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Abstract- This paper deals with day-ahead programming under uncertainties in microgrids (MGs). A two-stage 

stochastic programming with the fixed recourse approach was adopted. The studied MG was considered in the grid-

connected mode with the capability of power exchange with the upstream network. Uncertain electricity market prices, 

unpredictable load demand, and uncertain wind and solar power values, due to intrinsically stochastic weather 

changes, were also considered in the proposed method. To cope with uncertainties, the scenario-based stochastic 

approach was utilized, and the reduction of the environmental emissions generated by the power resources was 

regarded as the second objective, besides the cost of units’ operation. The ɛ-constraint method was employed to deal 

with the presented multi-objective optimization problem, and the simulations were performed on a sample MG with one 

month of real data. The results demonstrated the applicability and effectiveness of the proposed techniques in real-

world conditions. 
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1. INTRODUCTION 

This Microgrid (MG) is defined as a group of 

interconnected loads and distributed energy resources 

within clearly defined electrical boundaries which acts 

as a single controllable entity with respect to the grid. 

An MG can connect and disconnect from the main grid 

to enable it to operate in both grid-connected and 

islanded modes [1]. As an efficient alternative to fossil 

fuels, renewable energy sources have received 

considerable attention due to their sustainable, cost-

effective, and environmentally friendly characteristics 

[2]. The application of renewable energy sources is 

increasing in MGs worldwide. 

Based on their control-ability, the power resources in 

MGs are divided into two main categories [3], [4]: 

1) Controllable/dispatchable resources, as fuel cells 

(FCs), and diesel generators. 

2) Uncontrollable/non-dispatchable resources, 

including photovoltaic (PV) cells, and wind 

turbines (WTs). 

 
 

In recent years, scheduling of MG with the high 

popularity of renewable resources has been a major 

topic in research, motivating extensive studies. In these 

studies, besides the economic issues, environmental 

aspects are considered as a new objective function in 

MG scheduling [5]. 

1.1. The literature review 

The MGs scheduling problem is further complicated by 

the uncertainty involved in the demanded load and price 

of electricity in addition to the uncertainty of electrical 

power generated by the wind and solar power plants due 

to intrinsically inevitable weather changes. Three 

approaches are available to deal with these 

uncertainties: deterministic, probabilistic, and stochastic 

approaches. In the deterministic approach, the uncertain 

variables are considered equal to the expected/predicted 

values. In the other two approaches, the effect of 

uncertain variables is considered. In the stochastic 

approach, decision-making is performed under 

uncertainty and the corresponding output values are 

determined, while the probabilistic approach yields the 

probability density function (PDF) of outputs. 

There are numerous studies regarding the optimal 

operation of MGs. In Ref. [6], a multi-objective 

optimization process based on modified particle swarm 

optimization was proposed to minimize total operation 

cost and environmental pollutant emissions (EPEs). 

Moreover, Ref. [7] presents an algorithm for energy 

management systems (EMSs) based on multi-layer ant 
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colony optimization. Also, an economic scheduling 

approach was described in Ref. [8] for isolated MGs. In 

Ref. [9], an optimal planning method was proposed with 

the goal of minimizing the life cycle cost while taking 

into account EPEs. Furthermore, in Ref. [10], a multi-

objective deterministic optimization approach based on 

the non-dominated sorting firefly algorithm was realized 

to optimize the economic and environmental objective 

functions. The intelligent EMSs introduced in references 

[11] and [12] to minimize the operation cost of MGs are 

based on resources’ power generation forecasts 

considering weather condition changes, provided via the 

neural network-based forecast approach. Due to the 

stochastic nature of physical phenomena, even the most 

extreme models cannot accurately predict weather 

conditions. Therefore, the forecasted output power of 

WTs [13] and PV cells have large uncertainties. In the 

mentioned references, the impacts of uncertainty were 

not detailed and taken into account. In these studies, the 

problem was considered as a deterministic one, while 

deterministic approaches are not able to present reliable 

solutions, and uncertain factors are inevitable in the 

decision-making process.  

The two-point estimate method is an approach for 

probabilistic uncertainty analysis in power systems [14]. 

In Ref. [15], a probabilistic approach based on the 2m 

point estimate method was utilized for the energy 

management of an MG, and the PDF of expected 

operating costs was extracted. 

There are studies considering the stochastic nature of 

the MG energy management problem. For instance, Ref. 

