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Abstract— Fault detection and classification (FDC) is a vital area in the health monitoring of three-phase induction machines. According
to the failure survey of three three-phase induction machines, bearing-related faults cause a percentage of motor failures in the range of
almost 41-50% which is very significant. These faults may occur one or multiple at a time in the bearing. With a well-designed fault
detection method, failure of the motor can be reduced and productivity can also be increased. This paper proposes the simultaneous
bearing fault detection and classification in three three-phase induction machine using the combination of feature fusion method and
intelligent random forest (RF) algorithm. The paper contributes in two folds. In the first part of the paper, the performance of traditional
methods such as vibration and current analysis is tested in which statistical parameters obtained from current and vibration signals are
passed separately to the intelligent random forest classifier. In the second part of the paper, statistical parameters obtained from current
and vibration signals are fused together and used as inputs to the RF classifier. The accuracy and various other performance measures are
calculated and based on experimental results; a remarkably high detection/classification performance is achieved.
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NOMENCLATURE

Abbreviations
ANN Artificial neural network
BB Ball broken
CNN Convolutional neural network
CV Cross validation
DWT Discrete wavelet transform
EPRI Electrical power research institute
FDC Fault detection and classification
FFT Fast fourier transform
FP False positive
GA Genetic algorithm
IEEE Institute of electrical and electronics engineers
IM Induction motor
IR Inner race
MAE Mean absolute error
MCSA Motor current signature analysis
MEMS Micro-electro-mechanical-systems
ML Machine learning
MLP Multi-layer perceptron
NI National instruments
NN Neural network
OR Outer race
PVA Parks vector approach
PVM Parks vector modulus
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RAE Relative absolute error
RF Random forest
RMSE Root mean squared error
RNFC Removing non-bearing fault component
RRSE Root relative squared error
SD Standard deviation
TP True positive
TPIM Three-phase induction machine
WPT Wavelet packet transform
WT Wavelet transform
XWT Cross-wavelet transform

1. INTRODUCTION
Three-phase induction motors (TPIM) are playing a vital role in

production and process industries. These motors are frequently used
in important areas like aerospace and armed forces applications.
They are also playing a vital role in sensitive applications such as
nuclear plants, where the reliability of motor functioning is very
important [1]. While in operation, TPIMs are forced to thermal,
electrical, and mechanical stresses. If these stresses become slightly
higher than a normal case, it may create faults in the motors. The
significant faults in TPIM are distinguished as stator, rotor, bearing,
eccentricity and load faults [2]. If these faults are not sensed at
the proper stage, they result in premature failure of the motor
and lead to costly downtime of the plant. Substantial research has
been carried out in the last few decades in this direction. The
focused area is based on analyzing vibration, current and other
signals such as temperature, and torque. Many tools nowadays are
available in the market for detecting faults. Still, several industries
are facing unexpected breakdowns and it leads to a reduction of
motor life. Out of the total faults, the bearing-related faults cause
a percentage of motor failures in the range of almost 40-45%
as shown in Fig.1. Consequently, it is essential to detect such
incipient faults to avoid loss of revenue and to enhance the life of
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the machines. Very recently, the authors in [3] presented a review
of fault detection methods related to stator, rotor and bearing faults
and also highlighted new areas for fault detection in the near
future.
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Fig. 1. Percentage of fault distribution.

Bearing faults originate from distributed types in the form
of race way roughness and waviness, and are then converted
into local faults like cracks, pits, and spalls. According to the
location of faults, these can be sub-alienated into inner-race (IR),
outer-race (OR), and ball-broken (BB) faults. Many researchers
have proposed vibration analysis techniques for detecting these
faults [4]. The authors studied the various standard data sets
such as Case Western Reserve University (CWRU), Paderborn
University, FEMTO, MFPT and IMS dataset for bearing fault
detection and among all the datasets CWRU dataset is observed to
be the most widely used dataset for the classification and detection
of fault diagnostics of machinery bearings. Deep learning (DL)
has advantages and has been used in many applications including
bearing fault detection. The author summarizes the recent works
that use the CWRU-bearing dataset in machinery fault detection
and diagnosis employing deep learning algorithms. The authors
in [5] have reviewed the published works and presented the
working algorithm, result, and other necessary details. In [6], the
combination of auto-regression and Modulation signal bi-spectrum
methods to eliminate the non-Gaussian noise for the simulated
signal is proposed. The method is further validated on real-time
vibration signals. With the proposed method, authors detected
outer race and inner race bearing faults and claimed superior
performance compared to traditional ones [6]. The imbalanced
data is the characteristic of real-world applications. In [7], authors
investigated the inner race, outer race, and contaminant-bearing
faults under data imbalance conditions. Over sampling using a
Deep convolutional generative adversarial network with gradient
penalty (DCWGAN-GP) is suggested to enhance performance
and improve the classification accuracy under data imbalance [7].
The various bearing conditions like healthy, inner ring fault, ball
fault, and outer ring fault, respectively are detected and classified
successfully using an improved artificial bee colony algorithm and
optimized XGBoost classifier in which one-dimensional ternary
pattern (1-DTP) is used for feature extraction. In [8], the Authors
compared results with the traditional classification strategy and
showed performance improvement. J. Zarei et al. [9] designed
removing non-bearing fault component (RNFC) filters for detecting
bearing faults using a neural network. It is shown that satisfactory
results are achieved when the filtered component of the vibration
signal is used for fault classification instead of the use of the
original vibration signal.

