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Abstract- Utilizing distributed generations (DGs) near load points has introduced the concept of microgrid. However, 

stochastic nature of wind and solar power generation as well as electricity load makes it necessary to utilize an energy 

management system (EMS) to manage hourly power of microgrid and optimally supply the demand. As a result, this 

paper utilizes demand response program (DRP) and battery to tackle this difficulty. To do so, an incentive-based DRP 

has been utilized and the effects of applying DRP on microgrid EMS problem have been studied. The objective functions 

of microgrid EMS problem include the total cost and emission. These metrics are combined in a multi-objective 

formulation and solved by the proposed multi-objective group search optimization (MOGSO) algorithm. After 

obtaining Pareto fronts, the best compromise solution is determined by using fuzzy decision making (FDM) technique. 

Studies have been employed on a test microgrid composed of a wind turbine, photovoltaic, fuel cell, micro turbine and 

battery while it is connected to the upper-grid. Simulation results approve the efficiency of the proposed method in 

hourly operation management of microgrid components. 
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NOMENCLATURE  

Abbreviations 

DG distributed generation 

DRP demand response program 

EMS energy management system 

FDM fuzzy decision making  

FC fuel cell 

GSO group search optimization 

IBP incentive-based program 

MOGSO multi-objective group search optimization 

MT micro turbine 

PBP price-based program 

PV Photovoltaic 

SOC state of charge 

UG upper-grid 

WT wind turbine 

Parameters 

A(i) incentive payment in ith hour 

d0(i) initial load in ith hour 

E(i,i) self-elasticity 

E(i,j) cross elasticity 

NG number of DGs 

NSS number of storage systems 

pen(i) penalty in ith hour 

SGi(t) start-up and shut-down costs of DGs 

Ssi(t) start-up and shut-down costs of storage 

system 

T index of hours 

ɳchargej storage’s charge efficiency 

ɳdischargej storage’s discharge efficiency 

 
0  (j) initial price in jth hour 

Variables  

B(d(i)) revenue of customer in ith hour 

CGi(t) hourly price for DGs 

Csi(t) hourly price of storage system power 

CEX(t) hourly exchanged power for UG 

d(i) customer demand in ith hour 

E(t) emission in tth hour 

 ( )i  spot electricity price in ith hour 

PGi(t) hourly power of DGs 

Psi(t) hourly storage system power 

PEX(t) hourly exchanged power with UG 

S total profit of consumer 

uGNG on/off state of DGs 

uSNSS on/off state of storage units 

X(t) vector of variables 
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WSj(t) SOC of jth storage unit 

1. Introduction 

During the recent years, growing utilization of clean 

energy sources along with decreasing consideration of 

fossil fuels have motivated researchers to modify the 

generation and transmission form of the electricity power 

[1]. As a result, distributed generations are emerged by 

technical improvement of the renewable energy sources 

[2]. Hence, the electricity consumption is provided near 

load points and at lower voltage level by non-

conventional DGs (such as FCs) along with renewable 

ones (such as WTs and PV systems) [3]. This strategy has 

introduced microgrid as a new concept which is 

constructed by aggregation of loads, storage systems, 

renewable and non-conventional DGs while generates 

and distributes electricity within a specified area near 

loads. Microgrids can be operated in grid-connected or 

stand-alone mode. During the first one, the system is able 

to exchange power with UG. However, during the latter 

one which is also named islanded mode, microgrid is 

completely separated from the utility [4]. Since generated 

power of renewable DGs is dependent to weather 

condition and as a result of loads variable nature, 

microgrids require an EMS to balance generation-

consumption [5]. An EMS tries to take the most 

advantage of DGs and it fails to supply the load if the 

generation is less than consumption. In such a situation, 

utilizing backup systems like battery and DRP are 

suggested to reduce the power mismatch [6]. The battery 

saves power during cheap and off-peak hours to 

discharge it in peak hours [7]. Diverse studies have been 

paid attention to utilization of battery in microgrid EMS 

[8]. Authors of [9] have employed battery to overcome 

uncertainties of wind power which are generated as a 

result of prediction error and solved EMS problem of 

microgrid using multi-objective optimization. However, 

in [10] microgrid EMS is solved in presence of battery 

using distributed intelligence and multi-agent systems. In 

Ref. [11], battery is considered as a reserve energy source 

and EMS is solved using point estimated method. 

Another solution to tackle this problem and provide 

generation-consumption balance is to decrease 

customer’s consumption during the system’s shortage 

hours. This reserve which is provided by demand side 

and is able to participate in power market is called DRP 

[12]. As a result, various studies have been done to 

manage DRP in microgrids EMS. Totally, DRPs are 

classified into PBPs and IBPs which are formulated as 

price elasticity model to participate in power market [13]. 

However, the elasticity model is not able to model 

discrete features of load and obtaining the exact price-

elastic curve of demand is so difficult [14]. The utilized 

DRP in [15], is a price-offer package which formulates 

load curtailment of residential, commercial and industrial 

consumers to manage EMS of a microgrid. The same 

DRP is utilized by authors of [16] to manage generation 

uncertainty of microgrid DGs by using multi-objective 

optimization. Considering the positive effects of DRPs, 

load reduction has a negative effect on psychology of 

consumers especially the industrial ones. Authors of Ref. 

[17] have considered these bad psychological effects and 

replaced the load reduction with load shifting in 

microgrid EMS. An improved DRP model is presented in 

[18] which has maximized the microgrid benefit by 

considering interruptible and uninterruptible loads, 

simultaneously.  

Combining both of aforementioned solutions, battery 

and DRP, makes microgrid more reliable and has 

attracted lots of attention in the literature [19]. 

Combination of load reduction and battery in microgrid 

are studied in [20] while considering security risks. 

However, their simultaneous implementation is solved 

by authors of [21] as a multi-objective problem. 

Furthermore, microgrid EMS in a system containing PV, 

WT, DRP and battery is solved by zhao et al. [22] using 

multi-agent system. 

