Computationally Efficient Long Horizon Model Predictive Direct Current Control of DFIG Wind Turbines

A. Younesi, S. Tohidi *, M. R. Feyzi

Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran.

Abstract- Model predictive control (MPC) based methods are gaining more and more attention in power converters and electrical drives. Nevertheless, high computational burden of MPC is an obstacle for its application, especially when the prediction horizon increases extends. At the same time, increasing the prediction horizon leads to a superior response. In this paper, a long horizon MPC is proposed to control the power converter employed in the rotor side of DFIG. The main contribution of this paper is to propose a new comparative algorithm to speed up the optimization of the objective function. The proposed algorithm prevents examining all inputs in each prediction step to saving the computational time. Additionally, the proposed method along with the use of an incremental algorithm applies a sequence of weighting factors in the cost function over the prediction horizon to maximize the impact of primary samples on the optimal vector selection. Therefore, the proposed MPC strategy can predict a longer horizon with relatively low computational burden. Finally, results show that the proposed controller has the fastest dynamic response with lower overshoots compared to direct torque control and vector control method. In addition, the proposed strategy with more accurate response reduces the calculation time by up to 48% compared to classical MPC, for the prediction horizon of three.

Keyword: Model predictive control; computational effort; doubly fed induction generator, wind energy conversion system.

NOMENCLATURE

P_T
Wind turbine output power

ρ
Air density

A_r
Rotor swept area

r_b
Blade radius

ν_v
Wind speed

C_p
Power coefficient of rotor blades

β
Pitch angle

λ_T
Optimal tip speed ratio (TSR)

λ_i
Intermittent TSR

r_{gb}
Gearbox ratio

n_m
Generator speed

n_r
Turbine speed

$v_{s \text{dq}}, v_{r \text{dq}}$
Stator and rotor voltage vectors

$i_{s \text{dq}}, i_{r \text{dq}}$
Stator and rotor current vectors

$\psi_{s \text{dq}}, \psi_{r \text{dq}}$
Stator and rotor flux vectors

R_s, R_r
Stator and rotor winding resistance

ω_s
Synchronous speed

ω_r
Electrical rotor speed

ω_d
Slip angular speed

L_m, L_{ip}
Stator and rotor leakage inductances

L_m, L_r
Stator and rotor self-inductances

L_{m}
Magnetizing inductance

T_e
Electromagnetic torque

P_p
Number of pole pairs

L_p, Q_s
Stator active and reactive powers

$A(t)$
State matrix in continues-time mode

B
Input matrix in continues-time mode

T_s
Control sampling time

$\Phi(k)$
State matrix in discrete-time mode

Γ
Input matrix in discrete-time mode

I
Unity matrix

k
Sample

Received: 01 Dec. 2019
Revised: 29 Mar. 2020
Accepted: 12 Apr. 2020
*Corresponding author:
E-mail: stohidi@tabrizu.ac.ir (S. Tohidi)
Digital object identifier: 10.22098/joape.2020.6703.1499

Research Paper

© 2020 University of Mohaghegh Ardabili. All rights reserved.
Predicted stator and rotor voltage vectors
v_{sd}^p, v_{dq}^p

Predicted stator and rotor current vectors
i_{sd}^p, i_{dq}^p

Measured DC link voltage
$v_{dc}(k)$

Switch position combinations of RSC (d, q axis, respectively)
$s_d^p(k)$, $s_q^p(k)$

Cost function
J

Weighting factors
P_d, P_q

1. INTRODUCTION

Past decade has witnessed a significant breakthrough in renewable energy technologies. Among different renewable energy resources, wind power appears to be the most promising one which gets a lot of attention [1]. Due to the variable speed operation by fractionally rated back to back converter and power factor control, DFIG has been widely used for wind energy generation systems [2, 3].