The curvilinear component analysis (CCA) is used to find the
most significant features and a hierarchical neural network is

used for classifying the faults under various operating conditions
[10]. Further in [11], the bearing faults are detected using
the non-Gaussian model in which a combination of kurtogram
and alphastable model is proposed. The most advanced signal
processing time-frequency tool such as S-transform has been used
to detect the various bearing faults in [12]. Furthermore, in [13],
it is claimed that MEMS accelerometers can be used to identify
various bearing faults in induction machines. However, during this
experimentation, it has been noticed that along with electrical
and mechanical noise, signals are also found to be affected by
the intrinsic vibration modes of the system. R. R. Schoen et al.
[14] addressed the detection of bearing faults using stator current
monitoring by correlating the relationship between vibration and
current frequencies. The obtained signatures fall at locations
that are different from the supply and slot harmonics of the
motor with a relatively small magnitude. With spectral resolution
techniques, current monitoring will be an effective way for bearing
fault detection. Consequently, stator current-based bearing fault
detection has received more and more attention in research. J.
Zarei and J. Poshtan [15] implemented an FFT analysis of the
Park vector modulus (PVM) signal of currents for bearing fault
detection. The obtained results are compared with the MCSA and
it is concluded that the proposed method is reliable for detecting
bearing faults in the induction motor.

A. Picot et al. [16] addressed bearing fault detection with a
statistical parameter of particular frequency bins in high-speed
permanent magnet synchronous machines. The method is also
compared with the vibration method and obtained satisfactory
results. L. Frosini et al. [17] calculated the statistical parameters
of the stray flux signals. These signals are acquired using a
special flux probe and placed at multiple locations around the
motor for detecting localized bearing faults in the induction
motor.V. N. Ghate and S. V. Dadul [18] have developed the
radial basis function multi-layer perceptron cascade connection
NN-based fault-detection scheme for the small and medium sizes
of three-phase induction motors. Simple statistical features of stator
current are extracted and are optimized using principal component
analysis. The algorithm is tested with uniform and Gaussian noises
for detecting stator fault, rotor eccentricity fault and combined
fault. The generalized feed-forward network and support vector
machine-based classifier is developed for detecting various faults in
the induction machine. S. Singh et al. [19] presented the detection
of outer race faults using current monitoring. The technique is
based on the application of continuous wavelet transform to the
current signal and compared the results with the FFT technique.
A common review of stator current analysis for bearing fault
detection with different signal processing techniques is presented
in [20]. The bearing faults are mainly classified into single-point
defect and generalized roughness. Accordingly, the review is
subdivided into two classes: single-point defect and generalized
roughness.

