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Abstract-In this paper, a new hybrid decomposition-based multi-objective evolutionary algorithm (MOEA) is proposed
for the optimal power flow (OPF) problem including Wind, PV, and PEVs uncertainty with four conflicting objectives.
The proposed multi-objective OPF (MOOPF) problem includes minimization of the total cost (TC), total emission (TE),
active power loss (APL), and voltage magnitude deviation (VMD) as objectives and a novel constraint handling
method, which adaptively adds the penalty function and eliminates the parameter dependence on penalty function
evaluation is deployed to handle several constraints in the MOOPF problem. In addition, summation-based sorting and
improved diversified selection methods are utilized to enhance the diversity of MOEA. Further, a fuzzy min-max method
is utilized to get the best-compromised values from Pareto-optimal solutions. The impact of intermittence of Wind, PV,
and PEVs integration is considered for optimal cost analysis. The uncertainty associated with Wind, PV, and PEV
systems are represented using probability distribution functions (PDFs) and its uncertainty cost is calculated using the
Monte-Carlo simulations (MCSs). A commonly used statistical method called the ANOVA test is used for the
comparative examination of several methods. To test the proposed algorithm, standard IEEE 30, 57, and 118-bus test
systems were considered with different cases and the acquired results were compared with NSGA-1I and MOPSO to
validate the suggested algorithm's effectiveness.
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1. INTRODUCTION optimization  techniques and ii) meta-heuristic
The increase in integration of renewable energy sources optimization techniques. The deterministic methods are
(RESS) and the rise in load demand is making the power linear  programming,  non-linear  programming,
system planning and operation highly challenging[1]. In Quadratic programming, gradient technique, etc. In [4],
power systems, the OPF is a tool for determining the the authors proposed a quadratic programming method
optimal operating point in terms of control variables for to minimize power loss in the OPF problem. In [5]
planning and operation. The OPF aims to optimize the interior point method was proposed by the authors for

selective objective function by tuning the control
variables and also meeting the various constraints [2, 3].
The main decision variables are the generator's real
power, the magnitude of the bus voltage, the shunt
compensators, and the off-nominal transformer tap
settings.

In the literature, numerous scholars have proposed
optimization approaches to handle the OPF problem
with and without RESs. In general, two types of
optimization  approaches exist i) deterministic
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solving the OPF problem. However, these deterministic
approaches [6] are sensitive to initial values of the
problem, sensitive to problem dimensions, and also
theoretical assumptions related to problems that lead to
trapping the solution to local optima. Moreover, these
methods are difficult to handle mixed variable problems

and constraints. It also exhibits poor convergence.

To overcome the problems with deterministic
methods, various meta-heuristic methods are deployed
to solve the OPF problems with and without RES. In
[7], the Symbiotic organisms search (SOS) algorithm
was proposed to solve security-constrained AC-DC OPF
including uncertainty of Wind, PV, and PEV systems.
In [8], a robust cross-entropy covariance matrix
adaption evolutionary strategy (CE-CMAES) was
proposed for solving the dynamic OPF problems. In this
work, the dynamic OPF problem is modelled by
considering the uncertainties of RESs and PEVs. In [9],
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the authors proposed an SOS algorithm for resolving the
optimal AC power flow problem with thermal-wind-
solar-tidal systems. The uncertainties associated with
wind-solar-tidal systems were modelled using Weibull,
Lognormal, and Gumbel PDFs respectively. In [10], the
authors developed and solved different constrained OPF
problems for power systems containing RESs like wind
and solar power using a hybrid modified imperialist
competitive algorithm and sequential quadratic
programming (HMICA-SQP). Numerous authors [11-
14] focused on single-objective optimization issues in
the literature. The researchers presented multi-objective
optimization strategies to circumvent these limitations.