The abovementioned papers have considered load 

reduction as a reserve energy source and have neglected 

load shifting. As a result, the effects of self and cross 

elasticity concepts are not considered. In addition, they 

have solved multi-objective microgrid EMS problem 

using common multi-objective optimization algorithms. 

However, in this paper, a multi-objective scheduling 

model for microgrid EMS problem solution is presented 

to minimize the total cost and emission of microgrid. The 

formulated EMS problem is solved using the proposed 

MOGSO algorithm while the multi-objective utilization 

of GSO algorithm was not implemented before. The 

understudying microgrid is composed of a WT, PV, FC 

and MT while it is connected to the UG. As a result of 

uncertainties related to WT, PV and load and to cover 

them, a battery and an incentive-based DRP are 

considered in the operation management of microgrid. 

Utilization of DRP has added load shifting as a reserve 

energy source and considered the effects of self and cross 

elasticity concepts which were not taken into account at 

the abovementioned papers. To reach this goal, load 

curve is divided into three intervals which has different 
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elasticity with respect to the price changes.  

Totally, the main contributions of this paper are 

summarized as bellow: 

 Self and cross elasticity concepts are considered 

in solving microgrid EMS problem. 

 Load shifting is considered as a reserve energy 

source. 

 The proposed MOGSO algorithm is utilized to 

solve the multi-objective problem of microgrid 

EMS.  

The rest of the paper is organized as follows: The 

mathematical formulation of objective functions along 

with constraints are presented in Section 2. In Section 3, 

a brief introduction of multi-objective group search 

optimization algorithm is presented. The numerical 

results and conclusions are presented in Section 4 and 5, 

respectively. 

2. Problem formulation 

In this section, mathematical formulation of microgrid 

operation management is presented. Minimization of two 

objective functions including operation cost in €ct (Euro 

cent) and pollutant emission in kg are considered in this 

paper. Furthermore, DRP and storage system are taken 

into account as two flexible energy sources in order to 

cover problem uncertainties. 

2.1. DRP 

An economic incentive-based DRP is considered here to 

formulate participation of consumers in the demand 

response [13]. In this regard, self-elasticity is defined as 

the sensitivity of load with respect to price of the same 

time horizon as bellow: 

0

0

.
d

E
d









 (1) 

However, cross-elasticity can be obtained by 

sensitivity of load at ith hour to price of jth hour as 

following: 

0

0

( ) ( )
( , ) .

( ) ( )

j d i
E i j

d i j









 (2) 

Changes in price of electricity during various time 

horizons may result in one of the following cases: 

 Some of loads such as lightning cannot be 

transferred to another time horizon. So, they 

have just self-elasticity which is always 

negative. 

 A number of loads can be transferred from peak 

hours to off-peak ones. As a result, self-

elasticity (E(i,i)) and cross-elasticity (E(i,j))  can 

be defined for them as bellow: 

( , ) 0

( , ) 0

E i i if i j

E i j if i j

 


 
 (3) 

2.1.1. DRP with self-elasticity 

A consumer modifies his load from d0(i) to d(i) according 

to incentive and penalty payments. 

0( ) ( ) ( )d i d i d i    (4) 

Considering A(i) in $ as the incentive payment for per 

kWh load reduction of consumer at ith hour, total 

incentive of the consumer for participating in DRP is: 

0( ( )) ( )[ ( ) ( )]P d i A i d i d i    (5) 

If the engaged consumer does not fulfill his 

commitments, he will be faced with a penalty. Assuming 

IC(i) and pen(i) as the amount of commitment at ith hour 

and the value of penalty for each hour, respectively, total 

penalty value is as follow: 

0( ( )) ( ){ ( ) [ ( ) ( )]}PEN d i pen i IC i d i d i     (6) 

Furthermore, by considering B(d(i)) as the revenue of 

consumer at ith hour for utilizing d(i) kWh of electricity 

power, total profit of consumer (S) at ith hour is: 

( ( )) ( ). ( ) ( ( )) ( ( ))S B d i d i i P d i PEN d i       (7) 

According to optimization rules, the profit is maximum 

when 
( )

S

d i




 equals to zero. So: 

( ( ))
( ) 0

( ) ( ) ( ) ( )

S B d i P PEN
i

d i d i d i d i


   
    
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 (8) 

( ( ))
( ) ( ) ( )

( )

B d i
i A i pen i

d i



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
 (9) 

Assuming the profit function as a quadratic function as 

bellow: 

0 0

0

0

0

( ( )) ( ) ( )[ ( )

( ) ( )
( )] 1

2 ( ). ( )

B d i B i i d i

d i d i
d i

E i d i

 

 
  

 

 (10) 

By subtracting abovementioned equations, solving 

( )

B

d i




 and substituting it at Eq. (9), we have: 
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0

0

0

( ) ( )
( ) ( ) ( ) ( ) 1

2 ( ). ( )

d i d i
i A i pen i i

E i d i
 

 
    

 
 (11) 

So, the load profile of the consumers after participation 

in DRP is as following: 

0

0

0

( )

[ ( ) ( ) ( ) ( )]
( ) 1 ( , ).

( )

d i

i i A i pen i
d i E i i

i

 




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 

 

 (12) 

According to (12), if the electricity price does not 

change and the amount of incentive and penalty 

neglected, d(i) will be the same as d0(i). 

2.1.2. DRP with self and cross elasticity 

Based on definition of cross-elasticity which was 

presented in Eq. (2) and by considering linearization 

assumptions we have: 

( )
: tan , 1,2,..., 24

( )

d i
cons t for i j

j





 (13) 

The following linear relationship will be established 

between price and load: 

0

24
0

0

1 0

( ) ( )

( )
( , ). .[ ( ) ( )] 1,2,..., 24

( )i
i j

d i d i

d j
E i j i i i

j
 






    (14) 

Now, by taking into account the amount of incentive 

and penalty, multi-elasticity formulation of DRP will be 

as following: 

0

24
0

1 0

( ) ( )

[ ( ) ( ) ( ) ( )]
. 1 ( , ).