Many classical control methods such as vector-based controller and field-oriented control technique have been proposed to control the DFIG [4-6]. Due to the cascade structure of proportional-integral (PI) controllers, such methods are sensitive to changes in the machine parameters and they have low dynamic response [7, 8]. However, simple structure and easy implementation made direct torque control (DTC) based methods popular in the electrical drive systems [9-11]. The main drawbacks of such controllers are the variable and high switching frequency, and high torque and current ripples [12-14]. To overcome such problems, it is proposed to use space vector modulation (SVM) alongside the DTC [15, 16]. In DTC-SVM, the switching frequency is fixed, but it requires the exact adjustment of the modulator's time. On the other hand, due to the use of PI controllers, its dynamics are lower than conventional DTC. Direct power control with fixed switching frequency has been proposed in [17]. An adaptive control based on reinforcement learning is presented in [18]. To improve the performance of DFIG a feed-forward transient current controller is presented [19]. Fuzzy-based controllers for a DFIG connected to the wind turbine are presented in [20, 21]. The sliding mode controller is proposed to control the DFIG power [22, 23]. Similar methods are presented for AC machines in [24-26]. All such control methods have improved the performance of DFIG, but a cascade structure is still required [27, 28].

Currently, due to many benefits such as ability to control nonlinear and multivariable systems and also easy handling of real-time constraints to the objective function, methods based on predictive control are proposed for power electronics and drive systems [29-31]. Model predictive control (MPC) uses the plant model to predict the future behaviour of the system. Then, a cost function is adopted to select the most suitable switching state of the converter [32]. In [33, 34], a multiscale MPC cascade strategy is proposed to remove the gap between planning and control. A model predictive direct power control is proposed in [35], where active and reactive powers are used as the main variables in the cost function. The main problem with MPC methods is the high computational burden for online optimization of the cost function, which makes its real-time implementation complicated. To overcome this problem, several techniques are proposed in the literature.

A generalized predictive control is used to reduce the computational time in [36]. In this technique, generalized predictive control based on the finite control set model predicts control for a single-phase N-level flying capacitor multi-level rectifier used for solid-state transformers. But, in this method, adding nonlinearities and constraints to the system is very difficult. Forgoing several predictable modes is a solution that [27] has suggested to reduce the computational time of MPC. In [31], a comprehensive review has been done on seven-level topologies. A review of MPC for modular multi-level converters is presented, where some calculations are prevented by the prediction horizon of one [37]. It is worth mentioning that using the fewer number of prediction horizon results in poor selection of the control variables. Predictive direct power control with power compensation is proposed in [38, 39]. There is no need to use the PI controller and the switching table. But, the prediction horizon is still one. A predictive direct power control using power compensation is proposed in [40]. Three vector-based model predictive control has improved the dynamic response and has lowered the torque fluctuations, but it still requires an accurate calculation of voltage vector time intervals [8] has proposed. In [41], a time-efficient MPC by using binary linear programming is presented, where the switching states of the converter are taken as control inputs. A genetic algorithm is used to find superior solutions for complex problems of the MPC in [42]. In all the methods, by reducing the number of control inputs, linearization or raising the sampling frequency solutions are suggested.

In the MPC based methods, constant weighting factors are used to make trade-off between the various goals in the objective function. The prediction steps are equally weighted in the cost function. Therefore, increasing the prediction horizon results in better selection of the optimal control signal sequence, but excessive increase
will make the implementation of the system impossible [43]. In this paper, a low complexity long horizon MPC strategy is proposed for DFIG in the wind energy conversion system. To reduce the computational time, in the proposed method, a comparative algorithm is used to avoid examining all the combinations of the inputs over the prediction horizon. Also, the proposed strategy applies a sequence of reduction weighting factors in the cost function to give a more accurate response with less number of the prediction horizon. The proposed approach is implemented in MATLAB/Simulink by using S-Function and is compared with the conventional MPC to evaluate its performance.

The paper is organized as follows: Section II presents the modelling of the system. The proposed MPC is explained in Section III. In Section IV, the evaluation of the proposed strategy is presented. Finally, conclusions are given in Section V.