The MOEAs are gaining popularity for solving multi-
objective optimization problems. The MOOPF is a non-
linear, non-convex, constrained optimization problem
and demands efficient methods [15]. In [16], to solve
the OPF problem, a weighted sum-based differential
evolutionary (DE) algorithm was presented. In this
method, multiple objectives are transformed into a
single-objective optimization problem by multiplying
each objective with a weight such that the sum of the
weights must be unity. In [17], the authors proposed a
weighted sum-based Manta-Ray Foraging optimization
(MRFO) algorithm to solve both single and multi-
objective  OPF problems with RES. The authors
modified the test systems by incorporating wind and
solar units at different buses and the results were
analyzed for the original test system, Modification-1,
and Modification-2 scenarios. In [18-20], the authors
proposed weighted sum-based methods to solve the
MOOPF problem. These methods are simple and easy
to implement. However, the drawback of this method is,
that it depends on the weights that are allocated to each
objective and it fails to obtain the trade-off solutions.

In [21], the authors proposed a parallel epsilon
variable multi-objective genetic algorithm (PeV-
MOGA) approach for probabilistic OPF with hybrid
Wind-PV-PEV systems. In this approach, the MCS was
merged with the antithetic variable method (AVM) to
compute the PDF of the power generated by the wind-
PV-PEV system. To reduce the computational burden,
the POPF problem was solved using a master-slave
PeV-MOGA. In [22], a novel multi-objective
glowworm swarm optimization (MO-GSO) algorithm
was introduced for tackling the MOOPF in a wind
integrated power system. In [23], a new hybrid
algorithm based on modified GAPSO was proposed for
solving the MOOPF problem. In comparison to normal
PSO, PSO-GA is more trustworthy in terms of
producing high-quality solutions in a fair amount of

time, because the hybrid strategy avoids early
convergence to local optima and allows for better
exploration of the search process. In [24-26], the
authors proposed Pareto dominance-based methods for
the MOOPF problem. However, the Pareto-based
methods suffer from limitations, such as the
deterioration of selection pressure as the number of
objectives increases, as a result, the effectiveness of the
solution reduces.

In this work, the uncertainties associated with wind,
PV, and PEV systems are represented using Weibull,
lognormal and normal PDFs, and uncertainty costs are
calculated using MCSs. However, in the literature, there
are many uncertainties to consider and several ways to
calculate the uncertainty cost. In [27], the authors
introduced the stochastic optimization process by
considering uncertainties in electricity demand, natural
gas infrastructures, PV units, and wind generation using
mixed-integer linear programming (MILP). To prove
the effectiveness of the stochastic optimization
approach, a modified IEEE 31-bus system was used. In
[28], the authors proposed a modified Metropolis-
coupled Markov chain Monte Carlo (MC)? simulation to
predict the stochastic behavior of different uncertain
sources. Solar radiation, wind speed, the water flow of a
river, load consumption, and electricity prices are
considered primary sources of uncertainty. In addition, a
novel curve-fitting approach is proposed to improve the
accuracy of distribution functions. Generally, MOEAs
are modeled to handle conflicting goals like

convergence and diversity [29].
Tablel. Novelties, pros, and cons of the proposed method

Novelties Pros Cons
1. A new selection|l. More uniformly|1l. The performance
approach called |distributed Pareto|of the algorithm
summation of|fronts and improved|depends on parameter
normalized objectives|convergence settings.
values with IDS is|characteristics are
introduced. obtained.
2. Efficient constant|2. A  penalty-free|2. Parameters are to
handling method|constraint handling|be selected by trial
called the superiority {technique was|and error.

