtained regarding
driving profiles made by the 2009 National Household
Travel Survey (NHTS) data [25]. The NHTS data is cleaned
for vehicle trips in urban Texas. Fig. 5 shows the predicted
electrical demand of ERCOT. This study considers three
brands of EVs that are Mitsubishi i-MiEV, Nissan Leaf, and
Tesla Model S. The specifications of EV’s battery are gotten



Journal of Operation and Automation in Power Engineering, Vol. 12, No. 4, Dec. 2024 331

start

 Number of EVs,
 Fix price of selling electrical power to EVs,
 Real time price of the energy market, 
 Percentage of unscheduled departure of EVs,
 Trip time of EVs,
 Charging efficiency of EVs, 
 Initial SoC of EVs,  
 Maximum SoC of EVs,  
 Maximum electrical power charging of EVs,  
 Availability of EVs, and  
 Desired final SoC of EVs.  

  
Setting up the CPLEX software

Minimizing (11) 
Subject to (12)- (13)β(m)≤1

Yes

β(m)=1 
Robust solutions 

End 

β(m)=β(m)+ξ 
No

β(m)=0

β(m)=0 
Deterministic solutions 

Defining the input data 

 Market price of regulation up ,
 Market price of regulation down,
 Market price of spinning reserve , 
 Percentage contribution in regulation up,
 Percentage contribution in regulation down, and
 Percentage contribution in spinning reserve.  

 

Deterministic Stochastic 

 

Fig. 1. . Flow diagram for employing the suggested model

  

Fig. 2. Averaged ancillary service prices of ERCOT in the day ahead
[25, 43, 44].

from [25]. This paper assumes that 50% of EVs are Nissan
Leaf, 30% are Tesla Model S, and 20% are Mitsubishi
i-MiEV [25]. It also undertakes that ηch(i) is 90%, and
SoCdfin(i) is 99% [25]. The paper assumes that δ equals
0.05 $/kWh [25].

To assure that when the electricity market clears, the bids
of EV’s aggregator will be accepted, the bid price of EV’s
aggregator submitted to electricity market is assumed by 0
$/MWh [25].

5.2. Sensitivity analysis

The sensitivity of the objective functions to the amount
of uncertainty of input parameters is analyzed in this
subsection. These studies have been illustrated in Fig. 6. To
better evaluate, two studies are treated as:
• Study 1: handling uncertainty of ancillary service

prices.
• Study 2: handling uncertainty of ancillary service

deployments.
The horizontal axis of Fig. 6 reflects the variation of
the control parameter of the uncertainty. It is seen, this

  

Fig. 3. Averaged ancillary service deployments of ERCOT in the day ahead
[25, 43, 44].

  
Fig. 4. Availability of EVs [25].
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Fig. 5. Predicted electrical demand of ERCOT [42].
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Fig. 6. Effect of uncertainty on the aggregator’s revenue.

parameter changes in the range zero up to one by steps
0.1. The uncertainty parameter is zero when the decisions
are made without consid-ering risk i.e., risk-neutral and it
is one when the decisions are made based on risk-averse.
Fig. 6 says to us, that if decisions of MGOs make based
on high risk-averse, the revenue of EV’s aggregator will
decrease for two studies. To put it more simply, the more
the uncertainty of parameters, the less the aggregator’
revenue is. It can be noted that increasing uncertainty of
prices is to increase prices from the forecasted values and
increasing uncertainty of deployment signals is to decrease
these signals from the forecasted amounts. With rising the
uncertainty parameter from 0 to 1 in Study 1 and 2, the
revenue is decreased by 13.09%, and 9.76%, respectively.
As well, Fig. 6 signifies that the effect of uncertainty in
prices is more than uncertainty in deployment signals on
reducing revenue.

5.3. Numerical results

To assess the capability of the proposed model, the two
following simulation results are reported. The stochastic
behavior of prices and deployments are modeled considering
a moderate value for the uncertainty parameter that is 0.5.

A. Results of charging profiles

This subsection evaluates the results of charging profiles
and ancillary services provided by EV’s aggregator. These
results for proposed and deterministic models are shown
in Figs. 7-11. Fig. 7 shows the results of POP. It is seen
that both models have same pattern in the all hours of
day. The models preserve the POP in a low value from
early hours of the morning until before noon. The POP
has the higher values in the middle of the day due to
the regulation up prices are high. For the similar reasons,
the average of POP during the day ahead is relatively
high. The both models obtain the maximum POP in 4
am, because if EV’s aggregator charges the EVs later,
they cannot effectively collaborate in providing the ancillary
services. The regulation up and down resulted by both
models are illustrated by Figs. 8, and 9. Both figures show
that the ancillary services amounts have the patterns that are
proportional with the regulation up and down prices. On the
other words, capacities are adjusted by prices. In addition, it
can be noted that the average of regulation down capacities
is higher than regulation up, because that regulation down
can be offered with the POP at zero price which adds

  
Fig. 7. The results of the POP in the day ahead.

  
Fig. 8. The results of the regulation up in the day ahead.

less electrical energy to the EV’s battery than regulation
up as illus-trated in Fig. 10. Regarding Figs. 9, and 10,
at the morning earlier 8 am, the lack of rest EV’s battery
capacities cause regulation down bids are nearly zero.