The localized bearing faults such as inner race and outer race
faults are detected using stator current and vibration envelope
analysis based on squared envelope spectrum analysis in an
induction motor. Statistical features like Kurtogram and spectral
Kurtogram are estimated and energy in these two features is used
to estimate the sensitivity of the bearing fault. The advantage of
current based methods is that stator currents are easily available for
measurement. However, the main limitation of these methods is that
the stator current spectrum contains harmonics components that are
generated due to voltage supply distortion, air gap space, slotting
or unbalanced load along with characteristic harmonics generated
due to bearing faults. Further in [21], the superiority of the
method based on the analysis of squared envelope spectrum current
over existing stator current or vibration monitoring techniques is
proposed. A soft computing approach has been matured enough
and has been employed to enhance the accuracy of bearing
fault detection. Many methods are proposed using support vector
machines SVM) [22–24] and artificial neural networks (ANN)
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for bearing fault detection [25–28]. ANN and SVM with genetic
algorithm (GA) are also suggested for bearing fault detection
[29]. A random forest algorithm is proposed for classifying the
gearbox-related faults in [30]. The advantage of soft computing
methods is that they do not require information of machine
parameters for analysis. The bearing faults are detected using
the passive thermo-graphy-based technique in which Convolutional
Neural Networks (CNN) with Transfer Learning (TL) are used
to the faults under varying working conditions. In [31], is it
proved that the suggested method enables and speeds up the
training process of CNN towards accurate adaptation for fault
diagnosis approach in the escalated time frame [31].Later the
work presented in [32] is recommended to detect outer race fault
with three different severities using motor dynamic strain signals
acquired from sensors based on Fiber Bragg grating. The number
of experiments is carried out under no-load conditions with 47
different power supply frequencies and the robustness of the
method is claimed. Thermal imaging-based fault detection is used
to detect the various faults in bearings under different loading
conditions [33].

In electrical machines, the noise and vibrations occur due to
various faults. One of the major faults is the bearing fault which
creates the unbalanced magnetic pull in electrical machines. In
[34], the authors estimated the magnitude of unbalanced magnetic
force (UMF) in permanent magnet brushless DC (PMBLDC)
machines with diametrically asymmetric winding and investigated
UMF variations in the presence of phase advance angle.Selecting
an appropriate control strategy for driving an electric motor during
fault conditions is one of the most important issues mainly
for safety-critical applications. Authors in [35] have suggested
two methods i.e. indirect and direct vector control methods to
operate the star-connected three-phase induction motor in the
faulty condition. It is shown that by using a suitable transformation
matrix and some changes in the control parameters, it is possible to
control the faulted drive system. The achieved results showed the
good performance of the introduced control systems in different
operating conditions. In addition, the results demonstrated the
performance of the proposed VC strategies and that of the previous
works are almost the same. However, the proposed VC methods in
this paper need fewer modifications in the structure of the standard
VC strategy than in the previous works. For induction motors,
the effect of phase shift in the motor causes overheating, which
is caused by the overlap voltage. It results in hysteresis losses,
copper losses, and winding losses. The authors in [36] investigated
the technique for phase shift fault detection in an induction motor
based on an IoT system which can resolve the issues of overheating
and also can increase the life of the machine. Among the various
losses in the induction motor, it is more difficult to determine the
value of stray load losses. A systematic review is given by the
authors to determine the stray losses in induction motors [37].

The key interest of this paper is to propose a random forest
algorithm to detect and classify bearing faults in TPIM. In this
work, electrical and mechanical signals of the motor are sensed
together. These signals are pre-processed and simple statistical
parameters are estimated for current and vibration signals. The
paper contributes in two folds. In the first part of the paper,
statistical parameters obtained from currents and vibrations are
separately supplied to the random forest intelligent classifier, and
performance is observed. It is observed that the performance of the
random forest classifier with individual signals is not satisfactory.
To improve the performance and accuracy of the classification
problem, statistical parameters of vibration and current signals are
fused together and the performance is checked. It is observed that
the results obtained from the proposed method are more prominent
and accurate than the conventional method. In an intelligent system,
along with accuracy, other parameters are equally important to
judge the performance. Accordingly, mean absolute error (MAE),
root mean squared error (RMSE), relative absolute error (RAE),
root relative squared error (RRSE), true positive rate (TP), false

Table 1. Specifications of three-phase induction motor.

Parameter Value Parameter Value
Power (P) 2.2 kW Connection star/delta) Star
Speed (N) 1440 rpm Number of pole pairs (p) 2

Voltage (V) 400 V Number of stator slots 32
Current (I) 4.5 Amp Number of rotor bars 28

Frequency (f) 50 Hz

positive rate (FP), precision, recall, and F-measure along-with
accuracy are evaluated. The proposed algorithm is tested using
WEKA software. For the manifestation of the proposed techniques,
experimental results are presented to make the classifier algorithm
more robust and practical. The remaining part of the paper is
organized as follows. Section 2 covers data sensing, acquisition,
and feature extraction. Results and discussions are elaborated
in Section 3. Future Challenges or Limitations and Scope are
elaborated in Section 4. The paper is concluded in Section 5.

