Multi-Area State Estimation Based on PMU Measurements in Distribution Networks

Document Type: Research paper

Authors

Faculty of Electrical Engineering, Sahand University of Technology, Tabriz, Iran.

Abstract

State estimation in the energy management center of active distribution networks has attracted many attentions. Considering an increase in complexity and real-time management of active distribution networks and knowing the network information at each time instant are necessary. This article presents a two-step multi-area state estimation method in balanced active distribution networks. The proposed method is based on the location of PMU measurements of the network. The network is divided into several sub-areas about PMUs in the first step. A local sate estimation is implemented in each sub-area. The estimated values of the first step along with real measurements are used as measurements for second step estimation. The measurements are located in each sub-area using these values based on the ellipse area method, and the best location of measurements is extracted. Therefore, a second step state estimation including integrated state estimation of the whole network is performed by using the measurements obtained and located from the first step. The estimation results of the first step are used in the second step which improve the estimation accuracy. Simulations are performed on a standard IEEE 69-bus network to validate the proposed method.

Keywords

Main Subjects


[1]    M. Pau, P. A. Pegoraro and S. Sulis, “Efficient branch-current-based distribution system state estimation including synchronized measurements”, IEEE Trans. Instrum. Meas., vol. 62, pp. 2419-2429, 2013.

[2]    A. Ranković, B. M. Maksimović and A. T. Sarić, “A three-phase state estimation in active distribution networks”, Int. J. Electr. Power Energy Systems., vol. 54, pp. 154-162, 2014.

[3]    M. E. Baran and A. W. Kelley, “A branch-current-based state estimation method for distribution systems”, IEEE Trans. Power Syst., vol. 10, pp. 483-491, 1995.

[4]    C. Muscas, M. Pau, P. A. Pegoraro and S. Sulis, “Uncertainty of voltage profile in PMU-based distribution system state estimation”, IEEE Trans. Instrum. Meas., vol. 65, pp. 988-998, 2016.

[5]    A. Primadianto and C. N. Lu, “A review on distribution system state estimation”, IEEE Trans. Power Syst., vol. 32, pp. 3875-3883, 2017.

[6]    S. Chakrabarti, E. Kyriakides and M. Albu, “Uncertainty in power system state variables obtained through synchronized measurements”, IEEE Trans. Instrum. Meas., vol. 58, pp. 2452-2458, 2009.

[7]    S. Chakrabarti, E. Kyriakides, G. Ledwich and A. Ghosh, “Inclusion of PMU current phasor measurements in a power system state estimator”, IET Gener. Transm. Distrib., vol. 4, pp. 1104-1115, 2010.

[8]    M. Lixia, A. Benigni, A. Flammini, C. Muscas, F. Ponci and A. Monti, “A software-only PTP synchronization for power system state estimation with PMUs”, IEEE Trans. Instrum. Meas., vol. 61, pp. 1476-1485, 2012.

[9]    K. Mazlumi, M. Mohammad Gholiha, R. Abbasi and F. Mazlumi, “Presenting a new method based on branch placement for optimal placement of phasor measurement units”, J. Oper. Autom. Power Eng., vol. 2, pp. 32-39, 2014.

[10]    F. Aminifar, M. Shahidehpour, M. Fotuhi-Firuzabad and S. Kamalinia, “Power system dynamic state estimation with synchronized phasor measurements”, IEEE Trans. Instrum. Meas., vol. 63, pp. 352-363, 2014.

[11]    I. Roytelman and S. Shahidehpour, “State estimation for electric power distribution systems in quasi real-time conditions”, IEEE Trans. Power Delivery, vol. 8, pp. 2009-2015, 1993.

[12]    H. Wang and N. N. Schulz, “A revised branch current-based distribution system state estimation algorithm and meter placement impact”, IEEE Trans. Power Syst., vol. 19, pp. 207-213, 2004.

[13]    M. E. Baran and A. W. Kelley, “State estimation for real-time monitoring of distribution systems”, IEEE Trans. Power Syst., vol. 9, pp. 1601-1609, 1994.

[14]    C. Muscas, M. Pau, P. A. Pegoraro, S. Sulis, F. Ponci and A. Monti, “Two-step procedures for wide-area distribution system state estimation”, in Instrum. Meas. Technol. Conf. (I2MTC) Proceedings, 2014 IEEE Int., pp. 1517-1522, 2014.

[15]    Y. Ju, W. Wu, F. Ge, K. Ma, Y. Lin and L. Ye, “Fast decoupled state estimation for distribution networks considering branch ampere measurements”, IEEE Trans. Smart Grid, vol. 9, pp. 6338-6347, 2018.