[4] proposed a fuzzy multi-objective approach to 

minimize the total economic cost and network loss of 

MG. Also, this study entered the cost of converting 

EPEs, generated by resources, in the cost function. This 

approach was also adopted in Ref. [16] to consider 

emissions in the cost function. In Ref. [17], a stochastic 

framework was proposed with possible scenarios 

generated based on the forecast error of uncertain 

variables for the economic dispatch problem. In 

addition, Ref. [18] developed an improved multi-

objective teaching-learning-based optimization method 

for cost and pollutant emission minimization. These 

goals were also realized in Ref. [19], where a fuzzy-

based model was utilized. In Ref. [20], a new PV model 

was proposed, besides a scenario-based stochastic 

framework. Furthermore, Ref. [21] developed a 

stochastic framework based on scenarios for the coupled 

active and reactive market in smart distribution 

networks. Moreover, references [22] and [23] applied 

the scenario-based stochastic programming method for 

optimal scheduling realization in an MG. However, in 

these references, to cope with uncertainties, the problem 

was solved individually for each possible realization of 

the scenarios. Then, the weighted average of the 

respective results of scenarios was introduced as the 

stochastic problem’s final solution. This approach, 

called the scenario result aggregation (SRA) method in 

this paper, failed to present realistic and reliable 

solutions. The non-reality of this approach is 

demonstrated in Case Study 2 in this paper and 

discussed in detail. 

As previously noted, in some early studies in the field 

of MG energy management, the cost of generation only 

was selected as the optimization objective. Today, with 

increasing environmental concerns and efforts to reduce 

the EPEs, caused by thermal power plants, and the 

expansion of renewable resources, environmental 

aspects should be into account in the energy 

management problem of MGs. In addition to the 

mentioned references, in Ref. [24] and Ref. [25], 

emission limitation was considered in EMS 

optimization problem constraints to consider 

environmental aspects. Also, penalty cost factors were 

utilized in Ref. [26] to consider the effect of EPEs in the 

optimization process. In Ref. [27], an augmented ɛ-

constraint method was utilized to consider the 

environmental aspects besides the units’ operation cost 

in a smart distribution system. However, the advantage 

of this method over the ɛ-constraint method is mainly 

observed for multi-objective problems [28]. It is also 

notable that multi-objective evolutionary algorithms 

(EAs) that use non-dominated sorting and sharing have 

been criticized mainly for their computational 

complexity, their non-elitism approach, and the need for 

specifying a sharing parameter [29]. Therefore, in the 

present paper, to optimize the two mentioned objective 

functions in MGs, the ɛ-constraint method was selected 

to avoid more unnecessary computations and directly 

obtain the accurate Pareto front. The taxonomy of the 

most relevant studies regarding the MG energy 

management is presented in Table 1. 

1.2. The paper contribution 

The intrinsically intermittent nature of uncontrollable 

resources, besides uncertain load demanded power and 

upstream network electricity price changes considered 

in the present paper further complicates the day-ahead 

programming problem of MGs. In this paper, the 

scenario-based form of the two-stage stochastic 

programming approach with fixed recourse [30] was 

utilized to appropriately formulate the problem. The 

scenario-based framework developed in this paper was 
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based on historical real recorded data on uncertain 

variables. Day-ahead forecasted values of uncertain 

variables and the respective deviations from the forecast 

values were not required in this approach. Also, in this 

paper, a scenario reduction process was utilized to 

eliminate low-effective scenarios and decrease the 

computation burden. 

In this paper, besides the optimal operation cost of 

power resources, the reduction of pollutant emission 

gasses by thermal resources in MGs was realized. To 

solve the multi-objective optimization problem, the ɛ-

constraint approach was adopted, and the respective 

Pareto fronts were extracted. 

1.3. The paper organization  

The paper is organized in the following sections: 

Section 2 discusses the methods utilized in this paper, 

including two-stage stochastic problem formulations, 

coping with uncertainties and possible scenarios, 

conversion formulations of wind speed and solar 

irradiance, respectively, to the WT and PV output 

power, and dealing with multi-objective optimization 

problem via the ɛ-constraint method. Section 3 presents 

the simulation results in different case studies. The non-

applicability of the deterministic approach and SRA 

versus the reliable results of the stochastic approach is 

illustrated in Case Studies 1, 2, and 3, respectively. The 

effectiveness of the strategy proposed in this paper is 

demonstrated in Case Study 4 on a test MG network 

with one month of real historical recorded data, 

considering all uncertainties and power resources’ 

constraints, by implementing the day-ahead 

programming results in the next day, with really 

occurring values. Finally, conclusions are presented in 

Section 4. 

2. METHODS 

2.1. Two-stage stochastic programming with fixed 

recourse 

The classical two-stage stochastic linear programming 

formulation with fixed recourse is as follows [30]: 

min min{ ( ) ( )}
T T

Z c x E q y


       (1) 

S.T.: 

     

 0, 0.