( )j
j i

d i d i

i i A i pen i
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 
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

 
   

 
 
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
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2.2. Objective formulation 

In this part of paper, mathematical formulation for 

minimization of operation cost and pollution emissions 

for each hour of next day is presented. Here, f1 is the cost 

function in €ct and f2 is the amount of emissions in kg 

which must be minimized simultaneously. 

1

1

1

( ( )) [ ( ) ( ) ( ) ( 1) ]

[ ( ) ( ) ( ) ( 1) ]

( ) ( )

G
N

Gi Gi Gi Gi Gi

i

Nss

Si Si Si Si Si

i

EX EX

f X t P t C t S u t u t

P t C t S u t u t

P t C t





   
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



  
(16) 
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1

( ( )) [ ( ). ( )]

[ ( ). ( )] ( ). ( )
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Gi Gi

i

Nss

Sj Sj EX EX

j

f X t P t E t

P t E t P t E t







 




 (17) 

In these equations  ( )GiP t , ( )SiP t  and ( )EXP t  are the 

hourly power of DGs, storage system and exchanged 

power with UG, respectively. Furthermore,  ( )GiC t , 

( )SiC t   and ( )EXC t  are the suggested price for each 

hour by DGs, storage system and UG, respectively. u(t) 

indicates the on/off state of DGs and storage devices.   

GiS  and 
SiS  are start-up and shut-down costs of DGs 

and storage device, respectively. However, when the 

specified unit is off or separated from the microgrid, 

these costs are zero. Negative value for hourly power of 

storage system indicates charging or selling power to the 

UG. Total amount of pollution E(t) generated by each 

unit equals to summation of SO2, CO2 and NOx. Totally, 

by assuming X(t) as the vector of variables which is 

expressed in Eq. (18), there exists 2(NG+NSS)+1 variables 

for each hour of next day that must be calculated using 

multi-objective optimization method. 

1 2 1 2

1 2

1 2

( ) [ ( ), ( ),..., ( ), ( ), ( )

,..., ( ), ( ), ( ), ( ),...,

( ), ( ), ( ),..., ( )]

G

SS

G SS

G G GN S S

SN Ex G G

GN S S SN

X t P t P t P t P t P t

P t P t u t u t

u t u t u t u t



 (18) 

2.3. Constraints 

The constraints related to multi-objective microgrid EMS 

problem includes power balance, limitations of generated 

power of DGs, restrictions related to charge and 

discharge of storage system as well as constraints related 

to SOC of storage system. The generation-consumption 

constraint is formulated as bellow: 

1 1

( ) ( ) ( ) ( )
G SSN N

Gi Sj EX load

i j

P t P t P t P t
 

     (19) 

In addition, generated power by DGs must be within 

their limitations: 

,min ,max( ) ( ) ( ) 1,2,...,Gi Gi Gi Gi Gi Gu t P P t u t P i N    (20) 

The power exchange with UG is restricted as bellow: 

,min ,max( )Ex Ex ExP P t P   (21) 

Limitations related to storage’s rate of charge and 

discharge for each hour must be established as: 
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,min ,max( ) ( ) ( ) 1,2,...,Sj Sj Sj Sj Sj SSu t P P t u t P j N    
(22

) 

Furthermore, SOC constraint of storage system is as 

bellow: 

, in ,max( ) 1,2,...,Sj m Sj Sj SSW W t W j N    (23) 

Here, WSj(t) is the SOC of jth storage unit which is 

computed as following at the end of each hour: 

,

1

arg

arg

( ) ( ) 1,2,...,

( ) ( ) 0
( )

( ) / ( ) 0

t

Sj Sj initial Sj SS

k

Sj ch ej Sj

Sj

Sj disch ej Sj

W t W R k j N

P k if P k
R k

P k if P k






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
 




 (24) 

Where, argch ej  and argdisch ej  are the storage’s charge and 

discharge efficiency, respectively. 

3. Multi-objective group search optimization 

algorithm 

Multi-objective optimization methods optimize various 

objective functions simultaneously.  This method leads to 

find various optimized solutions based on dominance 

concept which are named Pareto fronts. Assume that 

( ) ( 1,2,.... )if X i n    are the objective functions that 

must be optimized according to various constraints. 

Considering Xa and Xb as two feasible solutions, Xa 

dominates Xb while: 

 

 

1,2,..., : ( ) ( )

1,2,..., : ( ) ( )

k a k b

j a j b

k n f X f X and

j n f X f X

  

  
 (25) 

It means that solutions of optimal Pareto will never be 

dominated by another feasible solution of search space. 

The optimal Pareto is achieved by drawing optimal 

solutions of each objective function. In the following, a 

brief introduction about single-objective GSO algorithm 

is presented. Then, its multi-objective version is 

introduced. At last, its stepwise implementation on 

solving microgrid management problem is expressed. 

3.1. Single-objective GSO 

GSO [23] is a new optimization algorithm which is based 

on search behavior of animals and theory of group life 

among them. GSO population is called a group while 

each person is called a member. In a n-dimensional 

search space, the current position and head angle of the 

ith member in kth iteration is K N

iX R   and  

1 ( 1)

1( ,..., )
n

k k k n

i i i R  


   , respectively. The search 

direction of ith member which is shown by 

1 ( 1)

1( ) ( ,..., )
n

k k k k n

i i i iD d d R


   is computed as bellow: 

1

( 1)

( 1)

1

1

1
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sin( ) cos( ) ( 2,..., 1)

sin( )

q

j j q

n n

n
k k

i i

q

n
k k k

i i i

q j

k k

i i

d

d j n

d



 

















  





  (26) 

GSO population is composed of three kinds of members 

including producer, scroungers and rangers. Scroungers 

try hard to reach producer while rangers have random 

movements. For simplicity, it is assumed that there is 

only one producer and the rest of population are 

scroungers (with probability γ) and rangers (with 

probability 1-γ). In each iteration, the member who has 

the best objective function is chosen as the producer. The 

search process of this algorithm is based on animals’ 

vision ability. So, the search space is divided into n 

dimensions while the maximum head angle and search 

radians are 1

max R   and 1

maxl R , respectively. 