[16]    H. Wang, W. Zhang and Y. Liu, “A robust measurement placement method for active distribution system state estimation considering network reconfiguration”, IEEE Trans. Smart Grid, vol. 9, pp. 2108-2117, 2018.

[17]    L. Zhao and A. Abur, “Multi area state estimation using synchronized phasor measurements”, IEEE Trans. Power Syst., vol. 20, pp. 611-617, 2005.

[18]    A. J. Conejo, S. de la Torre and M. Canas, “An optimization approach to multiarea state estimation”, IEEE Trans. Power Syst., vol. 22, pp. 213-221, 2007.

[19]    A. Gómez-Expósito, A. de la Villa Jaén, C. Gómez-Quiles, P. Rousseaux and T. Van Cutsem, “A taxonomy of multi-area state estimation methods”, Electr. Power Syst. Res., vol. 81, pp. 1060-1069, 2011.

[20]    N. Nusrat, M. Irving and G. Taylor, “Development of distributed state estimation methods to enable smart distribution management systems”, Ind. Electron. (ISIE), 2011 IEEE In.l Symp., pp. 1691-1696, 2011.

[21]    L. D. A. Garcia and S. Grenard, “Scalable distribution state estimation approach for distribution management systems”, In Innovative Smart Grid Technol. (ISGT Europe), 2011 2nd IEEE PES Int. Conf. Exhibition, pp. 1-6, 2011.

[22]    C. Muscas, M. Pau, P. A. Pegoraro, S. Sulis, F. Ponci and A. Monti, “Multiarea distribution system state estimation”, IEEE Trans. Instrum. Meas., vol. 64, pp. 1140-1148, 2015.

[23]    C. Muscas, P. A. Pegoraro, S. Sulis, M. Pau, F. Ponci and A. Monti, “Fast multi-area approach for distribution system state estimation”, Instrum. Meas. Technol. Conf. Proc. (I2MTC), 2016 IEEE Inter., pp. 1-6, 2016.

[24]    P. Ren and A. Abur, “Avoiding divergence in multi-area state estimation”, IEEE Trans. Power Syst.,vol. 34, pp. 3178-3187,2019.

[25]    B. Hayes and M. Prodanovic, “State estimation techniques for electric power distribution systems”, Modell. Symp., 2014 Eur., pp. 303-308, 2014.

[26]    S. M. Mahaei and M. R. Navayi, “Power system state estimation with weighted linear least square”, Int. J. Electr. Compu. Eng., vol. 4, pp. 169-178, 2014.

[27]    A. Rabiee, “An Advanced State Estimation Method Using Virtual Meters”, J. Oper. Autom. Power Eng., vol. 5, pp. 11-18, 2017.

[28]    K. Amiri and R. Kazemzadeh, “Two-stage estimation method presentation to improve electrical distribution networks state estimation”, J. Nonlinear Syst. Electr. Eng., vol. 5, pp. 22-38, 2019.

[29]    O. Eghbali, K. Amiri and R. Kazemzadeh, “A Study on Types of Measurements in Distribution System State Estimation”, 2019 5th Conf. Knowl. Based Eng. Innovation , pp. 223-229, 2019.

[30]    P. A. Pegoraro, J. Tang, J. Liu, F. Ponci, A. Monti and C. Muscas, “PMU and smart metering deployment for state estimation in active distribution grids”, Energy Conf. Exhibition, 2012 IEEE Int., pp. 873-878, 2012.

[31]    F. Ahmad, A. Rasool, E. Ozsoy, R. Sekar, A. Sabanovic and M. Elitaş, “Distribution system state estimation-A step towards smart grid”, Renewable Sustainable Energy Rev., vol. 81, pp. 2659-2671, 2018.

[32]    A. Alimardani, F. Therrien, D. Atanackovic, J. Jatskevich and E. Vaahedi, “Distribution system state estimation based on nonsynchronized smart meters”, IEEE Trans. Smart Grid, vol. 6, pp. 2919-2928, 2015.

[33]    W. M. Lin and J. H. Teng, “State estimation for distribution systems with zero-injection constraints”, Power Ind. Comput. Appl. Conf., pp. 523-529, 1995.

[34]    R. Singh, B. C. Pal and R. B. Vinter, “Measurement placement in distribution system state estimation”, IEEE Trans. Power Syst., vol. 24, pp. 668-675, 2009.

[35]  D. M. Falcao, F. F. Wu and L. Murphy, “Parallel and distributed state estimation”, IEEE Trans. Power Sys., vol. 10, pp. 724-730, 1995.