Ax d

T x Wy m

x y

  





 

 

 (2) 

Where, x  and y  are the first-stage and second-stage 

decision vectors, respectively. In this formulations, c 

and d  are known vectors, and A  and W  are known 

matrixes. The recourse matrix, W, is fixed and does not  

Table 1. The taxonomy of MG energy management studies 
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D
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ilistic 

S
to

ch
astic 

The approach for modeling the 
environmental impacts 

[6] ✓   

Multi-objective: Non-dominated sorting 

based on particle swarm optimization 

(PSO) algorithm 

[8] ✓   — 

[10] ✓   
Multi-objective: Non-dominated sorting 

based on firefly algorithm 

[15]  ✓  — 

[4]   ✓ 
Single-objective: Conversion/removal 

cost of pollutants 

[16]   ✓ 
Single-objective: Conversion/removal 

cost of pollutants 

[17]   ✓ — 

[18]   ✓ 

Multi-objective: Non-dominated sorting 

based on teaching-learning-based 

algorithm 

[19]   ✓ 
Multi-objective: Fuzzy-based 

combination of objective functions 

[20]   ✓ — 

[21]   ✓ 
Single-objective: Penalty cost of 

pollutant emissions 

[22]   ✓ — 

[23]   ✓ — 

The 

present 
paper 

  ✓ Multi-objective: ɛ-constraint method 

[24] 

Real-time EMS 

Single-objective: Pollutant acceptable 

limits as the problem constraint 

[25] 
Single-objective: Pollutant acceptable 

limits as the problem constraint 

change, while ω changes as a random event (ω ∈ Ω). 

Therefore, it is called fixed recourse formulation. 

However, q(ω) , T(ω) , and m(ω)  are matrixes that 

change with changes in ω. In (1), the recourse term Eξ[] 

is the expectation of uncertain terms in the objective 

function. 

The purpose is the optimal operation scheduling of a 

grid-connected MG under uncertainties. The studied 

MG is connected to the upstream network and could 

exchange power. It contains a micro-turbine (MT), FC, 

battery energy storage system (BESS), and load 

demand. Load demand, which is called residual load 

(RL), and the upstream network electricity power price 

are subject to a high degree of uncertainty. The cost 

function (1) is as the following: 

 min{ ( ) ( )}

MT MT FC FC BESS BESS

N N

Z b P b P b P

E b P


 

   
 (3) 

Where, bX  is considered as the bid of power received 

from X resource, and N denotes the upstream network. 

The first-stage decision variables, x  vector, contain 

MT, FC, and BESS output powers. The time of making 
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the first-stage decisions is day-ahead. In the second-

stage decision variable, y(ω) , which contains PN(ω) , 

the MG’s power exchange value with the upstream 

network will be determined. The time of making the 

second-stage decisions is the next day, when the value 

of bN is determined by the upstream network. 

Assume random vector ξ  with finite support. The 

equivalent extensive form Ref. [30] of the two-stage 

stochastic programming with fixed recourse formulation 

is a linear problem as the following: 

( ) ( ) ( )

1

min ( )
S

n

T k k T k

k

c x q y



 
 
 

  (4) 

S.T.: 

( ) ( ) ( )

( )

,

0, 0, , 1,..., .

k k k

k

S

Ax d

T x Wy m k

x y k k n



  

   

 (5) 

Where, k  is the scenario counter index, and ns  is the 

total number of scenarios. The scheduling period in this 

paper is divided into hourly intervals. For each time 

period, the MG single objective optimization problem in 

the form of a linear programming problem considering 

constraints is as follows: 

( ) ( ) ( )

1

min ( )
S

n

k k k

MT MT FC FC BESS BESS N N

k

b P b P b P b P


    (6) 

S.T.: 

( ) ( )

min max

min max

min max

min ( ) max

,

, , 1, ..., .

k k

MT FC BESS N RL

MT MT MT

FC FC FC

BESS BESS BESS

k

N N N S

P P P P P k

P P P

P P P

P P P

P P P k k n

    

 

 

 

   

 (7) 

In these formulations, only the cost of units’ 

operation and cost of power exchange with the upstream 

network are considered. The power balance constraint, 

the first line of Eq. (7), ensures that, for each scenario, 

the sum of total generated power by units, the power of 

BESS, and power exchanged with the upstream network 

are equal to the load demanded power. Other constraints 

preserve the sources’ limitations. The problem can be 

solved by a linear programming problem-solver. It is 

assumed that the total output power of WT and PV units 

are received by the MG. Therefore, PWT and PPV are not 

the decision variables in the cost function. These are 

considered in problem constraints. In Eq. (7), PRL  that 

was introduced as the RL power is as follows:  
( ) ( ) ( ) ( )k k k k

RL LD WT PV
P P P P    (8) 

PWT and PPV are dependent on weather condition, and 

respectively change as wind speed and solar irradiance 

change. As a result, PWT and PPV are uncertain variables, 

besides PLD and bN, in the problem. 