2. SYSTEM DESCRIPTION

A. System Model

The DFIG model in the synchronous reference frame is expressed as follows [44]:

\[
\begin{align*}
\psi_{s,dq} &= R_s i_{s,dq} + \frac{d}{dt} \psi_{s,dq} + j \omega_s \psi_{s,dq} \quad (1) \\
\psi_{r,dq} &= R_r i_{r,dq} + \frac{d}{dt} \psi_{r,dq} + j \left(\omega_r - \omega_s \right) \psi_{r,dq} \quad (2) \\
\psi_{s,dq} &= \frac{\psi_{r,dq} - R_s i_{r,dq}}{j \omega_s} \quad (3)
\end{align*}
\]

The wind turbine output power could be calculated as

\[
P_T = P_w \times C_p = \frac{1}{2} \rho A_t v^3 \frac{C_p}{C_r} \quad (5)
\]

C_p represents the power coefficient of the rotor blades, which is in the range of 0.32 to 0.52 in practical wind turbines. C_p is defined below in the terms of turbine coefficients C_1 to C_7 [45].

\[
C_p = C_1 \left(\frac{C_2}{\lambda_r} - C_3 \beta - C_4 \beta^2 - C_5 \right) \frac{C_1}{\lambda_r} + C_7 \lambda_r \quad (6)
\]

B. Control Objectives

Since the wind speed is always changing, the DFIG output power must also be continuously adjusted to track its reference value. Generally, control goals in the DFIG are divided into two categories. The main goal is to track active and reactive power and the second goal is to limit the rotor current when the voltage drop occurs [46]. Therefore, it is suggested to use a predictive control-based method that can respond to both the problems in the best way. Also, MPC could easily handle the constraints of the system.

The DFIG stator active and reactive powers are obtained by

\[
P_s = \frac{3}{2} \left(v_{ds} i_{ds} + v_{qr} i_{qr} \right) \quad (7)
\]

\[
Q_s = -\frac{3}{2} \left(v_{qr} i_{ds} - v_{ds} i_{qr} \right) \quad (8)
\]

Then, the rotor currents are expressed in terms of stator active and reactive powers [47, 48], as:

\[
i_{ds} = -\left(\frac{2L_r}{3} \right) P_s - \left(\frac{R_r}{\omega L_m} \right) i_{qr} \quad (9)
\]

\[
i_{qr} = +\left(\frac{2L_r}{3} \right) Q_s + \left(\frac{R_r}{\omega L_m} \right) i_{ds} - \left(\frac{1}{\omega L_m} \right) v_{dr} \quad (10)
\]

3. MODEL PREDICTIVE CONTROL FOR DFIG

MPC utilizes the mathematical model of DFIG to predict the future behavior of rotor currents. Then, at each sampling period, the voltage vector which leads to the minimum objective function is selected, realizing the online optimization process. Fig. 1 shows the block diagram of the whole simulated system, which is discussed in detail in this section.

A. Discretized Model of DFIG

Calculation of predicted currents: Assuming stator and rotor current as the system states, the discrete-time model of DFIG is obtained by using Forward-Euler method as

\[
\begin{bmatrix}
\hat{i}^p_{ds}(k+1) \\
\hat{i}^p_{qr}(k+1) \\
\hat{i}^p_{rs}(k+1) \\
\hat{i}^p_{qs}(k+1)
\end{bmatrix} = \begin{bmatrix}
\Phi(k) & 1 \\
0 & 1 \\
0 & 0 \\
0 & 0
\end{bmatrix} \begin{bmatrix}
\hat{i}^p_{ds}(k) \\
\hat{i}^p_{qr}(k) \\
\hat{i}^p_{rs}(k) \\
\hat{i}^p_{qs}(k)
\end{bmatrix} + \begin{bmatrix}
\Gamma k \\
0 \\
0 \\
0
\end{bmatrix} \begin{bmatrix}
v_{ds}(k) \\
v_{qr}(k) \\
v_{rs}(k) \\
v_{qs}(k)
\end{bmatrix}
\]

(11)

where \(i^p_{ds}(k+1), i^p_{qr}(k+1), i^p_{rs}(k+1)\) and \(i^p_{qs}(k+1)\) are the predicted stator and rotor currents in dq-axes, respectively. \(v^p_{ds}(k)\) and \(v^p_{qr}(k)\) are the predicted rotor voltages, which are equal to
Calculation of reference currents: The d-axis reference rotor current is calculated dynamically from the stator active reference \(P_s^* \) (or electromagnetic torque reference \(T_e^* \)) and the q-axis reference rotor current is calculated from stator reactive power reference \(Q_s^* \).

\[
\begin{bmatrix}
 v_{dr}^*(k) \\
 v_{dq}^*(k)
\end{bmatrix}
= v_{abc}^*(k)
\begin{bmatrix}
 s_{dr}^*(k) \\
 s_{dq}^*(k)
\end{bmatrix}
\]

(12)

Therefore, as shown in Fig. 1, the d and q axes reference rotor current are calculated from the speed control loop and stator reactive power control loop, respectively.

