Moazen, M., Kazemzadeh, R., Azizian, M. (2020). A model-based PDPC method for control of BDFRG under unbalanced grid voltage condition using power compensation strategy. Journal of Operation and Automation in Power Engineering, 8(2), 128-140. doi: 10.22098/joape.2020.5286.1392

M. Moazen; R. Kazemzadeh; M. R. Azizian. "A model-based PDPC method for control of BDFRG under unbalanced grid voltage condition using power compensation strategy". Journal of Operation and Automation in Power Engineering, 8, 2, 2020, 128-140. doi: 10.22098/joape.2020.5286.1392

Moazen, M., Kazemzadeh, R., Azizian, M. (2020). 'A model-based PDPC method for control of BDFRG under unbalanced grid voltage condition using power compensation strategy', Journal of Operation and Automation in Power Engineering, 8(2), pp. 128-140. doi: 10.22098/joape.2020.5286.1392

Moazen, M., Kazemzadeh, R., Azizian, M. A model-based PDPC method for control of BDFRG under unbalanced grid voltage condition using power compensation strategy. Journal of Operation and Automation in Power Engineering, 2020; 8(2): 128-140. doi: 10.22098/joape.2020.5286.1392

A model-based PDPC method for control of BDFRG under unbalanced grid voltage condition using power compensation strategy

^{1}Department of Electrical Engineering, University of Bonab, Bonab, Iran

^{2}Department of Electrical Power Engineering, Sahand University of Technology, Tabriz, Iran

Receive Date: 01 October 2018,
Revise Date: 19 July 2019,
Accept Date: 26 August 2019

Abstract

Brushless doubly fed reluctance generator (BDFRG) has been recently suggested as a wind generator. Different control methods are presented in literature for the BDFRG, but there is a gap on control under unbalanced grid voltage condition (UGVC). This paper presents a predictive direct power control (PDPC) method for the BDFRG under UGVC. The proposed PDPC method is based on power compensation strategy, and aims to balance the BDFRG current (strategy I), and to remove the electrical torque pulsation (strategy II). The control objectives are defined using the BDFRG positive sequence (PS) and negative sequence (NS) equations. Then, the active power and reactive power variations are predicted to compute the required voltage for the BDFRG control winding. Finally, the BDFRG is controlled by applying the calculated voltage to the control winding. Simulink toolbox of MATLAB software is used to simulate the system model. Both the proposed PDPC method (with strategies I & II) and the original PDPC method (without a compensation strategy) are applied to control of the BDFRG under UGVC, and the results are compared. The results show the good performance of the proposed PDPC method.

[1] A. B. Attya, S. Ademi, M. JovanoviÄ‡ and O. Anaya-Lara, “Frequency support using doubly fed induction and reluctance wind turbine generators”, Int. J. Electr. Power Energy Syst., vol. 101,pp. 403-14, 2018.

[2] M. JovanoviÄ‡ and S. Ademi, “Simulation and practical studies of doubly-fed reluctance drives operation and control”, in Proc. of the 11th Int. Symp. Diagn. Electr. Mach., Power Electron. Drives,pp. 346-52, 2017.

[3] V.T. Phan, T. Logenthiran, W. L. Woo, D. Atkinson and V. Pickert, “Analysis and compensation of voltage unbalance of a DFIG using predictive rotor current control”, Int. J. Electr. Power Energy Syst., vol. 75,pp. 8-18, 2016.

[4] M. Darabian, A. Jalilvand and R. Noroozian, “Combined use of sensitivity analysis and hybrid Wavelet-PSO-ANFIS to improve dynamic performance of DFIG-based wind generation”, J. Oper. Autom. Power Eng., vol. 2,no. 1, pp. 60-73, 2014.

[5] J. Poza, E. Oyarbide, D. Roye and M. Rodriguez, “Unified reference frame dq model of the brushless doubly fed machine”, IET Electr. Power App., vol. 153,no. 5, pp. 726-734, 2006.

[6] R. E. Betz and M. G. Jovanovic, “Theoretical analysis of control properties for the brushless doubly fed reluctance machine”, IEEE Trans. Energy Convers., vol. 17,no. 3, pp. 332-329, 2002.