2.2. Scenarios 

Historical recorded data for uncertain variables, 

including the upstream network electricity price, load 

demand, wind speed and solar irradiance in the same 

hours of previous days can be considered as possible 

scenarios. Considering real values for one month, 31 

probable values are obtained per variable every hour. 

Therefore, there will be 314  scenarios with four 

uncertain variables in each hour of the day. An effective 

scenario reduction process is necessary to decrease the 

number of scenarios and, consequently, reduce the 

calculation burden. The scenario reduction process is 

described below: 

The distance between two scenarios ξ
(i)

 and ξ
(j)

 is 

defined as 2-norm: 

( ) ( ) ( ) ( )
( , )

i j i j
d       (9) 

Where, i  and j  are the scenario numbers. Then, the 

scenarios reduction algorithm [31] is implemented 

iteratively until the desired numbers of scenarios 

remain. 

1. Remove scenario ξ
(r)

 satisfying: 

 

( ) ( ) ( )

( ) ( ) ( )

(1,2,... ) (1,2,... ),

.min ( , )

min . min ( , )
S S

r i r

i r

k k j

k n j n j k

d

d

  

  



  



 

2. ( 1)
S S

n n   

3. 
* *( ) ( ) ( )r r r    , where 

*( )r is the nearest 

scenario to 
( )r  

4. Repeat until the desired numbers of scenarios 

remain.  

2.3. Wind speed to WT output power conversion 

The output power of WT, while wind speed is v, can be 

calculated as follows [32]: 

max

max

0                       

      

                          

cut in cut out

cut in

WT cut in rated

rated cut in

rated cut out

v v or v v

v v
P P v v v

v v

P v v v

 









 


  



 

 
 
 
 
 
  

 (10) 

Where, vcut−in is the cut-in speed of the WT (m/s), 

vcut−out is the cut-out speed of the WT (m/s), vrated is 
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the rated speed of the WT (m/s)  and Pmax  is the 

maximum output power of the WT (kW). 

2.4. Irradiance to PV cell output power conversion 

The PV equivalent circuit output current, I , can be 

expressed as a function of the module output voltage V, 

as follows [33]: 

1

2

( ) 1 exp 1
sc

oc

V V
I V I C I

C V

 
    



    
   
    

 (11) 

Where, 
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ref

A

C I I V C V

V V
C

Ln I I

I S S T S S I

V T R I

T T T

T T S





    






     

       

  

  

 (12) 

Where, α  is the current change temperature 

coefficient at reference insolation (A/C°) , β  is the 

voltage change temperature coefficient at reference 

insolation (V/C°), I is the module current (A), Imp is the 

module maximum power current (A), Isc is the module 

short-circuit current (A) , S  is the total tilt insolation 

(kWh/m2), Sref is the reference insolation (kWh/m2), 

Rs is the module series resistance(Ohms), T is the cell 

temperature (C°) , TA  is the ambient temperature (C°) , 

Tref is the reference temperature (C°), ∆T is the change 

in cell temperature (C°), V is the module voltage (V), 

Vmp is the module maximum power voltage (V) and Voc 

is the module open-circuit voltage (V). 

The output power of PV could be calculated as PPV =

V · I . 

2.5. Multi-objective optimization with ɛ-constraint 

method 

Scalarization method, the ɛ-constraint [34], was utilized 

to solve the multi-objective problem, and get the 

respective Pareto front. The multi-objective 

optimization problem Eq. (13) is substituted by ɛ-

constraint problem, as Eq. (14): 

 
1

min  ( ), ..., ( )
p

f x f x  (13) 

min  ( )

S.T.:

( ) , 1, ..., ; .

j

k k

f x

f x k p k j  

 (14) 

Where, ɛ ϵ ℝp. 

Table 2. Power resources details 

 Bid ($/kWh) Min power (kW) Max power (kW) 

MT 0.5 0 30 

FC 0.3 0 30 

BESS 0.4 0 30 

Network 0.45 -30 30 

One objective of this paper is to minimize the cost of 

power generation units and exchange power with the 

upstream network. The other objective is the 

minimization of the value of EPEs generated by the 

power resources. The second objective is considered as 

a constraint based on Eq. (14). For each hour of the day, 

by changing the value of ɛ, the Pareto front is obtained. 