Fig. 11 exemplifies the spinning reserve capacity.
Regarding this figure, the higher spinning reserve prices in
the afternoon leads to more responsive reserve capacity is
bided by aggregator. Nonetheless, this bided capacity is low
due to limitations of the scheduling POP and the regulation
up capacity bid in this period. The maximum spinning
reserve capacity is bided at 4 am due to being high POP

  
Fig. 9. The results of the regulation down in the day ahead.

  Fig. 10. Available EV’s battery capacities in day ahead.
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Fig. 11. The results of the spinning reserve in the day ahead.

  

Fig. 12. The variation of the total expected and actual revenues with
respect to variations of δ.

planned at this hour. Considering constraint (2-g) in the
simulation shows that the models schedule the maximum
POP at 4 am, until reduce probability of the failure to meet
desired final SoC. It can be noted that given this is shifted
to the last hour, i.e., 5 am and consequently, the spinning
reserves are called upon, the majority of the EV’s battery
will be taken risk of the lack to satisfy desired final SoC
constraint, i.e. (2-g).

B. Comparative studies

This subsection compares the result of the proposed
robust model and deterministic model from the point of
view all stockholders that are power system operator, EV’s
aggregator, and EV’s owners. Fig. 12 shows the sensitivity of
total expected and actual revenues with respect to variations
of δ for deterministic and robust proposed models. It is seen
that for δ = 0.05 $/kWh, the revenue of EV’s aggregator
obtained by robust proposed model is 407,000$ which is
2.45% lower than deterministic ones. Nonetheless, it can
be noted that the realized revenues harvested by proposed
model are 6.34% more than deterministic those. As a
result, the proposed model has the better performance in
comparison to deterministic models for an actual day. It
shows the necessities of including the uncertain behavior of
some parameters in the electricity market. Furthermore, it
is observed that revenue of the EV’s aggregator increases if
the EVs are charged at higher electrical energy rates.

From the point of view of power system operator, it is
better that the charging of EVs doesn’t add the extra burden
on power system. Table 1 shows the statistics of increasing
load in all hours of the day ahead and increasing load within
peak hours. It is seen that the amount of the load increase

  
Fig. 13. Statics of the final SoC of EVs.

during peak hours is less than load increase within all hours
for both models. In the other word, both models try to
shift the EV’s charging from peak hours to off peak hours.
Also, it is observed that maximum load increase during
peak hours are 10.56 MW and 11.02 MW deterministic
and proposed model, respectively. These amounts are very
smaller than 60 MW and 45.67 MW that are peal load and
average load in the ERCOT system in this simulation.

It is necessary that EVs are charged to SoCdfin in the
end of duration of charging. Fig. 13 depicts the realized
final SoC of EVs within simulation period. Regarding this
figure, the final SoC of EVs for 5% of time is less than
90% of batterie’s capacity and for a little bit of time
that is 0.8% of time simulation is less than 80%. Table 2
represents average of final SoC of EVs for deterministic
case in comparison to proposed robust ones. The results
shown by Table 2 and Fig. 13 are hopeful, however, these
can be improved by prioritizing EV’s charging from low
SoC to high SoC. While this ranking for EV’s charging
doesn’t disturb electricity market bidding process or the
benefits, however, it might support to remove the minor
percentage of incidences at which final SoC of EVs that
cannot approach to 99%.

6. CONCLUSIONS

This paper proposes a robust OCC model for bidding
EV aggregators into energy and ancillary service markets
considering uncertainties. The present work introduces a
RLP for modelling EV aggregator based on unidirectional
V2G and also coordinates the provision of ancillary services
of electricity markets that are regulation and spinning
reserves. It correspondingly deliberates several electricity
market uncertainties that are the ancillary service prices
and the ancillary service deployment signals. Considering
diverse parameters pertaining to EVs behavior that are EV
availability, trip durations, and time of trips make results
of this paper more realistic than similar other papers.
Simulation results including sensitivity analyses display
that the robust modelling rises the aggregator’s revenues
and declines the deviation between expected and realized
revenues. It is observed that for δ=0.05 $/kWh, the income
of EV’s aggregator gotten by robust proposed model is
407,000$ which is 2.45% lower than deterministic ones.
However, it is worthwhile to mention that the realized
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Table 1. The statistics of load increase.

Load increase Statistics Deterministic model Proposed model

Average load increase in all hours (MW) Average 4.45 4.39
Standard deviation 6.56 6.21

Average load increase in peak hours (MW)
Average 2.34 2.21

Standard deviation 2.89 2.45
Maximum 10.56 11.02

Table 2. The statistics of final SoC of EVs.

Final SoC of EVs Statistics Deterministic model Proposed model

Expected (%) Average 97.67 98.22
Standard deviation 1.89 2.01

Realized (%) Average 96.37 97.45
Standard deviation 2.77 2.13

incomes picked by proposed model are 6.34% more than
deterministic those. It is seen that the quantity of the load
increase within all hours is more than load increase during
peak hours for deterministic and proposed models. Indeed,
two models attempt to move the EV’s charging from peak
hours to off peak hours. The proposed model shows the
acceptable results related to final SoC of EVs. On the other
words, the proposed model somewhat enhances final SoC
of the EVs and somewhat reduces the average peak load
initiated by EV’s charging in comparison to deterministic
ones.
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