2. DATA ACQUISITION AND FEATURE EXTRACTION

An experimental work is carried out on a 3-phase, 3-Hp, 4-pole,
415V, 50 Hz custom-designed squirrel cage induction machine.
The detailed parameters of the induction motor are listed in Table
1. The block diagram of the proposed scheme is shown in Fig.
2 and the actual photograph of the experimental setup is given
in Fig.3. Three current transformers are connected in supply lines
to measure line currents and two vibration sensors are located
to sense radial and axial vibrations of the motor. Three current
signals are acquired by NI DAQ-6212 and two vibration signals
are acquired using the SKF Microlog FFT analyzer. The current
signal is sampled at a frequency of 16.896 KHz and the vibration
signal is sampled at 25 KHz.
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Fig. 2. Schematic diagram of the proposed scheme.

The main aim of the research is to detect various bearing faults
in the squirrel cage induction motor. Bearing faults are influenced
by three effects: 1) repetition of impulses which depends on
rotation frequency 2) generation of vibrations from the impulse,
which can be established experimentally and 3) increase in the
total level of noise. In order to simulate the bearing faults,
four identical healthy bearings (SKF 6205) are considered. Three
different bearing faults are considered for analysis. The inner race
and outer race faults are created by drilling the hole using an
Electrical discharge machine (EDM). The hole is 2mm in width
and 7mm in depth and drilled towards the shaft end side of a
four-pole motor. Out of nine balls, one ball is removed from the
bearing cage to simulate the ball’s broken fault. The actual picture
of healthy and faulty bearings is given in Fig. 4.

The motor is run at various loading conditions using mechanical
loading arrangements with healthy and faulty configurations. As
mentioned earlier, four cases have been considered as healthy
(H), inner race fault (IR), outer race fault (OR), and ball broken
fault (BB). The motor is run under different circumstances and
accordingly, a total of 200 observations are considered for analysis.
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Ball broken fault bearing(BB).

The data size for each class is 50 x 10000 samples. The data is
recorded using Lab view software and stored in all the files in xlxs
format. The stored data have been used for classification problems.

In established methods, a vibration signal or stator current is
directly used for fault detection. The visual inspection of current
and vibration signals shows that bearing faults would have a
negligible effect on these signals. Hence, it becomes essential
to extract some unique features from these signals. Hence, it is
necessary to extract some meaningful features for fault detection.
Accordingly, in the study, a total number of 14 statistical features
are evaluated as formulated in Table 2 for each condition. Every
feature is having its own characteristics to distinguish the signal
under healthy and faulty conditions. The evaluated parameters
include the maximum, minimum, mean, median, sum, and standard
deviation. The mean and median are calculated on an individual
dimension basis. The mean or variance is used to express the
probability density function of a time-varying signal. The skewness
factor is a measure of the symmetry of a distribution. If the
distribution is close to symmetrical around its mean, the value of
the skewness factor is close to zero. Positive and negative values of
skewness indicate that the distribution function has a longer tail to
the right and left of the mean respectively. Kurtosis is also another
parameter that indicates the proportion of samples that deviate
from the mean by a small value compared with those that deviate

Table 2. Vehicle class parameters.

Minimum value Xmin = min(xi) (1)
Maximum value Xmax = max(xi) (2)

Mean µ = 1
N

N∑
i=1

xi

N = thetotal number of samples

(3)

Median median =

(
(N + 1)

2

)th

value (4)

Standard deviation
S =

√√√√√ N∑
i=1

(xi − µ)2

N − 1

(5)

Variance
S2 =

N∑
i=1

(xi − µ)2

N − 1

(6)

Sum Sum =

N∑
i=1

xi (7)

Skewness
Skewness =

1

N

N∑
i=1

(xi − µ)3

σ3

(8)

Kurtosis
Kurtosis =

1

N

N∑
i=1

(xi − µ)4

σ4

(9)

Energy Energy =

N∑
i=1

x2
i (10)

R.M.S. value
xrms =

√
N∑
i=1

x2
i

N

(11)

Absolute value of the sum Abs(Sum) =

∣∣∣∣∣
N∑
i=1

xi

∣∣∣∣∣ (12)

Shape Factor S.F. =
xrms

Abs(Sum)
(13)

Peak Factor C.F. =
xmax

xrms
(14)

by a large value. It is not sensitive to Gaussian noise. Basically,
it measures the flatness of a distribution. For normally distributed
data, the value of kurtosis is zero, whereas negative for flatter top
and positive for sharper peak than the normal distribution. Other
parameters such as shape factor, energy, and crest factors are also
proposed to enhance the accuracy.