3. SIMULATIONS 

In this section, the simulation results regarding the 

proposed methods are presented. For this purpose, five 

case studies, including deterministic, SRA, stochastic 

recourse, and realistic cases are presented in detail. 

3.1. Case study 1: Deterministic case 

Suppose that an MG including MT, FC, and BESS is 

connected to the upstream network. The details on the 

MG are presented in Table 2. Power exchange with the 

upstream network is implementable. This set must 

supply part of the load demand known as PRL, equal to 

66 kW. To minimize the total cost of supplying RL for 

an hour, each resource’s output power and PN must be 

calculated. 

The problem is formulated as: 

min (0.5 0.3 0.4 0.45 )
MT FC BESS N

P P P P    

S.T.: 

,

0 30,

0 30,

0 30,

30 30.

MT FC BESS N RL

MT

FC

BESS

N

P P P P P

P

P

P

P

   

 

 

 

  

 

This is a linear programming problem. The relevant 

solutions for PMT, PFC, PBESS, and PN are 0, 30, 30, and 

6 kW, respectively, and the total cost of supplying RL is 

$23.7. 

This solution was predictable, considering the bid of 

power resources. FC provides the most cost-effective 

power for meeting the needs, up to 30 kW; then, BESS 

and network power are more economic, respectively. 

Supposing that the bid of exchanging power with 
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network changes from 0.45  to 0.55 $/kW , then MT 

power generation will be more economic than the 

network power as well. If it changes to 0.35 $/kW , 

receiving power from the network would be more 

economic than BESS. This makes some changes in the 

coefficient of PN in the cost function. On the other hand, 

if the load demand changes, the cost function does not 

change, but the problem constraints will be altered and, 

as a result, the problem’s solution will be different. 

Therefore, consideration of uncertainties in real-world 

conditions needs the application of an efficient 

approach. 

3.2. Case study 2: SRA case 

Suppose that, in the previous case study, there were two 

and three possible values for bN and PRL, respectively, 

as depicted in the scenario tree in Fig. 1. Values and 

corresponding probabilities are presented in Table 3. 

The probability for each scenario, π(k) , is equal to 

π(bN) · π(PRL). 

The impacts of scenarios must be considered in the 

problem. In the first case, as a deterministic problem, 

selecting the uncertain variables equal to their average 

values makes bN  and PRL  equal to 0.45 $/kW , and 

66 kW, respectively. These are the values calculated in 

the deterministic case. It is clear that this approach does 

not present acceptable and realistic results. The other 

approach, that seems to be logical, is independently 

solving the problem for each scenario, and the 

aggregation of the results considering the probability of 

each scenario. This approach is referred as SRA in this 

paper. The results of this approach are presented in 

Table 4. In this table, the weighted average is the 

combination of scenario results, considering their 

relevant probabilities. 

 
Fig.1. The scenario tree for case study 2 

Table 3. The value of uncertain variables and scenario probabilities 

bN($/kWh), π(bN) PRL(kW), π(PRL) k, π(k) 

0.2, 0.75 

40, 0.3 1, 0.225 

52.5, 0.4 2, 0.3 

110, 0.3 3, 0.225 

1.2, 0.25 

40, 0.3 4, 0.075 

52.5, 0.4 5, 0.1 

110, 0.3 6, 0.075 

Table 4. Problem solution for each scenario 

𝑘 1 2 3 4 5 6 
Weighted 

average 
𝜋(𝑘) 0.225 0.3 0.225 0.075 0.1 0.075 

PMT (kW) 0 0 20 10 22.5 30 9.75 

PFC (kW) 10 22.5 30 30 30 30 23.25 

PBESS (kW) 0 0 30 30 30 30 14.25 

PN (kW) 30 30 30 -30 -30 20 18.75 

Total cost ($) 9 12.75 37 -10 -3.75 60 17.55 

It seems that, for economically supplying RL, power 

resources should be set as the right-hand side column of 

Table 4. Applying the SRA, if Scenario 3 occurs with a 

probability of 0.225 , MG encounters a $21.3  cost in 

reality and lack of 44 kW  power to supply RL. If 

Scenario 5 occurs with a probability of 0.1 , MG 

encounters a $40.05 cost and 13.5 kW extra power than 

RL power. Similar states will happen for other 

scenarios. Therefore, this approach is not suitable for 

this problem, and a method is needed to encounter with 

the problem scenarios, so that executing the obtained 

results in the real world must not lead to surplus power 

or power shortage. 

3.3. Stochastic recourse case 

This case study is similar to Case 2, but the stochastic 

recourse model described in Section 2.1 is utilized to 

obtain a correct and reliable solution. As described 

earlier, the first-stage decision variables are PMT , PFC , 

and PBESS, and the second-stage decision variable is PN. 