Demonstration of the algorithm in a three-dimensional 

space is shown in Fig. 1. The maximum pursuit angle is 

π/a2 while the constant a is given by round (

var 1iableN ). The maximum pursuit distance is 

calculated by 
var

1

( )
iableN

i i

i

U L


 . More explanation about 

parameters of GSO algorithm can be found in [24]. 

Maximum pursuit angle

Maximum pursuit distance

0

max

max
l

 
Fig. 1. Three-dimensional search space 

The angle corner shows the location of producer whose 

XP changes during kth iteration by sampling three points 

in the search space as following: 

1 max ( )k k k

z P PX X r l D    (27) 

1 max 2 max( / 2)k k k

r P PX X r l D r     (28) 

1 max 2 max( / 2)k k k

l P PX X r l D r     (29) 

Where 
1

1r R  and 
1

2

nr R   are random numbers and 

maxl  is the length of search vector. 

After calculating abovementioned locations, the point 

which has the best objective function is selected and the 

producer changes its head angle as: 
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1

2 max

k k r      (30) 

However, if a better location was not found for 

producer after a iterations, its head angle become zero as: 

k a k    (31) 

As mentioned above, rest of the members are 

scroungers and rangers. Scroungers move toward 

producer by random steps as following: 

1

1 3 ( )k k k K

i i P iX X r X X     (32) 

Where, r3 is a random number between 0 and 1 and 
1  is 

accelerating coefficient. If a scrounger finds better 

location in comparison to existed producer, in the next 

iteration it will be chosen as the producer. 

The remaining of the population which is called ranger 

has random movements and by computing li a random 

distance moves to a new location as bellow: 

1 1

2 ( )k k k k

i i i iX X l D     (33) 

Where, 
2  is the accelerating coefficient. 

3.2. Multi-objective GSO (MOGSO) 

In this paper, MOGSO along with FDM technique is 

utilized for solving multi-objective microgrid 

management problem. In multi-objective optimization, 

multiple objective functions are minimized 

simultaneously, as bellow: 

1 2

1 2 144

min( ( ) [ ( ), ( )]

[ , ,..., ]

F X f X f X

X x x x




 (34) 

Where, 1 2( ), ( )f X f X  are objective functions and X 

demonstrates vector of variables. The aim of multi-

objective optimization is to find the most feasible 

solution which meets all of constraints. Considering all 

of objective functions, it is impossible to confirm a 

solution is better than others since objective functions 

may be against each other. Stepwise implementation of 

MGSO in solving microgrid management problem is 

explained here: 

1) Hourly power of DGs, storage system and UG 

are considered as the decision making variables 

and initial population is generated based on 

legal limitations of variables. 

2) The value of objective functions correspond to 

each population member is computed. 

3) In this step, non-dominated solutions are 

determined which are the optimal ones for a 

function without worsening other functions.   

4) Now, population members are divided into 

multiple fronts. The first front is completely 

non-dominated while it dominates the second 

front. Furthermore, a ranking value is assigned 

to all members of each front. For instance, 

ranking number for members of first front is 1. 

5) In order to determine proximity of a member to 

its neighbors, crowding distance is calculated. 

The greater is the distance, the population will 

be more diverse. This index for jth member of kth 

front is calculated as: 

max min
1

1,

( , ) ( 1) ( 1)
2,3,...,

objn
k i i

i i i

j n

CD F j obj j obj j
j n

obj obj

 


   





 (35) 

6) The population is sorted based on their 

crowding distance. Sorting will be repeated 

based on members ranking value. 

7) Make new producer, scroungers and rangers 

based on GSO algorithm. 

8) Generated population in the previous step is 

combined with the existing population. Then 

they will be sorted based on crowding distance 

and non-dominancy. Finally, the initial 

population size of sorted population is saved and 

the rest are omitted. 

9) If the maximum number of iteration or 

convergence condition is reached, the 

optimization will stop and the best solution is 

selected based on FDM technique. 

3.3. Fuzzy decision making (FDM) technique 

After determining the Pareto fronts, the best solution is 

selected by using FDM. In this method, ith objective 

function is mapped on a linear membership function as 

bellow: 

min

max

min max

max min

max

1

0

i i

k i i

i i i i

i i

i i

f f

f f
f f f

f f

f f



 



  


 

 (36) 

Then, normalized membership function k  for kth Pareto 

front solution is determined. 
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 (37) 

Finally, the maximum weakest solution which has the 

greatest amount of k  is selected as the optimum 

solution. Overall flowchart of the solving microgrid 

energy management problem by the proposed MOGSO 

is shown in Fig. 2. 

 
Fig. 2. Flowchart of solving microgrid management using MOGSO 

4. Results and discussions 

In this section, numerical studies are presented. First of 

all understudying microgrid is introduced. Then, 

simulation and analytical results are presented in various 

scenarios. The experiments are performed using 

MATLAB R2013a, running on a laptop with a 1.5 GHz 

AMD Quad core A4 CPU and 4GB RAM memory, and 

Microsoft Windows 8.1. 

4.1. Parameter selection 

The maximum number of iterations is set to 100 and the 

population size of 100 is used for all of scenarios. In 

addition, the maximum pursuit angle and maximum 

pursuit distance are considered to be 0.0218 and 455.27, 

respectively. To determine the parameters of the utilized 

GSO algorithm, a number of simulations is done using 

benchmark function  
1

2 2 2

1

1

( ) 100( ) ( 1)
n

i i i

i

f x x x x






       . Table 1 

presents the mean value of function over 50 trial runs. 

According to this table  
1 =2,  

2 =3 and γ=0.95 leads 

to better solution. 

