Seifi, E., Rajaei, A., Zare, S., Nabinejad, A., Nobahar, S. (2018). A Multi-port High Step-up DC/DC Converter for Hybrid Renewable Energy Application. Journal of Operation and Automation in Power Engineering, 6(2), 193-207. doi: 10.22098/joape.2006.3753.1295

E. Seifi; A. Rajaei; S. Zare; A. Nabinejad; S. Nobahar. "A Multi-port High Step-up DC/DC Converter for Hybrid Renewable Energy Application". Journal of Operation and Automation in Power Engineering, 6, 2, 2018, 193-207. doi: 10.22098/joape.2006.3753.1295

Seifi, E., Rajaei, A., Zare, S., Nabinejad, A., Nobahar, S. (2018). 'A Multi-port High Step-up DC/DC Converter for Hybrid Renewable Energy Application', Journal of Operation and Automation in Power Engineering, 6(2), pp. 193-207. doi: 10.22098/joape.2006.3753.1295

Seifi, E., Rajaei, A., Zare, S., Nabinejad, A., Nobahar, S. A Multi-port High Step-up DC/DC Converter for Hybrid Renewable Energy Application. Journal of Operation and Automation in Power Engineering, 2018; 6(2): 193-207. doi: 10.22098/joape.2006.3753.1295

A Multi-port High Step-up DC/DC Converter for Hybrid Renewable Energy Application

^{1}Department of Electrical and Electronics, Roshdiyeh Higher Education Institute, Tabriz, Iran

^{2}Electrical and Electronics Department, Shiraz University of Technology, Shiraz, Iran

^{3}Department of Electrical Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran

Abstract

This paper presents a novel multi-port DC/DC converter which is suitable to be used as the interface of hybrid renewable energy systems. The converter contains three unidirectional power flow ports which two of them are input ports and are connected to two independent energy sources while the third one is the output port that feeds a standalone load. Furthermore, the proposed converter contains a bidirectional power flow port to charge/discharge an energy storage system (battery). In addition to multi-port structure, high boost value of voltage gain is the other merit of the converter. Hybrid system is composed of fuel cell (FC), photovoltaic (PV) panels and a battery pack. Different operating states are discussed, and a control system based on decoupling networks is presented. The control system is able to seek and extract maximum power of PV panel, adjust generated power of FC, and handle charging and discharging modes of battery. In order to control operating modes of the proposed converter, a power management method is also presented. By the way, small signal model is presented for the converter.The bode diagram has been plotted from the small signal model. Then the controller it was designed from the bode diagram. The results of simulation by the PI controller are presented. Also, the simulation results by P&O algorithm for the converter has been evaluated. Several Simulation and experimental tests have been carried out to evaluate the analysis and feasibility of the aforementioned system. The results verify well performance of the converter and confirm the simulations and theoretical results.

[1][1] W. D. Kellogg, M. H. Nehrir, G. Venkataramanan, and V. Gerez, “Generaton unit sizing and cost analysis for stand-alone wind, photovoltaic, and hybrid Wind/PV systems,” IEEE Trans. Energy Conv., vol. 13, no. 1, pp. 70-74, 1998.

[2]S.H. Hosseini, A Farakhor, S. Khadem Haghighian, “Novel algorithm of MPPT for PV array based on variable step Newton-Raphson method through model predictive control,” Proc. 13^{th} Int. Conf. Control Autom. Syst., S. Korea, 2013, pp. 1577- 1582.

[3]F. Nakanishi, T. Ikegami, K. Ebihara, S. Kuriyama, and Y. Shiota, “Modeling and operation of a 10kW photovoltaic power generator using equivalent electric circuit method,” Proc. 28^{th }IEEE PV Syst. Conf., 2000, pp. 1703 -1706.

[4]E. Babaei, and T. Ahmadzadeh. "A new structure of buck-boost z-source converter based on ZH converter." J. Oper. Autom. Power Eng., vol. 4, no. 2, pp. 117-131, 2016.

[5]I. Laird, H. Lovatt, N. Savvides, D. Lu, and V.G Agelidis, “Comparative study of maximum power point tracking algorithms for thermoelectric generators,” Proc. 8^{th} Australasian Uni. Power Eng. Conf., pp.1-6, 2008.

[6]K. Jin, X. Ruan, M. Yang, and M. Xu, “A hybrid fuel cell power system,” IEEE Trans. Power Deliv., vol. 56, no. 4, pp. 1212-1222, Apr. 2009.

[7]N. Kato, K. Kurozumi, N. Susuld, and S. Muroyama, “Hybrid power-supply system composed of photovoltaic and fuel-cell systems,” Proc. Int. Telecom. Energy Conf., 2001, pp. 631-635.