of feasible solutions{proposed which can
(SF) method is used to|handle constraints very
tackle various|effectively

constants. 3. A single run is|3. More
sufficient to achieve|computational time is
the Pareto optimal|needed, when the

solution. number of objective
4. It is capable of|functions increases.
optimizing many

objectives concurrently
without the decision-
makers knowledge

Convergence is about achieving a globally optimal
solution, while diversity is about searching a wide
search space. Since these are conflicting objectives, both
cannot be optimized at a time and therefore a tradeoff
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between convergence and diversity is used to select a
good quality solution. Hence, a novel hybrid MOEA is
developed and evaluated on standard test systems for
resolving the MOOPF using Wind, PV, and PEVs. In
this paper, IEEE 30, 57, and 118-bus test systems were
modified by adding wind, solar, and PEV energy
systems. The conventional OPF itself is a large-scale,
non-linear, non-convex constrained optimization
problem, while integrating the Wind, PV, and PEVs, the
complexity further escalates due to the intermittency of
these sources. To address this problem, a new hybrid
MOEA along with an effective constant handling
method called superiority of feasible solutions (SF), is
proposed to solve the MOOPF problem with Wind-PV-
PEV.

The main contributions of the paper include:

» Proposing a unique hybrid MOEA for solving the
MOOPF problem based on the decomposition and
summation of normalized objectives with an
enhanced diverse selection.

> Integrating Wind, PV, and PEV energy systems
into the traditional OPF to investigate the effect of
the stochastic nature of the sources.

» Modeling uncertainty associated with Wind, PV,
and PEV systems using PDFs, and the associated
uncertain cost are evaluated using Monte-Carlo
simulations.

» Considering the total cost (TC), total emission
(TE), APL, and VMD are the objective functions.

» Using an efficient constant handling method called
the superiority of feasible solutions (SF) method to
tackle various constants in the MOOPF problem.

The rest of the paper is structured as follows: Section
2 discusses the formulation of the problem. Section 3
deals with the mathematical modelling of Wind, PV,
and PEV systems. Section 4 presents the proposed
algorithm. Section 5 deals with simulation studies.
Conclusions are made in section 6.

2. PROBLEM FORMULATION
The objectives and constants for the considered MOOPF
problem are expressed as follows:

2.1. Optimization objectives
Total cost (TC):

NTG
min ch = Z (au +b|PTG| +CIPT%31)
=

NWG
+2[C0 (P i)+ Craw (Pus = Pray, ) + Cong (Pay,j — Pos. )]
=
NSG
+Z [cs,k(Pss,k) + CRs‘k(Pss‘k =Pai)+ Cosk (Psav,k —Pax )i

k=L

NPEV
+ Z [Cpev,\ (Ppevs‘l ) + CRpev.l (PpevsJ - Ppevav.l ) + CPpev‘I (Ppevav,l - Ppevs,l )] (1)
1=1

where ¢ _ -total cost of generation ($/h); p,, -real

power generation of a i" thermal generator; &;,0;,C; -

i generator cost coefficients;
Total emission (TE):

NTG

min fre = z(ai + AP + 1P +e) @

i=1
where f__ -total emission of generators (ton/h);

o, B v &L A -i" generator emission coefficients;

Active power loss (APL):
NL
min f,g = Z(Gk(viz +ij _Zvivj cos HU ) @)

k=1

where f -active power loss (MW); G,

APL

conductance of k™ line;

Voltage magnitude deviation (VMD):

NPQ

min fVMD = Z| (Vi _Vrel )| (4)

where f,  -voltage magnitude deviation (p.u.);

V., =1.0p.u. ie., reference voltage.

2.2. Constraints
Power flow constraints

NB

P, Py —ViZV,-(Gi,- cosg, +Bsing;)=0; 1=12,..NB ()
j=L
NB

Qi Qi —Visz(Gi,- sing, - B, cos6,)=0; i=12,..NB (6)

1

Generator constraints

P <P <Py ()

PW”S“‘? S PWS‘j g PWmS‘a;< (8)

PoY <Py <P ©)

Pt <Py <P (10)

e <0 <0 (1)

Qur <Qu < QI (13)

VGTW SvGi SVGTHX (14)
Shunt compensator constraints

Qi" <Qy < Qg™ =12 NC (15)
Transformer constraints

T <T, <T™ k=12 NT (16)
Security constraints

Vi<V, <V P=12 NLB 17

IS, < S5 4212, NL (18)
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where p_, , Qg -feal and reactive power injection ati"

bus; P, , Q,, -real and reactive power demand ati"bus ;