Finally, to compute the future value of reference rotor currents, the first-order Lagrange extrapolation is used as:

\[
i_{dr}^*(k+1) = 2i_{dr}^*(k) - i_{dr}^*(k-1)
\]

(15)

B. MPC Problem Formulation

In the MPC based method, for each sample time (k) an optimal input vector sequence is obtained by optimization of a user-defined cost function. But, only the first control signal in the optimal sequence is applied to the system. According to the specified control, objectives set out in Sec. II, the cost function can be defined as:

\[
J_i = \sum_{j=1}^{N_p} P_d \left(i_{dr}^* - i_{dr}^* \right)^2 + P_q \left(i_{dq}^* - i_{dq}^* \right)^2
\]

(16)

where \(P_d \) and \(P_q \) are weighting factors. They correspond to the regulation of dq reference frame rotor currents. Therefore, in this paper, \(P_d \) and \(P_q \) are set to one. According to the cost function of (16), all the prediction steps over the prediction horizon are equally weighted in the cost function. Therefore, increasing the prediction horizon results in a better selection of the optimal signal sequence, but not optimal value for the first voltage vector is obtained. To overcome this problem, the paper proposes using a variable weighting factor \(Q_i \) in the...
objective function which is decreased by increasing the prediction horizon. In other words, the proposed method along with the use of proper weight coefficients for various goals applies a sequence of weighting factors to reduce the effect of following errors over the prediction horizon. Finally, the proposed cost function can be rewritten as

$$J = \sum_{j=1}^{N_p} \left[P_d \left(i_{a}^*(k+j) - i_{a}^p(k+j) \right)^2 + P_q \left(i_{q}^*(k+j) - i_{q}^p(k+j) \right)^2 \right]$$ (16)

Fig. 2, shows the flow diagram of the proposed incremental NMPC. Normally, MPC calculates the sum of objective function J over the prediction horizon N_p. The cost function can become excessively high in its initial steps for some switching states. In such cases, it is not necessary to continue the calculations for subsequent predictions. This will decrease the computational time. Thus, the use of a comparative algorithm in series with the MPC is proposed to avoid examining all the inputs in each prediction step. The algorithm I describe a step-by-step implementation of the proposed MPC.

4. SIMULATION RESULTS

In order to verify the effectiveness of the proposed MPC strategy, the model is simulated in MATLAB/Simulink to analyze the rotor voltage selection based on the proposed algorithm. The specifications of the simulated DFIG and wind turbine are given in Table I.

TABLE I

SPECIFICATIONS OF DFIG SYSTEM

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated power (MW)</td>
<td>3</td>
</tr>
<tr>
<td>Stator line to line voltages (V)</td>
<td>690</td>
</tr>
<tr>
<td>Stator current (A)</td>
<td>2076.2</td>
</tr>
<tr>
<td>Rotor line to line voltage (V)</td>
<td>158.7</td>
</tr>
<tr>
<td>Rotor current (A)</td>
<td>2673.1</td>
</tr>
<tr>
<td>Pole pairs</td>
<td>2</td>
</tr>
<tr>
<td>f_s (Hz)</td>
<td>60</td>
</tr>
<tr>
<td>R_s (mΩ)</td>
<td>1.443</td>
</tr>
<tr>
<td>R_r (mΩ)</td>
<td>1.125</td>
</tr>
<tr>
<td>L_s (mH)</td>
<td>0.094</td>
</tr>
<tr>
<td>L_r (mH)</td>
<td>0.085</td>
</tr>
<tr>
<td>J_m (kg m2)</td>
<td>0.802</td>
</tr>
<tr>
<td>Wind Turbine Parameters</td>
<td></td>
</tr>
<tr>
<td>Rated power (kW)</td>
<td>3000</td>
</tr>
<tr>
<td>Gain of the gear box for DFIG</td>
<td>96</td>
</tr>
<tr>
<td>The turbine radius (m)</td>
<td>43.36</td>
</tr>
</tbody>
</table>