[7] M. G. Jovanovic, R. E. Betz and Y. Jian, “The use of doubly fed reluctance machines for large pumps and wind turbines”, IEEE Trans. Ind. Appl., vol. 38,no. 6, pp. 1508-1516, 2002.

[8] H. Chaal and M. Jovanovic, “Power control of brushless doubly-fed reluctance drive and generator systems”, Renew. Energy, vol. 37,no. 1, pp. 419-425, 2012.

[9] R. S. Rebeiro and A. M. Knight, “Two-converters-based synchronous operation and control of a brushless doubly fed reluctance machine”, IEEE Trans. Magn., vol. 54,no. 11, pp. 1-5, 2018.

[10] W. Fengxiang, Z. Fengge and X. Longya, “Parameter and performance comparison of doubly fed brushless machine with cage and reluctance rotors”, IEEE Trans. Ind. Appl., vol. 38,no. 5, pp. 1237-1243, 2002.

[11] M. Moazen, R. Kazemzadeh and M. R. Azizian, “Power control of BDFRG variable-speed wind turbine system covering all wind velocity ranges”, Int. J. Renew. Energy Res., vol. 6,no. 2, pp. 477-486, 2016.

[12] M. G. Jovanovic, R. E. Betz, Y. Jian and E. Levi, “Aspects of vector and scalar control of brushless doubly fed reluctance machines”, in Proc. 4th IEEE Int. Conf. Power Electron. Drive Syst.,pp. 461-467, 2001.

[13] M. Hassan and M. Jovanovic, “Improved scalar control using flexible DC-Link voltage in brushless doubly-fed reluctance machines for wind applications”, in Proc. 2nd Int. Symp. Environ. Friendly Energies Appl.,pp. 482-487, 2012.

[14] M. G. Mousa, S. Allam and E. M. Rashad, “Sensored and sensorless scalar-control strategy of a wind-driven BDFRG for maximum wind-power extraction”, J. Control Decis., pp. 1-19, 2017.

[15] M. Jovanovic, “Sensored and sensorless speed control methods for brushless doubly fed reluctance motors”, IET Electr. Power Appl., vol. 3, pp. 503-513, 2009.

[16] S. Ademi and M. Jovanovic, “Vector control strategies for brushless doubly-fed reluctance wind generators”, in Proc. 2nd Int. Symp.Environment Friendly Energies Appl, Newcastle upon Tyne, pp. 44-49,2012.

[17] S. Ademi, M. G. Jovanovic and M. Hasan, “Control of brushless doubly-fed reluctance generators for wind energy conversion systems”, IEEE Trans. Energy Convers., vol. 30,no. 2, pp. 596-604, 2015.

[18] M. G. Mousa, S. Allam and E. M. Rashad, “Maximum power extraction under different vector-control schemes and grid-synchronization strategy of a wind-driven brushless doubly-fed reluctance generator”, ISA Trans., vol. 72,pp. 287-97, 2018.

[19] X. Longya, L. Zhen and K. Eel-Hwan, “Field-orientation control of a doubly excited brushless reluctance machine”, IEEE Trans. Ind. Appl., vol. 34,no. 1, pp. 148-155, 1998.

[20] S. Ademi, M. G. Jovanovic, H. Chaal and W. Cao, “A new sensorless speed control scheme for doubly fed reluctance generators”, IEEE Trans. Energy Convers., vol. 31,no. 3, pp. 993-1001, 2016.

[21] M. Jovanovic, J. Yu and E. Levi, “Direct torque control of brushless doubly fed reluctance machines”, Electr. Power Compon. Syst., vol. 32, pp. 941-958, 2004.

[22] H. Chaal and M. Jovanovic, “Practical implementation of sensorless torque and reactive power control of doubly fed machines”, IEEE Trans. Ind. Electron., vol. 59,no. 6, pp. 2645-2653, 2012.

[23] M. JovanoviÄ‡ and H. Chaal, “Wind power applications of doubly-fed reluctance generators with parameter-free hysteresis control”, Energy Convers. Manage., vol. 134,pp. 399-409, 2017.

[24] M. Moazen, R. Kazemzadeh and M. R. Azizian, “Model-based predictive direct power control of brushless doubly fed reluctance generator for wind power applications”, Alexandria Eng. J., vol. 55,no. 3, pp. 2497-2507, 2016.