G, B, -conductance and susceptance between buses i

and | ; NB, NTG , NWG , NSG , NPEV , NC ,
NPQ . NT , NLB and NL -number of buses, thermal

generators, wind generators, solar units, PEVs, shunt
VAR compensators, PQ buses, transformers, load buses

and lines respectively; RT" , P72 -min-max limits on

i™ thermal generator real power; P™" , P™ -min-max

ws,j' " ws,j

limits on jth wind generator real power; P™" pTmax.

ss,k ' " ss,k
min-max limits on K™ solar unit real power; pmin

Ith

prmex -MiN-max limits on PEV real power; gmin ,

Qmax -min-max limits on i" thermal generator reactive

power; qmin , Qms -min-max limits on = wind
generator reactive power, QUin » QM -Min-max limits
on k™ solar unit reactive power; s, smax -apparent

power flow and its maximum limit respectively; gmin,

Ci

QM -min-max limits of i" shunt VAR compensator;

T/, T -min-max limits of k™ transformer tap
positions; y/min , ymex - min-max limits of i™ bus

voltages; 6, -voltage angle between buses I and I;

Two equality constraints (Egs.5 and 6) are
automatically satisfied when the power flow converges
to an optimal solution. The generator buses' real power
(excluding slack bus), transformer tap ratios, voltage
limits, and shunt compensator ranges are considered
control variables that are self-limiting. The remaining
inequality constraints require a constraint handling
method.

3. MODELING OF STOCHASTIC WIND, PV,
AND PEV SYSTEMS
In this part, the Wind, PV, and PEV systems are
integrated into the conventional OPF problem.
Modeling of Wind, PV, and PEV systems are discussed
below:

3.1. Wind, PV, and PEV Modeling

3.1.1. Wind Energy Modelling
The wind speed distribution likely follows the Weibull
PDF [30, 31]. And it is mathematically written as:

C)\C

(S
F(4) :(kj("j 0 0cven (19

where v is the wind speed (m/sec); K,C are the shape,
and scale factors set at 2,10 respectively.

The power output of a wind turbine in terms of wind
speed is expressed as:

0, forv<v, andv>v,,
~ V-V,
pw (V) - pwr ' for Vin < vw < Vr (20)
Vr - Vin
Pyrs forv, <v, <v,,

where p,, is the rated wind power output; v; , Vv, and

in?’

v__are the cut-in, rated and cut-out wind speeds with 3

out

m/sec, 16 m/sec, and 25 m/sec respectively.

Referring to Eq. (20), it is noticed that the power
output is zero when the wind speed lies between cut-in
and cut-out speeds. The wind turbine gives its rated
power when the wind speed lies between its rated and
cut-out speeds. The power production is continuous
while the wind speed ranges between the cut-in and the
rated speed. For discrete regions, the probabilities are
expressed as:

fw(pw:0):1—exp[—[vgjk]+exp(—[“y]k] )
fw(pwzpm:exp[—[vcf)k]+exp[—[v°c”’jk] @)

(k-1) k
fw(pw) - [ k(vr _Vin)][vn Pur t pw(vr _vin)] exp[_Kvin Pur t pw(vr _Vin)] ] (23)

Cpr Cpr wr

3.1.2. Photo-voltaic (PV) Energy Modelling
The output of a PV unit is determined by solar

irradiance (G, ) which most often follows a lognormal
distribution [31, 32]. The lognormal PDF is
mathematically expressed as:

1 —(InG, - )’
f.(G,)= ex| s ,for G, >0 24
C)=5 p{ o @)

where £ and O are the mean and standard deviations

set as 6 and 0.6 respectively.

The conversion of solar irradiance to energy can be
described as:

2
Psr[ G, jforO<GS<RC

std e

RG)= (25)

P, [GSJ for G, >R,
G

std
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where g_ is the standard solar irradiance set to 800
W/m? R_is the particular irradiance point set to 120

W/m?; P, is the PV unit rated power output.