Wind Turbine parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_1</td>
<td>0.3915</td>
</tr>
<tr>
<td>C_2</td>
<td>116</td>
</tr>
<tr>
<td>C_3</td>
<td>0.4</td>
</tr>
<tr>
<td>C_4</td>
<td>0</td>
</tr>
<tr>
<td>C_5</td>
<td>5</td>
</tr>
<tr>
<td>C_6</td>
<td>21</td>
</tr>
<tr>
<td>C_7</td>
<td>0.0192</td>
</tr>
</tbody>
</table>

* To reduce the simulation runtime, the original moment of inertia J_m is reduced to 10 kg m2.

A. Tracking Performance

Steady-state response of the proposed MPC, are shown in Fig. 3. The active power is kept constant at 0.75 p.u. while reactive power is zero at all times. Fig. 3 (a) clearly shows that both the voltage and current of the DFIG stator have a satisfactory. Also, Fig. 3 (b) shows generated active and reactive power equal to the specified reference values at steady state.

To evaluate the dynamic response of proposed MPC, a ramp change in wind speed is applied to increase the rotor speed from 0.75 pu (sub synchronous mode) to 1 pu (hypersynchronous mode). Fig. 4, shows the wind speed and the slip angle θ_s of the DFIG.

The transient performance of the DFIG are shown in Fig. 5. In this test, reactive power is kept constant at zero, while active power varies with the variations of wind speed.
As shown in Fig. 5, proposed nonlinear MPC (NMPC) results in superior performance of DFIG in active and reactive power tracking with faster dynamic response and lower overshoots compared to direct torque control (DTC) and vector control (VC). Fig. 6, shows the transient mode of phase a stator voltage and current and the rotor currents of the DFIG by using the proposed NMPC.

According to Fig. 6 (a) the stator is generating at unity power factor. However, the stator current amplitude increases proportionally to the rotor speed, but the stator voltage remains constant. Fig. 6 (b) shows that the amplitude of rotor currents also increases proportionally to the rotor speed, too.

B. Complexity Assessment

In this section, the influence of the proposed optimization process and a proposed comparative algorithm on the computational time is assessed. The prediction horizon is assumed to be 3 for all the cases \(N_p = 3 \). The specification of different MPC strategies are listed in Table II and the output powers by using such strategies are shown in Fig. 7.

Based on Table II, each of the modifications applied to the classical MPC has a positive impact on reducing the computational burden of the system. But, the Proposed MPC reduces the computational time by 48\%, which is of high importance for real-time implementation.
Fig. 3: Steady state performance of DFIG. (a) stator voltage and current of phase “a” and (b) Output active and reactive power.

Fig. 4: wind speed and slip angle during the variation of wind speed.

Fig. 5: Transient performance of the DFIG: Output powers (active and reactive powers).
As shown in Fig. 7, due to the same objective function for MPC-A and MPC-C, they have the same tracking response and, for the same reason, Proposed NMPC and MPC-B have the similar responses. As observed, all the MPC strategies have a satisfactory response in active and reactive power tracking and the main difference is the computational time which is reduced by 48% in the Proposed NMPC.
5. CONCLUSIONS
This paper presents a computationally efficient long horizon model predictive control strategy for DFIG wind turbine systems. First, to reduce the probable errors due to the increase in the prediction horizon, a sequence of decreasing weighting factors are used over the prediction horizon. Secondly, a comparative algorithm is developed that can avoid examining all the inputs over the prediction horizon. Simulation results for a long horizon MPC show that the proposed scheme leads to satisfactory power tracking performance, and very fast running times. Compared with conventional MPC, the proposed method shows the same power tracking performance, while the computational burden has decreased by up to 48%. As a result, using the proposed strategy will make possible long horizon MPC to be implemented in practice.

REFERENCES