[25] D. Gay, R. E. Betz, D. Dorrell and A. Knight, “Brushless doubly fed reluctance machine testing for parameter determination”, IEEE Trans. Ind. Appl., vol. 55,no. 3, pp. 2611-2619, 2019.

[26] K. Kiran and S. Das, “Implementation of reactive power-based MRAS for sensorless speed control of brushless doubly fed reluctance motor drive”, IET Power Electron., vol. 11,no. 1, pp. 192-201, 2018.

[27] M. Kumar and S. Das, “Model reference adaptive system based sensorless speed estimation of brushless doubly-fed reluctance generator for wind power application”, IET Power Electron., vol. 11,no. 14, pp. 2355-2366, 2018.

[28] M. Kumar, S. Das and K. Kiran, “Sensorless speed estimation of brushless doubly-fed reluctance generator using active power based MRAS”, IEEE Trans. Power Electron., vol. 34, pp. 7878-7886, 2018.

[29] T. K. A. Brekken and N. Mohan, “Control of a doubly fed induction wind generator under unbalanced grid voltage conditions”, IEEE Trans. Energy Convers., vol. 22,no. 1, pp. 129-135, 2007.

[30] R. Cardenas, R. Pena, S. Alepuz and G. Asher, “Overview of control systems for the operation of DFIGs in wind energy applications”, IEEE Trans. Ind. Electron., vol. 60,no. 7, pp. 2776-2798, 2013.

[31] M. Moazen, R. Kazemzadeh and M. R. Azizian, “Mathematical modeling and analysis of brushless doubly fed reluctance generator under unbalanced grid voltage condition”, Int. J. Electr. Power Energy Syst., vol. 83,pp. 547-559, 2016.

[32] Y. Wang, L. Xu and B. W. Williams, “Compensation of network voltage unbalance using doubly fed induction generator-based wind farms”, IET Renew. Power Gener., vol. 3,no. 1, pp. 12-22, 2009.

[33] A. Nafar, G. R. Arab Markadeh and A. Elahi, “Low voltage ride through enhancement based on improved direct power control of dfig under unbalanced and harmonically distorted grid voltage”, J. Oper. Autom. Power Eng., vol. 4,no. 1, pp. 16-28, 2016.

[34] H. Jiefeng, Z. Jianguo and D. G. Dorrell, “Model-predictive direct power control of doubly-fed induction generators under unbalanced grid voltage conditions in wind energy applications”, IET Renew. Power Gener., vol. 8,no. 6, pp. 687-695, 2014.

[35] J. Hu, J. Zhu and D. G. Dorrell, “Predictive direct power control of doubly fed induction generators under unbalanced grid voltage conditions for power quality improvement”, IEEE Trans. Sustain. Energy, vol. 6,no. 3, pp. 943-950, 2015.

[36] R. E. Betz and M. G. Jovanovic, “Introduction to the space vector modeling of the brushless doubly fed reluctance machine”, Electr. Power Compon. Syst., vol. 31,no. 8, pp. 729-755, 2003.

[37] R. Betz and M. Jovanovic. “Introduction to brushless doubly fed reluctance machines-the basic equations”, Tech. Rep., Dept. Elec. Energy Conversion, Aalborg Univ., Denmark, 1998.

[38] A. Iqbal, A. Lamine and I. Ashraf, “Matlab/simulink model of space vector PWM for three-phase voltage source inverter”, in Proc. 41st Int. Universities Power Eng. Conf., Newcastle-upon-Tyne, pp. 1096-1100,2006.

[39] M. G. Jovanovic, Y. Jian and E. Levi, “Encoderless direct torque controller for limited speed range applications of brushless doubly fed reluctance motors”, IEEE Trans. Ind. Appl., vol. 42,no. 3, pp. 712-22, 2006.

[40] A. Bouafia, J. P. Gaubert and F. Krim, “Predictive direct power control of three-phase pulsewidth modulation (PWM) rectifier using space-vector modulation (SVM)”, IEEE Trans. Power Electron., vol. 25,no. 1, pp. 228-236, 2010.

[41] H. Nian, Y. Song, P. Zhou and Y. He, “Improved direct power control of a wind turbine driven doubly fed induction generator during transient grid voltage unbalance”, IEEE Trans. Energy Convers., vol. 26,no. 3, pp. 976-86, 2011.