3.1.3. Plug-in electric vehicle (PEV) Modelling

In recent days, public transport electric vehicles ply
most of the time during the day and are charged during
off-peak periods and so are not suitable for V2G
application. The use of privately-owned vehicles is
observed to be opposite to that of public transport PEVs.
The privately-owned PEVs are generally idle for most
of the time during the day and hence these PEVs are
suitable for the vehicle to grid (V2G) power fed
capability.

The availability of electric vehicles as V2G source
follows the normal distribution as follows [33]:

_ L _ (Ppev B ;u)z
f(Ppev) - (0\/5 eXp{ 2(02 ] (26)

where £ and @ are the mean and standard deviations

set as 3.2 and 0.88 respectively. P is the available

V2G power;

Here, the PEVs are used as a source of power feeding
grid through suitable infrastructure. The following
assumptions are made regarding the use of PEV as a
power source.

o All PEVs supply battery power to the power

network through DC/AC inverter.

o All PEVs  represent one big V2G

charging/discharging station.

e VV2G system as power source controller.

Depending on the probability of PEVs available, the
direct, reserve, and penalty costs are calculated

Since Wind, PV, and PEV sources are intermittent in
nature, the Monte-Carlo simulations are used to account
for uncertainty and to calculate the uncertainty cost. The
estimated price for the intermittency of Wind, PV, and
PEV powers is reflected in three ways: direct price,
reserve price, and penalty price. Whenever power is
underestimated, extra unusable power is wasted,;
however, in practical power system applications, such
power can be saved in an energy storage system and
thus counted as the reserve price. The price of
overestimating power that is lower than the scheduled
power is considered a penalty price in the case of
overestimation.

3.2. Direct cost calculation of Wind, PV and PEV
Direct cost associated with jt wind unit is modelled as

shown below:
Cw,j (Pws‘j) = g] X Pws‘j (27)

The direct cost associated with kK™ PV unit is modelled
below:
Cs,k(Pss‘k) =h xP,

ss.k

(28)

Similarly, the direct cost pertaining to I"™PEV unit is
modelled below:
Coot (Pras) =0 xP

pevs,| ) pevs,|

(29)
where p _ p_and P,... are the scheduled powers

of wind, PV, and PEV system respectively; g, h, and d,

are the direct cost coefficients of j™ wind, k™ PV and
Ith

PEV systems respectively set as 1.75, 1.60, and 1.60;

3.3. Uncertainty cost calculation of wind power
When the wind farm's actual output falls short of the

predicted value, the system operator must maintain a
spinning reserve to ensure that consumers receive
uninterrupted power. This is called overestimation of
power delivered from uncertain sources and the cost
incurred to maintain the spinning reserve is known as

Reserve cost [30, 31]. Reserve cost associated with jth
wind unit is defined as:

. Rus.j
CRw,j(Pws Pwav‘j) = KRw,j(Pws,j - Pwav' J) = KRw‘jJ.O (Pws‘j - pw‘j) fw(pw,j)dpw,j (30)

'

In contrast to the overestimation case, when the
actual power produced by the wind farm exceeds the
predicted value, the surplus power is squandered if it
cannot be utilized. As a result, the independent system
operator (ISO) is required to pay a penalty fee for
excess power. This is referred to as the underestimation
of power delivered from uncertain sources. Penalty cost

associated with  j™ wind unit is defined as:
P j
CPw.j(Pwav,j - Pwsd) = KPw‘j(Pwav‘] - Pws‘j) = pr,jjp (pw‘j _Pws,j)fw(pw‘j)dpw,J (31)

where K and Kp,,; are the reserve and penalty

Rw, j
cost coefficients of j™ wind power plant set as 3 and
1.5 respectively; Por | and P, are the rated and

actual available powers of j* wind unit; f,(p,, ;) be
the possibility of j™ wind power.