The results are given in Table 5.  

The stochastic recourse model considers all scenarios 

simultaneously for making decisions. Based on Table 5, 

the decided values for PMT , PFC , and PBESS , the first-

stage variables are fixed while scenario realization 

changes. It must be noted that the decision on PN  is 

postponed until the time bN  is determined in the next 

day. By deciding to fix the first-stage variables as the 

above values, this model accepts a  $67  cost with a 

probability of 0.075 for decreasing the cost in other sce- 

Table 5. Problem solution with two-stage stochastic programming 

by recourse model 

𝑘 1 2 3 4 5 6 

𝜋(𝑘) 0.225 0.3 0.225 0.075 0.1 0.075 

PMT (kW) 20 20 20 20 20 20 

PFC (kW) 30 30 30 30 30 30 

PBESS (kW) 30 30 30 30 30 30 

PN (kW) -30 -27.5 30 -30 -27.5 30 

Total cost ($) 25 25.5 37 -5 -2 67 

Expected total 

cost ($) 
26.05 
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-narios. This approach is in contrast with the SRA case 

in which scenarios were considered individually. The 

stochastic approach has no extra power or lack of power 

for supplying RL, which is the correct solution. The 

expected total cost from the stochastic approach is equal 

to 𝛑(𝐤) · 𝐓𝐡𝐞 𝐭𝐨𝐭𝐚𝐥 𝐜𝐨𝐬𝐭(𝐤) is $𝟐𝟔. 𝟎𝟓. 

3.4. Case study 4: Real case 

A typical grid-connected MG as Fig. 2, was employed 

to study a real case with real input data in this case 

study. 

In Fig. 2, the MT is considered as the EPE source. 

CO and NOx emission values, 1.38  and 0.51 (lb/

MWh), respectively, are negligible in comparison with 

the CO2 value, which is equal to 1765 (lb/MWh) for a 

typical MT [35]. The details of power resources in MG 

are provided in Table 6. 

It is assumed that the battery bank is being fully 

charged during network electricity low-price periods by 

the MG’s control center. The effect of keeping it ready 

to use is considered in the bid of BESS. 

Parameters of the WT and PV installed in MG are 

given in Tables 7 and 8, respectively. Also, the ambient 

temperature, TA, was considered to be as Table 9. 

 

646 645 632 633 634

650

692 675611 684

652

671

680
 

MT

FC

BESS

Load demand
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Fig. 2. The single-line diagram of the studied MG 

Table 6. The details of MG in case study 4 

Source Bid ($/kWh) 
Emission 

(lb/kWh) 

Min 

power 
(kW) 

Max 

power 
(kW) 

MT 0.5 1.765 0 30 

FC 0.3 — 0 30 

BESS 0.4 — 0 30 

Utility network Uncertain — -30 30 

𝑃𝐿𝐷 (Uncertain) — — 0 115 

𝑃𝑊𝑇 (Uncertain) — — 0 20 

𝑃𝑃𝑉 (Uncertain) — — 0 10 

Table 7. Parameters of the WT, aerodyn SCD 8.0/168 [36] 

Rated power/𝑃𝑚𝑎𝑥 
(kW) 

Cut-in 
speed 

(m/s) 

Cut-out 
speed 

(m/s) 

Rated 

speed (m/s) 

Hub height 

(m) 

8000 3.5 25 11.5 100 

Table 8. Parameters of the solar module, Siemens SM 50/H [37] 

Electrical Parameter Value 

Rated  power, 𝑃𝑚𝑎𝑥(𝑊) 50 

Rated current , 𝐼𝑚𝑝(𝐴) 3.15 

Rated voltage, 𝑉𝑚𝑝(𝑉) 15.9 

Short circuit current,𝐼𝑠𝑐(𝐴) 3.35 

Open circuit voltage, 𝑉𝑜𝑐(𝑉) 19.8 

Temp. coefficient of the short-circuit current, (Change 

of ISC with temperature), α( 𝑚𝐴/°𝐶) 
+1.2 

Temp. coefficient of the open-circuit voltage, (Change 

of Voc with temperature), β(𝑉/ 𝐶°) 
-0.077 

Reference Irradiance, 𝐸𝑟𝑒𝑓(𝑊/𝑚2) 1000 

Reference temperature, 𝑇𝑟𝑒𝑓(𝐶°) 25 

Ambient temperature, 𝑇𝐴(𝐶°) 20 

Module Series Resistance𝑅𝑠(𝑂ℎ𝑚𝑠) 0.39383 

Table 9. 𝐓𝐀 value in the next day 

Hour 7 8 9 10 11 12 13 14 15 16 17 18 

𝑇𝐴(C°) 11 12 14 18 20 21 23 27 27 22 19 15 

The real input data used in this case study include the 

network load demand extracted from Ref. [38], the wind 

speed in 99 m  above the ground extracted from Ref. 