3. RESULT AND DISCUSSION

Experimentation is carried out on the motor with healthy and
faulty cases at different loading conditions. Three-phase stator
winding currents and two vibration signals are acquired using the
NI DAC 6212 and FFT analyzer, respectively. These signals may
contain many unwanted components due to the load and supply
unbalanced condition. It is necessary to remove these components
that do not provide useful failure information. Normally, these
components are present in the high frequency spectrum which
can be easily removed by designing a suitable low-pass filter.
Accordingly, a low pass filter is designed and all the signals
are passed through this filter before analysis. Further, fourteen
statistical features as mentioned in Table 2 are calculated for each
phase current and vibration signal. These features are given as
input to the intelligent random forest (RF) algorithm. The designed
parameters used for the RF classifier are the same as the default
values determined by the WEKA software. The detailed flowchart
for the proposed algorithm is shown in Fig. 5. The percentage split
of training and test data is tuned to 66%. The order of selection is
done randomly. The performance of the algorithms is tested on the
data set of 200 observations. The result and discussion are divided
into the three sub sections as follows.
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Fig. 5. Flowchart of the proposed scheme.

3.1. Bearing faults detection and classification based on the
current monitoring method
In this part of the study, three current signals of each phase

are acquired using the NI DAQ-6212 data acquisition system. The
stator winding current through the R-phase for healthy and faulty
conditions is represented in Fig. 6. These signals contain many
unwanted components due to the load and supply unbalanced
condition. It is necessary to remove these components which
do not provide meaningful information related to fault detection.
Further, these components are present in the high frequency
spectrum which can be easily removed by designing a suitable
low-pass filter. Accordingly, a low pass filter is designed and all
the signals are passed through this filter before further analysis.
Fourteen statistical features as mentioned in Table 2 are evaluated
for each phase of filtered current. Accordingly, forty-two statistical
parameters obtained from three-phase currents are fed to the
random forest (RF) intelligent classifier. RF classifier is based
on the grouping of trees for regression and classification. It is
a combination of tree predictors such that each tree depends on
the values of a random vector sampled independently and with
the same distribution for all trees in the forest. The distinctive
training set is completed by using bagging. The procedure bagging
means extracting a fixed quantity from the training set randomly to
improve classification, and regression models according to stability
and classification accuracy. This process decreases variance and
avoids over-fitting. The absolute results are made by adding the
scores of component predictors on every class and then choosing
the successor class in terms of the number of scores to it. The
error for forests converges to an optimized value as the number
of trees in the forest becomes large. The error of classifiers also
depends on the strength of the individual trees and the correlation
between them.

For testing and training the proposed algorithm, Weka software
(Ver. 3.8.0) is used as a tool. The use of this Weka software
is very common in both academic and industrial studies. The
parameters used for the algorithm are the same as the default
values suggested by the software. The algorithm is tested on data
sets of 200 numbers of observations to check the performance of
the classifier. The ratio of training to testing ratio is equal to 0.66
and the cross-validation fold is equal to 10 considered for analysis.
It is observed from Table 3 that an accuracy of 75% is obtained

for testing data and only 50% for cross-validated data. Root mean
squared error (RMSE) which is one of the important performance
measures of the classifier algorithm is also calculated and observed
to be 0.3241 and 0.376 for testing and cross-validated data
respectively. The accuracy and RMSE obtained by this method is
not satisfactory.

Figure 6: Current signal at constant load condition: (H) healthy, (IR) Inter race, (OR) Outer race, (BB) Ball broken

conditions. 

3.2 Bearing faults detection and classification based on vibration monitoring method 

In this part of the study, two accelerometers are used for sensing radial and axial vibrations.

These signals are acquired using an FFT analyzer. The nature of these signals for healthy and faulty

conditions is represented in Figs.7-8. Fourteen statistical features as mentioned in Table 2 are

evaluated for each vibration signal. Twenty-eight statistical parameters obtained from two vibration

signals are fed to the random forest (RF) intelligent classifier and performance is observed. The

algorithm is tested on data sets of 200 numbers of observations to check the performance of the

classifier. The ratio of training to testing ratio is kept the same at 0.66 and the cross-validation fold

is 10.It is seen that the maximum accuracy obtained is 96% and 95.6% for testing cross-validated

data respectively as presented in Table 3. The magnitude of RMSE is also reduced to 0.0585 and 

0.1214 for testing and CV data, respectively as given in Table 3. 
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Fig. 6. Current signal at constant load condition: (H) Healthy, (IR) Inter
race, (OR) Outer race, (BB) Ball broken conditions.