Table 1. Effects of the GSO parameters on optimization of f 

1  
2  γ Mean 

1  
2  γ Mean 

1 1 0.75 544.18 2 2 0.95 71.27 

1 1 0.85 122.77 2 3 0.75 1223.2 

1 1 0.95 50.01 2 3 0.85 93.53 

1 2 0.75 4703.9 2 3 0.95 32.28 

1 2 0.85 158.47 3 1 0.75 2769.5 

1 2 0.95 69.46 3 1 0.85 105.8 

1 3 0.75 3318.7 3 1 0.95 64.7 

1 3 0.85 522.73 3 2 0.75 5481.4 

1 3 0.95 66.94 3 2 0.85 118.1 

2 1 0.75 1151.2 3 2 0.95 92.3 

2 1 0.85 60.62 3 3 0.75 1269.3 

2 1 0.95 35.59 3 3 0.85 154.01 

2 2 0.75 2659.3 3 3 0.95 96.41 

2 2 0.85 107.01     

 

4.2. Case study 

The understudying test system is a microgrid that is 

composed of a MT, FC, PV and WT as DGs as well as a 

battery as the energy storage system while its single-line 

diagram is shown in Fig. 3. 

 

20kV/400V

Utility Grid

WT (15kW)PV (25kW) MT (30kW)FC (30kW)Battery (30kW)Load  
Fig. 3. The understudying microgrid [3] 

 

It is assumed that the microgrid is connected to the UG. 

The hourly forecasted values for load and power market 

price are shown in Fig. 4. The hourly generated power by 

WT and PV are given in Table 2. The charge and 

discharge efficiency of the battery is assumed to be 0.9. 

 

  
(b) (a) 

Fig. 4. The hourly values of (a) market price (b) Load [3] 

 

Table 2. Hourly forecasted values for WT and PV power 

generation [3] 

Hour WT PV Hour WT PV 

1 5.25 0 13 10.5 23.75 

2 5.25 0 14 6.3 22.5 

3 5.25 0 15 5.25 7.5 

Start

Modify the load profile by DRP using Eq. (15)

Set initial parameters of MOGSO:

 Population number

 Iteration number

 Define maximum pursuit angle

 Define maximum pursuit distance

Generate initial population

Evaluate population

MOGSO_iter=0

Select the best member as the producer

MOGSO_iter=MOGSO_iter+1

Scroungers move toward producer by Eq. (32)

Rangers move randomly according Eq. (33)

Combine producer, scroungers and rangers

Search the space by producer using Eq. (27)-(29)

Determine non-dominated solutions and specify fronts and ranks

Calculate crowding distance

Sort population based on crowding distance and ranks

Do cross over and mutation

Sort population and update fronts
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Report Pareto optimal front
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4 5.25 0 16 4.2 4.5 

5 5.25 0 17 5.25 2.5 

6 3.5 0 18 5.25 0 

7 5.25 0 19 4.2 0 

8 4.2 0 20 5.25 0 

9 5.25 4 21 4.2 0 

10 7 7.5 22 4.2 0 

11 21 10 23 3.85 0 

12 24.5 12.5 24 3.5 0 

The limits related to generated and exchanged power, 

bidding and pollution price of DGs, storage system and 

UG are given in Table 3. 

Table 3. Limits of generated and exchanged power, bidding and 

pollution price of DGs, storage system and UG [3] 
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MT 6 30 0.45

7 

0.96 720 0.0036 0.1 

FC 3 30 0.29

4 

1.65 460 0.003 0.00

75 

PV 0 25 2.58

4 

0 0 0 0 

WT 0 15 1.07

3 

0 0 0 0 

Batte

ry 

-30 30 0/38

0 

0 10 0.0002 0.00

1 

UG -30 30 Fig. 

4 (a) 

0 0 0 0 

In this paper, load curve is divided into three periods 

including low-load period (1:00 am-7:00 am), off-peak 

period (8:00 am-20:00 pm) and peak period (20:00 pm- 

0:00 am). The elasticity coefficients corresponding to 

each period are given in Table 4 [25]. 

Table 4. Self and cross elasticity coefficients [25] 

 Low-load Off-peak Peak 

Low-load -0.1 0.016 0.012 

Off-peak 0.016 -0.1 0.01 

Peak 0.012 0.01 -0.1 

4.3. Simulation results 

Simulation results related to microgrid EMS are analyzed 

in three scenarios as bellow: 

1) Single-objective minimization of cost 

2) Single-objective minimization of emission 

3) Multi-objective minimization of cost and 

emission 

All of the abovementioned scenarios are studied in two 

modes, with and without considering DRP. The 

modification in load curve in response to DRP is shown 

in Fig. 5. It can be seen that load consumption is 

transferred from peak and expensive hours to the low-

load and cheap durations. In the following, the dashed 

curve of the Fig. 5 is considered as the load curve in the 

presence of DR program. 

4.3.1. Scenario 1: Single-objective 

minimization of cost 

In this section, the power generation cost of microgrid 

is minimized in two cases: absence and in the presence of 

DRP. During these two cases, DGs, battery and UG are 

ON and programmable. 

 
Fig. 5. Load curve with and without considering DR program 

The DRP is neglected in the first case. However, the latter 

case has considered DRP. The convergence process of 

GSO algorithm in solving two cases of this scenario are 

shown in Fig. 6. 

The hourly simulation results for the first and second 

case are expressed in Table 5 and 6, respectively. 