[39], and the solar irradiance extracted from Ref. [40]. 

The recorded data are extracted for all 24 hours of the 

day from August 1 2005 to August 31 2005. 

Furthermore, the network electricity price data are 

extracted from Ref. [41], from August 1 2018 to August 

31 2018, for all 24 hours of the day. In this case study, 

the 24-hour period of the 1st day of September was 

considered as the programming period. The real data in 

this day are also extracted from the mentioned 

databases. 

To coordinate the WT output power values with the 

intervals presented in Table 6, the calculated wind 

powers are divide by 400, and the number of parallel 

solar modules is considered to be 270#. Furthermore, 

the total load demand power is divided by 100000. For 

electricity price, all values are divide by 0.1, (
€

MW
/

0.1) → ($/kW). 

The number of possible scenarios for each uncertain 

variable is reduced to 10, as described in Section 2.2, 

and the results are illustrated in Figures 3 to 6. 
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Fig. 3. Load demand scenario values 

 
Fig. 4. Wind speed scenario values 

 
Fig. 5. Solar irradiance scenario values 

 
Fig. 6. The upstream network electricity price scenario values 
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Fig. 7. The comparison between day-ahead scenarios and real 

values happened in the next day 

Wind speed values after the scenario reduction 

process are converted into WT output power, as 

described in Section 2.3. In addition, solar irradiance 

scenario values are converted into PV output power, as 

described in Section 2.4. These values, besides the 

upstream network electricity price, and load demand 

scenarios are compared with real values occurring in the 

next day, with the results depicted in Fig. 7.  

The resultant solution of the presented scheduling 

approach, without EPE consideration, is summarized in 

Table 10. In this table, the positive PN denotes receiving 

power from the upstream network, and the negative sign 

denotes sending power from the MG to it.  

Table 10. The solution results of case study 4, without pollutant 

emission consideration 

h 

Day-Ahead Decisions Results 
The Next Day Decision 

and Results 

PMT 

(kW) 

PFC 

(kW) 

PBESS 

(kW) 

Anticipated 

Total Cost ($) 
PN (kW) 

Total Cost 

($) 

1 0 30 30 21.9836 -18.82 11.0078 

2 0 30 30 20.6323 -23.34 8.9678 

3 0 30 30 20.0934 -24.22 8.9983 

4 0 30 30 19.5744 -3.17 19.4450 

5 0 30 30 20.1152 -12.94 14.6489 

6 16.79 30 30 21.5046 -3.43 27.6639 

7 16.56 30 30 22.5230 10.91 35.1765 

8 16.18 30 30 25.7528 13.06 36.8127 

9 18.20 30 30 27.4073 17.04 40.9085 

10 21.85 30 30 28.6192 18.18 42.7664 

11 26.85 30 30 29.4409 9.41 40.0028 

12 30 30 30 30.7759 7.28 40.1781 

13 4.78 30 30 29.3538 28.38 38.6435 

14 3.49 30 30 28.3202 29.94 38.0305 

15 3.28 30 30 28.5796 16.99 31.2848 

16 3.15 30 30 29.0005 10.59 27.9946 

17 21.92 30 30 28.8319 -15.83 23.0254 

18 25.3 30 30 28.4808 -16.31 23.2408 

19 25.79 30 30 28.0526 -21.32 19.5257 

20 30 30 30 26.0581 -18.76 23.4189 

21 27.86 30 30 25.3859 -13.33 27.1494 

22 25.98 30 30 26.4399 -2.11 32.8581 

23 30 30 30 27.9944 -5.84 33.0698 

24 0 30 30 25.2465 23.78 31.4227 

Sum    620.1668  676.2409 

 
Fig. 8. The resultant Pareto front with multi-objective 

optimization for 9 a.m. 

 
Fig. 9. The resultant Pareto front with multi-objective 

optimization for 12 a.m. 



Journal of Operation and Automation in Power Engineering, Vol. 8, No. 2, Aug. 2020                                                               149 

 
Fig. 10. The resultant Pareto front with multi-objective 

optimization for 9 p.m. 