3.2. Bearing faults detection and classification based on
vibration monitoring method
In this part of the study, two accelerometers are used for sensing

radial and axial vibrations. These signals are acquired using an
FFT analyzer. The nature of these signals for healthy and faulty
conditions is represented in Figs. 7-8. Fourteen statistical features
as mentioned in Table 2 are evaluated for each vibration signal.
Twenty-eight statistical parameters obtained from two vibration
signals are fed to the random forest (RF) intelligent classifier and
performance is observed. The algorithm is tested on data sets of
200 numbers of observations to check the performance of the
classifier. The ratio of training to testing ratio is kept the same at
0.66 and the cross-validation fold is 10.It is seen that the maximum
accuracy obtained is 96% and 95.6% for testing cross-validated
data respectively as presented in Table 3. The magnitude of RMSE
is also reduced to 0.0585 and 0.1214 for testing and CV data,
respectively as given in Table 3.

It is observed from both the traditional current and vibration
techniques that the accuracy and RMSE are not acceptable to detect
and classify the various simultaneous faults in three three-phase
induction motors. Hence, there is motivation to improve the
classification accuracy and other performance measures of three
phase induction motor.

3.3. Bearing faults detection and classification based on
feature fusion method
In the proposed work, the feature fusion method is implemented

in which statistical parameters obtained from three-phase currents
and two vibration signals are fused together. Seventy statistical
parameters are fed to the random forest (RF) intelligent classifier
and performance is observed. The algorithm is tested on the same
data set of two hundred numbers of observations. The ratio of
training to testing and cross-validation fold is also kept the same
at 0.66 and 10, respectively. It is observed from Table 4 that
the accuracy of the algorithm is almost enhanced to 100% and
RMSE is significantly reduced to 0.0248 and 0.0288 for testing
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Table 3. Performance of vibration and current monitoring on testing and C.V. data.

Classifier Performance Testing on statistical parameters of vibration signals Testing on statistical parameters of current signals
Test data C.V. data Test data C.V. data

Accuracy 95.32 96 75 50
RMSE 0.0585 0.1214 0.3241 0.376

 
Figure 7: Radial vibration signals at constant load condition: (H) healthy, (IR) Inter race, (OR) Outer race, (BB) Ball 

broken conditions. 
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Fig. 7. Radial vibration signals at constant load condition: (H) Healthy,
(IR) Inter race, (OR) Outer race, (BB) Ball broken conditions.

 
Figure 8: Axial vibration signals at constant load condition: (H) healthy, (IR) Inter race, (OR) Outer race, (BB) Ball 

broken conditions. 
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Fig. 8. Axial vibration signals at constant load condition: (H) Healthy, (IR)
Inter race, (OR) Outer race, (BB) Ball broken conditions.

and cross-validated data. To study the detailed performance of
the proposed method, true positive rate (TP), false positive rate
(FP), precision, recall, and f-measure are also calculated. The
magnitudes of these measures are also listed in Table 5. The values
of all these measures are also very close to the target value. The
confusion matrix gives the information about the number of correct
and false observations in Table 6. All two hundred observations
are successfully classified and the false prediction rate is reduced
to zero. These results are satisfactory not only because of the
increase in the number of features but also due to the fusion of
features.

Table 4. Comparison of performance measures for the proposed method.

Parameter RF Classifier
C.V. data Test data

% Overall Accuracy 100 100
MAE 0.0081 0.0143

RMSE 0.0248 0.0288
%RAE 2.1667 3.7736

%RRSE 5.7388 6.585

Table 5. Comparison of performance parameters for the proposed method.

Parameter RF Classifier
H IR OR BB

True Positive Rate 1 1 1 1
False Positive Rate 0 0 0 0

Precision 1 1 1 1
Recall 1 1 1 1

F-Measure 1 1 1 1

4. FUTURE CHALLENGES OR LIMITATIONS AND
SCOPE

4.1. Future challenges
Some of the challenges and possibilities for simultaneous

bearing fault detection are listed below:
• Complexity of Fault Pattern: Simultaneous bearing faults can

manifest in various patterns and combinations (e.g., inner race
and outer race faults). Intelligent techniques may struggle
to accurately detect and differentiate these complex fault
patterns, especially if they have overlapping or intertwined
features.