Table 5. Scenario 1: The optimal solution without considering DR 

(Total cost=737.23) 

Hour MT 

(kW) 

FC 

(kW) 

PV 

(kW) 

WT 

(kW) 

Battery 

(kW) 

UG 

(kW) 

1 7.79 30 0 1.32 -6.24 19.12 

2 29.85 3.98 0 3.58 28.45 -15.86 

3 16.04 30 0 1.45 -25.11 27.61 

4 7.9 30 0 2.55 -3.79 15.33 

5 26.62 30 0 0.28 -13.11 14.19 

6 20.7 30 0 3.31 23.78 -15.89 

7 13.06 30 0 2.22 -5.28 30 

8 19.97 30 0 2.52 -3.37 28.87 

9 17.23 30 0.48 0.17 7.58 22.52 

10 15.33 30 3.6 0.96 22.75 7.34 

11 6.53 30 1.41 0.55 17.08 23.41 

12 27.72 30 3.33 19.11 25.91 -28.09 
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13 9.8 30 9.64 4.67 27.14 -6.28 

14 24.89 30 17.1 3.78 27.14 -27.93 

15 28.85 30 2.94 3.35 16.58 -3.74 

16 26.48 30 2.59 0.54 24.58 -4.21 

17 7.94 30 2.5 1.2 10.35 30 

18 24.71 30 0 5.19 13.18 10.9 

19 8.38 30 0 1.41 20.19 30 

20 24.33 30 0 0.31 12.5 16.84 

21 10.98 30 0 2.17 29.5 5.33 

22 16.67 30 0 1.92 -3.6 30 

23 26.65 30 0 2.11 23.68 -17.45 

24 11.82 30 0 2.74 -16.56 30 

  
(b) (a) 

Fig. 6. Scenario 1: Convergence process of GSO in minimizing 

cost a) without DR b) with DR 

According to Table 5, during the first hours of the day 

in which electricity is cheaper, the battery is charged. 

However, in peak hours which are expensive, the UG 

buys power from the microgrid to supply its own 

demand. As a result of low cost of electricity produced 

by FC, this DG works at its maximum capacity during 

most hours of the day to minimize the cost. In the 

following, participation of consumers in DR has 

modified the load curve and according to Table 6 

generated power by PV and WT are reduced. It is clear 

that WT has generated more power in comparison to PV 

since being cheaper. In addition to peak shaving, DR has 

caused to reduce the cost by 5%. 

Table 6. Scenario 1: The optimal solution with considering DR 

(Total cost=699.86) 

Hour MT 

(kW) 

FC 

(kW) 

PV 

(kW) 

WT 

(kW) 

Battery 

(kW) 

UG 

(kW) 

1 10.58 30 0 0.84 12.76 2.77 

2 14.88 28.82 0 1.73 -7.59 16.93 

3 9.89 30 0 3.84 -18.95 29.99 

4 29.64 27.42 0 1.25 24.16 -25.51 

5 12.07 30 0 2.19 2.91 16.35 

6 29.1 30 0 0.57 -0.76 9.01 

7 12.65 30 0 3.24 12.37 18.42 

8 16.59 30 0 2.6 21.71 -0.71 

9 17.69 30 2.37 0.17 12.49 7.46 

10 18.96 30 3.32 1.57 10.66 7.47 

11 14.13 30 2.99 19.28 23.88 -19.19 

12 11.54 30 3.9 21.83 23.1 -25.19 

13 12.95 30 21.17 0.009 22.64 -19.27 

14 19.91 30 12.88 4.51 8.12 -4.92 

15 22.85 30 0.92 1.61 29.3 -14.5 

16 9.47 30 4.5 1.06 -2.98 29.94 

17 12.2 30 2.07 1.93 9.79 17.78 

18 13.23 30 0 1.55 3.38 27.42 

19 20.63 30 0 2.33 -1.82 29.85 

20 26.36 30 0 2.54 9.47 7.21 

21 25.42 30 0 2.67 -3.67 28.36 

22 16.21 30 0 1.54 9.69 22.14 

23 21.69 30 0 2.82 -15.02 22.49 

24 24.04 30 0 0.5 27.27 -20.25 

4.3.2. Scenario 2: Single-objective 

minimization of emission 

In this scenario, GSO is utilized to minimize the emission 

in two cases.  During the first case, DR is neglected while 

it is considered in the second case. Convergence process 

of GSO for these two cases are shown in Fig. 7. 

 

  
(b) (a) 

Fig. 7 Scenario 2: Convergence process of GSO in minimizing 

emission a) without DR b) with DR 

Hourly simulation results for both cases are expressed 

in Tables 7 and 8, respectively. Since WT and PV are free 

of emission, their hourly power are the same as previous 

scenario and have not changed significantly.  

 

Table 7. Scenario 2: The optimal solution without considering DR 

(Total emission=439.69) 

Hour MT 

(kW) 

FC 

(kW) 

PV 

(kW) 

WT 

(kW) 

Battery 

(kW) 

UG 

(kW) 

1 13.36 3 0 1.5 25.46 8.66 

2 16.99 20.77 0 3.44 9.31 -0.52 

3 9.68 17.06 0 0.99 16.66 5.58 

4 13.2 10.12 0 0.78 7.6 20.27 

5 18.76 13.19 0 4.87 -8.82 30 

6 9.86 3 0 2.1 18.57 28.44 

7 18.84 3 0 0 29.85 18.3 

8 15.24 13.9 0 1.16 17.68 30 

9 20.15 16.4 0.54 3.83 7.05 30 

10 17.97 3 1.85 2.59 27.29 27.28 

11 10.2 29.95 10 5.35 -6.51 30 
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12 7.25 13.19 0.73 1.16 25.64 30 

13 12.44 25.23 3.26 3.5 0.55 30 

14 26.48 17.91 4.51 6.1 -10.01 30 

15 25.35 3 1.6 4.84 18.62 24.56 

16 10.73 11.04 1.19 3.19 23.83 30 

17 14.17 29.64 2.5 4.89 0.78 30 

18 13.88 12.12 0 1.79 26.19 30 

19 24.01 29.27 0 3.52 3.18 30 

20 11.27 28.98 0 1.08 2.65 30 

21 15.98 3 0 3.86 28.55 26.58 

22 28.2 3 0 2.51 25.03 16.25 

23 20.08 6.44 0 1.66 6.79 30 

24 16.35 21.76 0 1.41 -11.53 30 

Table 8. Scenario 2: The optimal solution with considering DR 

(Total emission=404.45) 