Table 11. The solution results of case study 4, with maximum 

pollutant emission weight of 𝟐𝟓 𝐥𝐛 

h 

Day-Ahead Decisions Results 
The Next Day Decision 

and Results 

PMT(kW) PFC(kW) PBESS(kW) 
Anticipated 

Total Cost ($) 
PN (kW) 

Total Cost 

($) 

1 0 30 30 21.9836 -18.82 11.3978 

2 0 30 30 20.6323 -23.34 9.3579 

3 0 30 30 20.0934 -24.22 9.3883 

4 0 30 30 19.5744 -3.17 19.8350 

5 0 30 30 20.1152 -12.94 15.0389 

6 14.16 30 30 21.5084 -0.80 28.4202 

7 14.16 30 30 22.6604 13.31 36.0169 

8 14.16 30 30 25.9215 15.08 37.7415 

9 14.16 30 30 27.7083 21.08 42.1955 

10 14.16 30 30 28.9545 25.87 44.2509 

11 14.16 30 30 29.8470 22.098 41.9257 

12 14.16 30 30 30.8923 23.12 42.0974 

13 4.78 30 30 29.3538 28.38 39.1529 

14 3.49 30 30 28.3202 29.94 38.5078 

15 3.28 30 30 28.5796 16.99 31.7567 

16 3.15 30 30 29.0005 10.59 28.4634 

17 14.16 30 30 29.1727 -8.07 24.2699 

18 14.16 30 30 29.5597 -5.17 25.5221 

19 14.16 30 30 29.5851 -9.69 22.2922 

20 14.16 30 30 28.0665 -2.92 26.8637 

21 14.16 30 30 26.9313 0.36 29.0373 

22 14.16 30 30 27.5586 9.71 34.0323 

23 14.16 30 30 28.5363 9.99 33.8407 

24 0 30 30 25.2465 23.78 31.8127 

Sum    629.8021  703.2177 

If the air pollutant emission of MT is considered as 

Table 6, the resultant Pareto fronts for sample hours are 

illustrated in figures 8-10. By taking the maximum 

pollutant emission weight equal to 25 lb, the scheduling 

results are presented in Table 11. As expected, it is 

observed that considering a limitation for EPEs 

increased the total cost of operation. 

4. CONCLUSIONS 

In this paper, a day-ahead two-stage stochastic multi-

objective framework was proposed to reduce EPEs, 

besides the cost of units’ operation in grid-connected 

MGs. This was realized considering four uncertainty 

sources: uncertain load demand, wind speed, solar 

irradiance, and electricity price. The optimization 

process was implemented on a typical MG with real 

input data. The ɛ-constraint method was adopted to deal 

with the presented multi-objective optimization 

problem. The proposed approaches were validated as 

they were tested with real-world uncertain variables. 

The findings confirmed the applicability of the proposed 

approaches and the robustness of the results under vast 

uncertainties.  

In the deterministic case study, the optimal 

scheduling problem was studied in a simple MG. 

However, the other cases considered uncertainties. 

Then, six possible realizations were considered in the 

SRA case. The inefficiency of the SRA approach was 

demonstrated numerically, followed by a simple 

stochastic recourse case, simultaneously considering all 

possible realizations, in order to obtain realistic 

solutions. In the next case (the Real one), all 

uncertainties and limitations of resources were taken 

into account, and different problems with and without 

pollutant emission consideration were solved. The 

outline of the findings in different case studies is 

presented in Table 12. 

In Case Study 4, the proposed approach was validated 

using numerical simulations on real-world data 

collected for different variables. Based on the results 

depicted in Table 12, the error ((real total cost − the 

anticipated total cost)/real total cost) is equal to 8.3% 

and 10.4% with and without considering emission, 

respectively. It was observed that the proposed 

stochastic approach ensured the supply of the load 

demand by increasing the cost by only about 10% more 

than the anticipated values, satisfying all constraints. 

This additional cost is acceptable and reasonable while 

considering various uncertainties. 

Table 12. The review of results for different case studies 

Case study Deterministic SRA 
Stochastic 

recourse 
Real 

Test base 

A simple 

MG 

problem 

A simple MG 

problem 

A simple 

MG 

problem 

MG with one month real 

data 

Considered 

Uncertainty 
— ✓ ✓ ✓ 

Anticipated 

Total cost 

($) 

23.7 
Unacceptable 

results 
26.05 

Emission 

not 

considered 

Emission 

considered 

< 25 lb 

620.1668 629.8021 

Real Total 

cost ($) 
   676.2409 703.2177 

It is hoped that this research will contribute to the 

understanding of the way to meet the uncertainties in 

power system scheduling. The decision-making process 

under uncertainty proposed in this paper can be 

generalized to any number of uncertain variables and 

different types of power resources as well. The 
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limitation of this approach, however, is in the need for 

the recorded historical data, which are nowadays 

accessible for most areas of the world. 
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