[8]J.W. Jung, “Modeling and control of fuel cell based distributedgeneration systems” PhD Thesis, The Ohio StateUniversity, 2005.

[9]S. Jalilzadeh, A. Rohani, H. Kord, and M. Nemati, “Optimal design of a hybrid Photovoltaic/FC energy system for stand-alone application,” Proc. IEEE , L’Aquila, Italy, 2009, pp. 1036–1041.

[10]E. Babaei, M. Baruji, H. Mashinchi Maheri, and A. Abbasnezhad, "A developed structure of step-up DC/DC converter by using coupled inductor and active clamped circuit." J. Oper. Autom. Power Eng., vol. 5, no.1, pp. 31-42, 2017.

[11]C. Wang and M. H. Nehrir, “Power management of a stand-alone Wind/Photovoltaic/Fuel cell energy system,” IEEE Trans. Energy Conv., vol. 23, no. 3, pp. 957-967, Sept. 2008.

[12]O. C. Onara, M. Uzunoglu, and M. S. Alam, “Modeling, control and simulation of an autonomous wind turbine/photovoltaic/fuel cell/ultra capacitor hybrid power system,” J. Power Sour., vol. 185, no. 2, pp. 1273-1283, Apr. 2008.

[13]F. Z. Peng, H. Li, G. J. Su, and J. S. Lawler, “A new ZVS bidirectional dc-dc converter for fuel cell and battery application,” IEEE Trans. Power Electron., vol. 19, no. 1, pp. 54-65, Jan. 2004.

[14]R. R. Ahrabi, H. Ardi, M. Elmi and A. Ajami, "A novel step-up multiinput DC–DC converter for hybrid electric vehicles application," IEEE Trans. Power Electron., vol. 32, no. 5, pp. 3549-3561, May 2017.

[15]F. Kardan, R. Alizadeh and M. R. Banaei, "A new three input DC/DC converter for hybrid PV/FC/Battery applications," IEEE J. Emerging Sel. Top. Power Electron., vol. 5, no. 4, pp. 1771-1778, Dec. 2017.

[16]F. Nejabatkhah, S. Danyali, S.H. Hosseini, M. Sabahi, S.M. Niapour , “Modeling and control of a new three-input DC–DC boost converter for hybrid PV/FC/Battery power system,” IEEE Trans. Power Electron., vol. 27, no. 5, pp. 2309- 2324, 2012.

[17] S. Danyali, S.H. Hosseini, G.B. Gharehpetian, “New extendable single-stage multi-input DC–DC/AC boost converter,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 775-788, 2014.

[18] H. Krishnaswami and N. Mohan, “Three-port series-resonant DC-DC converter to interface renewable energy sources with bidirectional load and energy storage ports,” IEEE Trans. Power Electron., vol. 24, no. 10, pp. 2289-2297, 2010.

[19]K. Gummi, M. Ferdowsi, “Double-input DC–DC power electronic converters for electric-drive vehicles topology exploration and synthesis using a single-pole triple-throw switch,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 617-623, Feb. 2010.

[20]R.-J. Wai, S.-J. Jhung, J.-J. Liaw and Y.-R. Chang. “Intelligent optimal energy management system for hybrid power sources including fuel cell and battery,” IEEE Trans. Power Electron., vol. 28, no. 7, pp. 3231-3244, 2013.

[21]S. Kelouwani, N. Henao, K. Agbossou, Y. Dube, and L. Boulon. “Twolayer energy-management architecture for a fuel cell hev using road trip information,” Vehicular Technology, IEEE Trans., vol. 61, no. 9, pp. 3851-3864, Nov. 2012.

[22]R. J. Wai, C. Y. Lin, J. J. Liaw, Y. R. Chang, “Newly designed ZVS multi-input converter,” IEEE Trans. Ind. Electron., vol. 58, no. 2, pp. 555-566, Feb. 2011.

[23]R. J. Wai, B. H. Chen, “High-efficiency dual-input interleaved DC–DC converter for reversible power sources,” IEEE Trans. Power Electron., vol. 29, no. 6, pp. 2903-2921. Jun, 2014.

[24]S. H. Hosseini, S. Danyali, F. Nejabatkhah, “Multi-input DC boost converter for grid connected hybridPV/FC/Battery power system,” Proc. IEEE Elec. Ppwer Energy Conf., Canada, 2010, pp. 1-6.

[25]L. J. Chien, C. C. Chen, J. F. Chen, Y. P. Hsieh, “Novel three-port converter with high-voltage gain,” IEEE Trans. Power Electron., vol. 29, no. 9, pp. 4693-4703, Sep. 2014.