Hour MT (kW) FC (kW) PV (kW) WT (kW) Battery 

(kW) 

UG (kW) 

1 10.8 7.9 0 5.04 3.21 30 

2 8.22 3 0 0.63 15.35 27.56 

3 11.2 19.59 0 0.21 -6.23 30 

4 22.47 3 0 4.11 0.24 27.63 

5 9.5 10.12 0 4.95 8.95 30 

6 9.39 29.97 0 1.98 -3.43 30 

7 19.5 3 0 1.92 23.41 28.84 

8 7.37 10.01 0 0.69 22.11 30 

9 17.49 3 1.49 1.14 24.18 22.88 

10 29.62 3 1.46 3.39 23.93 10.01 

11 29.26 3 7.8 0.34 10.13 20.55 

12 16.66 3 4.67 16.69 13.67 15.48 

13 21.07 3 12.42 10.45 -3.11 23.65 

14 18.49 21.04 5.29 2.81 -10.15 30 

15 6.17 3 7.24 0.53 26.95 26.28 

16 16.27 25.72 2.8 3.89 -6.7 30 

17 9.92 5.48 2.15 3.39 22.83 30 

18 19.04 3 0 4.26 28.4 20.88 

19 27.18 28.08 0 2.05 -6.32 30 

20 13.75 27.08 0 3.19 1.57 30 

21 7.47 24.33 0 1.91 19.06 30 

22 20.48 24.7 0 3.84 0.57 30 

23 12.21 3 0 0.18 30 23.58 

24 21.93 3 0 2.09 19.91 17.61 

In addition, UG does not have emission, too. So, in this 

scenario microgrid buys power from UG to minimize the 

existed emission. Based on simulation results of this 

scenario, considering DR has a sufficient effect on 

reducing emission and reduced it by 8%. 

4.3.3. Scenario 3: Multi-objective 

minimization of cost and emission 

Simultaneous minimization of cost and emission as a 

multi-objective problem is solved using MOGSO in this 

scenario. Like two previous scenarios, this scenario is 

solved in two cases, too. The first one manages microgrid 

without DR while the second considers the effect of DR. 

The Pareto fronts proportional to the first and second case 

are shown in Figs. 8 and 9, respectively. The best solution 

of each case is marked by a red star which is selected by 

FDM technique. The cost and emission conflict each 

other. It means that moving from one end of Pareto front 

to the other end maximizes cost and minimizes emission 

and vice versa. So, FDM technique have been employed 

to choose the best solution. 

 
Fig. 8. Scenario 3: Pareto front of MOGSO without DR 

 
Fig. 9. Scenario 3: Pareto front of MOGSO with DR 

Table 9 and 10 show the values of both objective 

functions Pareto optimal solutions without and with DR, 

respectively. Among these optimal solutions, the 

maximum weakest solution is chosen as the best one.   

 

Table 9. Scenario 3: Pareto optimal solutions without DR 

Solution 

#(k) 

f1 (Ect) f2 (kg) max

1

max min

1 1
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( )

kf f

f f




 

max

2

max min

2 2

( )

( )

kf f

f f




 

Min 

1 1304.3 478.88 0 1 0 

2 589.76 754.84 1 0 0 

3 888.93 571.91 0.5813 0.6629 0.5813 

4 794.53 625.2 0.7134 0.4698 0.4698 

5 1061.3 535.27 0.3401 0.7957 0.3401 

6 699.07 679.7 0.847 0.2723 0.2723 

7 1230.7 509.82 0.1029 0.8879 0.1029 

600 800 1000 1200 1400
400

500

600

700

800

Operating cost (Ect)

E
m

is
si

on
 (

k
g)

Best solution without DR

400 500 600 700 800 900 1000 1100 1200
450

500

550

600

650

700

750

Operating cost (Ect)

E
m

is
s
io

n
 (

k
g

)

Best solution with DR



Journal of Operation and Automation in Power Engineering, Vol. 5, No. 2, Dec. 2017                                                                         237 
  

8 1161.2 528.87 0.2002 0.8189 0.2002 

9 1175.1 520.23 0.1808 0.8502 0.1808 

10 613.26 704.81 0.9671 0.1813 0.1813 

11 630.92 690.12 0.9424 0.2345 0.2345 

12 604.78 725.56 0.9790 0.1061 0.1061 

13 1250.7 487.75 0.075 0.9679 0.075 

14 687.03 689.45 0.8639 0.2370 0.2370 

15 594.06 737.45 0.994 0.0630 0.0630 

16 591.8 740.11 0.9971 0.0534 0.0534 

17 1283.7 480.47 0.0287 0.9943 0.0287 

18 591.27 753.47 0.9979 0.005 0.005 

19 1260.8 481.1 0.0609 0.9920 0.0609 

20 1257.2 482.85 0.0659 0.9856 0.0659 

21 1301.01 480.29 0.0046 0.9949 0.0046 

 

 

Table 10. Scenario 3: Pareto optimal solutions with DR 

Solution 

#(k) 

f1 (Ect) f2 (kg) max

1

max min

1 1

( )

( )

kf f

f f




 

max

2

max min

2 2

( )

( )

kf f

f f




 

Min 

1 422.85 704.3 1 0 0 

2 1103.7 472.71 0 1 0 

3 805.29 561.07 0.4383 0.6185 0.4383 

4 658.6 604.64 0.6537 0.4303 0.4303 

5 974.55 547.41 0.1897 0.6774 0.1897 

6 611.37 658.6 0.7231 0.1973 0.1973 

7 728.19 598.58 0.5515 0.4565 0.4565 

8 563.66 667.31 0.7932 0.1597 0.1597 

9 459.32 683.6 0.9464 0.0894 0.0894 

10 1027.6 499.05 0.1118 0.8862 0.1118 

11 1067.4 483.22 0.0533 0.9546 0.0533 

12 999.86 530.33 0.1525 0.7512 0.1525 

13 1020.9 520.95 0.1217 0.7917 0.1217 

14 448.44 698.44 0.9624 0.0253 0.0253 

15 1087.1 476.09 0.0244 0.9854 0.0244 

16 1088.6 472.71 0.0223 1 0.0223 

17 1088.5 473.84 0.0223 0.9951 0.0223 

Table 11. Scenario 3: The optimal solution without considering 

DR (Total cost=888.93, Total emission=571.91) 