3.4. Uncertainty cost calculation of PV
Like the wind, PV power also shows intermittency in

output power. The approach to calculating the over and
underestimation costs of PV is as follows [32]. Reserve
cost associated with k™ PV plant is defined as:

Cosi P Peaid) = K (P = Pai) = K # £ (Pa <P [Py ~E Py <P )1 (32)

§ S S S
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Penalty cost associated with k™ pv plant is defined as:
CPs‘k(P P ‘k) = KPs‘k(Psav‘k - Pss‘k) = KPs.k ¥ fs(Psaw > Pss‘k)*[E(Psav‘k > Pss.k)_ Pssk] (33)

vk s
where K re « and K are the reserve and penalty cost

Ps,k

coefficients of k* PV plant respectively set as 3 and
15 P

sav,k

is the actual available power of k™ PV plant;

fo(Pak <Pux) ad (P, >PR,,) are the
probabilities of solar power shortage and surplus
respectively; E(P,,,, <Py.,) ad E(P,, >P.,)
are the expectations of solar power below and above
Py respectively.

3.5. Uncertainty cost calculation of PEV
Similarly, PEVs also show intermittency in output

power. The approach to calculating the over and
underestimation costs of PEV is as follows [34, 35].

Reserve cost associated with 1" PEV is defined as:
Presl
CRpev.I (Ppevs‘l - Ppevav.l) = KRpev‘l (Ppevs‘\ - Ppevav,l) = KRpev‘l_[O (Ppevs‘l - ppev‘l) fpev(ppev‘l)dppev‘\ (34)

Penalty cost associated with 1" PEV is defined as:
P,

CFpev‘\ (Ppevav‘l - Ppevs.l) = KPpev.I (Ppevav,\ - Ppevs‘l) = KPpev.\j " (ppev‘\ - Ppevs‘l) fpev(ppev,l)dppev‘l (35)

Pras 1

where K roov. and K ppey @€ the reserve and penalty

cost coefficients of I™ PEV set as 3 and 1.5

respectively; P e and P are the rated and actual

Ith

available powers of | PEV respectively; f oo (Ppeva)

is the 1™ PEV power probability.

3.6. Constraint Handling Method (CHM)
A CHM must be used in conjunction with an

evolutionary algorithm to guide the search process
toward a globally optimal solution. Among the many
CHMs, the most frequently employed is the penalty
approach, which involves adding a penalty to the fitness
of a non-feasible solution. Despite its simplicity and
ease of implementation, this method's performance is
highly dependent on the penalty factor, which must be
calibrated through trial and error. To tackle this
difficulty, in this study a new parameter-free CHM
superiority of feasible solution (SF) is introduced in the
study for solving the MOOPF problem.

In [36], Deb introduced the SF method for handling
different constraints efficiently. In the SF method, a
comparison is drawn between a pair of solutions. When
a pair of solutions is compared, the following cases
emerge:

(1) While comparing two non-feasible solutions, the
solution having the smallest constraint violation is
selected.

(2) When two feasible solutions are compared, the one
with a better fitness solution is selected.

(3) When a feasible solution is compared to a non-
feasible solution, the feasible solution is selected.

Comparing non-feasible solutions based on constraint
violation helps push non-feasible answers into the
feasible region while comparing viable solutions based
on the fitness value enables solution quality to be
improved.

By incorporating these three rules into the proposed
algorithm to solve the MOOPF problem, two situations
arise, the first of which is when the population size is
lower than the number of feasible solutions, and the
second method is to ignore non-feasible solutions. The
use of the summation-based method is to select feasible
solutions if the number of feasible solutions is greater
than the population size.

4. PROPOSED ALGORITHM
The MOEAs are normally modeled to handle different
conflicting goals, such as maximizing the spread of
solutions along the Pareto front (i.e., diversity) and
minimizing the distance between the solutions along the
Pareto front (i.e., convergence) [37]. The trade-off
between convergence and diversity is important to
choose the best solution among the obtained solutions.
Therefore, a new strategy is proposed in this study to
strike a compromise between convergence and diversity.