[1]J.W. Jung, “Modeling and control of fuel cell based distributedgeneration systems” PhD Thesis, The Ohio StateUniversity, 2005.

[2]S. Jalilzadeh, A. Rohani, H. Kord, and M. Nemati, “Optimal design of a hybrid Photovoltaic/FC energy system for stand-alone application,” Proc. IEEE , L’Aquila, Italy, 2009, pp. 1036–1041.

[3]E. Babaei, M. Baruji, H. Mashinchi Maheri, and A. Abbasnezhad, "A developed structure of step-up DC/DC converter by using coupled inductor and active clamped circuit." J. Oper. Autom. Power Eng., vol. 5, no.1, pp. 31-42, 2017.

[4]C. Wang and M. H. Nehrir, “Power management of a stand-alone Wind/Photovoltaic/Fuel cell energy system,” IEEE Trans. Energy Conv., vol. 23, no. 3, pp. 957-967, Sept. 2008.

[5]O. C. Onara, M. Uzunoglu, and M. S. Alam, “Modeling, control and simulation of an autonomous wind turbine/photovoltaic/fuel cell/ultra capacitor hybrid power system,” J. Power Sour., vol. 185, no. 2, pp. 1273-1283, Apr. 2008.

[6]F. Z. Peng, H. Li, G. J. Su, and J. S. Lawler, “A new ZVS bidirectional dc-dc converter for fuel cell and battery application,” IEEE Trans. Power Electron., vol. 19, no. 1, pp. 54-65, Jan. 2004.

[7]R. R. Ahrabi, H. Ardi, M. Elmi and A. Ajami, "A novel step-up multiinput DC–DC converter for hybrid electric vehicles application," IEEE Trans. Power Electron., vol. 32, no. 5, pp. 3549-3561, May 2017.

[8]F. Kardan, R. Alizadeh and M. R. Banaei, "A new three input DC/DC converter for hybrid PV/FC/Battery applications," IEEE J. Emerging Sel. Top. Power Electron., vol. 5, no. 4, pp. 1771-1778, Dec. 2017.

[9]F. Nejabatkhah, S. Danyali, S.H. Hosseini, M. Sabahi, S.M. Niapour , “Modeling and control of a new three-input DC–DC boost converter for hybrid PV/FC/Battery power system,” IEEE Trans. Power Electron., vol. 27, no. 5, pp. 2309- 2324, 2012.

[10] S. Danyali, S.H. Hosseini, G.B. Gharehpetian, “New extendable single-stage multi-input DC–DC/AC boost converter,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 775-788, 2014.

[11] H. Krishnaswami and N. Mohan, “Three-port series-resonant DC-DC converter to interface renewable energy sources with bidirectional load and energy storage ports,” IEEE Trans. Power Electron., vol. 24, no. 10, pp. 2289-2297, 2010.

[12]K. Gummi, M. Ferdowsi, “Double-input DC–DC power electronic converters for electric-drive vehicles topology exploration and synthesis using a single-pole triple-throw switch,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 617-623, Feb. 2010.

[13]R.-J. Wai, S.-J. Jhung, J.-J. Liaw and Y.-R. Chang. “Intelligent optimal energy management system for hybrid power sources including fuel cell and battery,” IEEE Trans. Power Electron., vol. 28, no. 7, pp. 3231-3244, 2013.

[14]S. Kelouwani, N. Henao, K. Agbossou, Y. Dube, and L. Boulon. “Twolayer energy-management architecture for a fuel cell hev using road trip information,” Vehicular Technology, IEEE Trans., vol. 61, no. 9, pp. 3851-3864, Nov. 2012.

[15]R. J. Wai, C. Y. Lin, J. J. Liaw, Y. R. Chang, “Newly designed ZVS multi-input converter,” IEEE Trans. Ind. Electron., vol. 58, no. 2, pp. 555-566, Feb. 2011.

[16]R. J. Wai, B. H. Chen, “High-efficiency dual-input interleaved DC–DC converter for reversible power sources,” IEEE Trans. Power Electron., vol. 29, no. 6, pp. 2903-2921. Jun, 2014.

[17]S. H. Hosseini, S. Danyali, F. Nejabatkhah, “Multi-input DC boost converter for grid connected hybridPV/FC/Battery power system,” Proc. IEEE Elec. Ppwer Energy Conf., Canada, 2010, pp. 1-6.

[18]L. J. Chien, C. C. Chen, J. F. Chen, Y. P. Hsieh, “Novel three-port converter with high-voltage gain,” IEEE Trans. Power Electron., vol. 29, no. 9, pp. 4693-4703, Sep. 2014.