Hour MT (kW) FC (kW) PV (kW) WT (kW) Battery 

(kW) 

UG (kW) 

1 27.36 4.06 0 3.76 13.36 3.44 

2 26.33 4.51 0 3.98 13.44 1.71 

3 26.88 5.16 0 3.96 14.61 -0.62 

4 25.01 6.09 0 4.26 16.87 -0.24 

5 27.09 7.41 0 3.94 13.49 6.04 

6 26.39 9.29 0 2.5 12.66 11.14 

7 24.83 11.98 0 4.37 14.19 14.61 

8 27.33 16.71 0 3.39 13.37 17.18 

9 27.08 21.28 3.5 4.73 18.17 4.21 

10 27.03 27.01 6.61 5.82 17.59 -4.08 

11 24.38 25.77 7.48 17.54 13.04 -9.23 

12 24.1 24.02 8.76 20.68 21.54 -21.12 

13 25.77 27.54 20.41 7.83 14.1 -14.67 

14 26.61 18.04 18.43 4.93 20.82 -13.85 

15 23.62 13.08 5.89 4.51 19.04 11.83 

16 25.54 6.07 3.86 3.02 15.73 25.75 

17 26.35 5.24 1.86 4.3 14.23 30 

18 24.67 9.58 0 9.79 15.93 30 

19 25.21 9.77 0 3.62 21.38 30 

20 25.93 3 0 4.08 21.6 29.37 

21 24.99 6.2 0 2.94 13.85 30 

22 24.23 3 0 2.98 19.51 25.25 

23 26.81 3 0 2.9 16.08 16.18 

24 25.84 3 0 2.96 19.41 6.77 

Table 12. Scenario 3: The optimal solution with considering DR 

(Total cost=728.19, Total emission=598.58) 

Hour MT (kW) FC (kW) PV (kW) WT (kW) Battery 

(kW) 

UG (kW) 

1 25.82 9.82 0 4.6 23.4 -6.68 

2 26.05 12.71 0 3.69 15.37 -3.06 

3 23.8 16.84 0 4.69 12.38 -2.95 

4 26.18 22.71 0 4.04 14.34 -10.31 

5 24.84 26.97 0 4.11 12.09 -4.48 

6 27.1 25.7 0 2.7 22.4 -9.99 

7 22.97 24.08 0 3.94 20.22 5.46 

8 22.89 28.88 0 3.45 20.14 -5.17 

9 26.85 28.41 3.15 4.02 15.75 -8 

10 23.95 27.74 6.02 6.28 23.58 -15.6 

11 25.03 25.08 7.86 18.26 21.62 -26.78 

12 25.56 14.73 10.86 21.37 23.07 -25.41 

13 26.44 23.46 18.39 8.32 14.07 -23.2 

14 25.56 20.68 19.27 5.02 12.47 -15.25 

15 24.32 16.73 5.72 4.11 14.04 5.25 

16 27.42 11.09 3.47 3.59 18 8.4 

17 22.99 3.06 2 3.97 19.71 22.04 

18 22.82 3 0 3.88 17 28.88 

19 22.81 3.29 0 3.09 21.79 30 

20 26.06 3 0 3.77 15.98 26.78 

21 27.06 5.02 0 3.62 17.07 30 

22 25.22 5.14 0 3.12 16.11 30 

23 25.28 3 0 3.24 18.12 19.33 

24 23.85 3 0 2.67 23.54 8.48 

Hourly simulation results of this scenario without and 

with considering effects of DRP are expressed in 

Tables11 and 12, respectively. Based on these results, DR 

has reduced the cost and emission by 26% and 19%, 

respectively. 
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Fig. 10. Comparing results of all scenarios 

A comparision between results of all scenarios is depicted 

in Fig. 10. It can be seen that during the first and second 

scenarions, single objective optimization has reached to 

optimum value of cost and emission. However, during the 

third scenarion, although the cost and emission functions 

conflict each other, MOGSO has resulted in the optimum 

cost and emission simoultanously. According to Fig. 10 

MOGSO is more successful in reducing total cost. 

Conclusions 

Recently, DGs are utilized near consumers to supply their 

demand within a microgrid. However, the generated 

power by DGs and load has stochastic nature and are 

uncertain. As a result, this paper tried to tackle this 

problem by using flexible power sources such as DRP 

and battery. The microgrid EMS problem has been solved 

with the aim of minimizing the total cost and emission in 

the presence and absence of DRP. For better analysis, 

simulations have been implemented in three different 

scenarios while considering microgrid management as a 

single-objective and multi-objective problem. GSO 

algorithm has been utilized to solve single-objective 

problems while MOGSO along with FDM technique are 

employed to simultaneous minimization of cost and 

emission. Simulation results approve that GSO and 

MOGSO are successful in decreasing the total cost and 

emission. Reducing the cost results in charging the 

battery during cheap hours to discharge it in expensive 

periods. To reach lower cost value, the cheapest DG, here 

FC, works at its maximum capacity and the generation 

power by WT is more than PV as a result of being 

cheaper. When minimizing emission, the microgrid buys 

power from UG since it is free of emission. Utilizing 

DRP as a flexible energy source not only covers 

uncertainties of wind and solar power but also minimizes 

cost and emission by reducing utilization of expensive 

DGs. Totally, solving the microgrid EMS problem using 

the proposed MOGSO has caused more reduction in 

operation cost in comparison to the emission. 
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