• Noise and Interference: Electrical noise and interference
from other components or external sources can affect the
accuracy of the intelligent technique in detecting bearing
faults. Filtering out this noise while retaining relevant fault
signatures is a significant challenge.

• Non-Stationary Operation: The operating conditions of the
motor can change over time, leading to non-stationary
behavior in the data. Adapting intelligent techniques to
handle varying operating conditions and fault severity levels
is a difficult task.

• Feature Extraction and Selection: Identifying the most relevant
features for bearing fault detection from the raw sensor data is
a crucial step. Intelligent techniques heavily rely on accurate
feature extraction and selection, and choosing the right
features is challenging for complex fault scenarios. Extracting
relevant and informative features from motor signals is crucial
for fault detection and classification. Developing efficient
feature extraction techniques that capture the distinctive
characteristics of different faults is a challenge.

• Noise and Interference: Motor signals are often contaminated

Table 6. Confusion matrix for the proposed method.

Classified Output RF Classifier
H IR OR BB

H 50 0 0 0
IR 0 50 0 0
OR 0 0 50 0
BB 0 0 0 50
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with noise and interference, which can affect the accuracy of
fault detection algorithms. Finding robust methods to mitigate
the impact of noise and interference is a research challenge.

• Fault Severity Assessment: Determining the severity of
a detected fault is important for timely maintenance
and decision-making. Developing accurate fault severity
assessment methods that provide reliable information about
the extent of the fault is a challenge.

• Cost and Implementation Challenges: Implementing advanced
intelligent techniques can be costly, particularly for small-
scale or budget-constrained applications. The cost of sensors,
data acquisition systems, and computing infrastructure may
limit the feasibility of using these techniques.

• Imbalance Data Handling: The issue of imbalanced
datasets, which is a common difficulty in fault detection
and classification problems. Explore techniques such as
oversampling, under-sampling, and synthetic data generation
to handle class imbalance effectively.

4.2. Future scope
A lot of research is carried out on the simultaneous bearing fault

detection of three-phase induction motors using the most advanced
intelligent techniques. However, the following areas might evolve
in the future based on industrial automation, machine learning, and
intelligent techniques. Some of the challenges and possibilities are
listed below:

• Integration of Advanced Machine Learning Algorithms:
Future studies may focus on the integration of advanced
machine algorithms such as deep learning, reinforcement
learning, and ensemble learning for more accurate and robust
simultaneous detection of multiple bearing faults in three
three-phase induction motors.

• Hybrid and Ensemble Approaches: Hybrid approaches
combining multiple intelligent techniques might be
investigated to leverage the strengths of each individual
technique for improved accuracy and efficiency.

• Utilization of Big Data and Industrial IoT: In the next era,
studies may consider the utilization of big data analytics
and the Industrial Internet of Things (IoT) for real-time data
collection, processing, and analysis.

Addressing these research challenges can lead to the development
of more accurate, reliable, and efficient fault detection and
classification methods for three-phase induction motors, improving
their overall reliability and performance.

5. CONCLUSION

In this paper, an intelligent and innovative approach for multiple
bearing fault detection and classification is suggested for a three-
phase induction machine. In this work, the most common types of
bearing faults such as ball broken fault, inner race fault, and outer
race fault are detected and classified. During the experimentation,
three-phase currents and vibration signals of the motor are acquired
using a data acquisition system. These signals are pre-processed
using a low pass filter and simple statistical parameters are
estimated. In the first part of the paper, statistical parameters
obtained from currents and vibrations are separately supplied to the
intelligent RF classifier and performance is observed. In the case
of the statistical-based current monitoring method, a maximum
of 75% accuracy is obtained whereas 96% accuracy is obtained
for vibration monitoring. In the proposed method, all statistical
parameters are fused together and the performance is checked. The
accuracy of the algorithm is almost enhanced to 100% and the root
mean squared error (RMSE) is reduced to 0.0248 and 0.0288 for
testing and cross-validated data. Other performance measures like
Mean Absolute error (MAE), root mean squared error (RMSE),
relative absolute error (RAE), root relative squared error (RRSE),
true positive rate (TP), false positive rate (FP), precision, recall,

and F-measure are also evaluated to study the performance and
giving satisfactory results.
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