In this paper, a summation of normalized objective
values (SNOV) with improved diversified selection
(IDS) is suggested and integrated with the multi-
objective  evolution algorithm based on the
decomposition (MOEA/D) [38] method to solve the
MOOPF problem with RES. The MOEA/D method
decomposes the multi-objective optimization problem
into several single scalar optimization problems and
optimizes them all at the same time using weight
vectors. The weight vectors' distance is used to create
neighborhoods. In every population evolution,
information from the neighborhood is used to find a
solution. The non-dominated sorting used in MOEA/D
is complex and time-taking. Some useful information
may be lost if the dominant solutions are completely
discarded. In addition, diversity may be lost during the
search process and lead to local optima. To overcome
these problems, the summation of normalized objectives
values [39] with IDS is employed in this paper instead
of non-dominated sorting selection to get uniformly
distributed Pareto front and improved convergence
characteristics.
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A new constraint handling strategy called the
superiority of feasible solutions (SF) approach is
employed to tackle various constraints (i.e. equality and
inequality) of the MOOPF problem. The suggested
algorithm employs the fuzzy method to get the best-
compromised values. The outcomes of the suggested
method are compared with popular methods like NSGA-
I1 [40] and MOPSO [41] for different cases.

The main steps in the proposed method can be stated
as follows:

Step 1: Input:

Dimensions of the problem.

Population size (N).

Stopping criteria.

Decision variable size.

Limits of decision variables in vector form.
Control parameters of the corresponding
method.

Test system data.

Step 2: Initialization:

POP: Generate an initial population (Pt) of size
N.

Generate uniformly distributed weight vectors
using a systematic sampling approach (SSA)
[42] with the number of weight vectors defined

(36)

where M be the number of objective functions.
Run the load flow, and calculate the fitness of
the selected objective and total constraint
violation.

Locate neighbors with the smallest angles for
each weight vector using angle criteria [43] as

follows:

d,
tanf= 37
o (37)

I

where W;, W; are the weight vectors.

Find the smallest objective values to form the
present ideal point.

Find the largest objective values to form the
present nadir point.

Set iteration count=1.

Step 3: Reproduction:

Use an angle criterion to choose N pair of
mating parents. A set of mating parents is

picked from neighbors with a probability of &
for each weight vector.

Perform two-point crossover and mutation
operations to generate a new population (Qt).
Calculate the fitness of objective functions for
the newly generated population (Qt).

Calculate the total constraint violation for the
new population (Qt).

Merge the original population (Pt) and the new
population (Qt).

Step 4: Investigation of feasible solutions:

Sort the total population ascending by total
constraint violation values.

Discover feasible solutions.

If the number of feasible solutions is lower
than the population size (N), Go to Step 6.

If minimum N feasible solutions exist in the
combined population, Go to Step 5.

Step 5: Normalization and selection:

Determine the normalized objective value for
each objective and solution using the below
equation [39, 44].

£, -

) = &

imax Ti,min

where f"(x™) is the normalized value of x"

for I -th objective, f. §f are the min,

max.values of the I -th objective.

Obtain a summation of the normalized
objective values for all solutions [39, 44].

)= 1) @

Calculate the Euclidian distance between the
origin and the sum of all normalized objective
values. The stopping point is determined by the
solution that produces total normalized
objective values close to the origin.

Equally, divide the objective space into 100
bins where scanning of the bins should
continue until the scanning procedure reaches a
stopping point. The solution with the shortest
sum of normalized objective values is chosen
to enter the preferred set for each scanned bin.
The backup set includes unselected solutions as
well as solutions dominated by the stopping
point.

Step 6: Termination:

Increase iteration number

iter=iter+1.

by one ie.
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e If the stopping requirement is met, Stop else
Go to Step 3.

Sort the combined population ascending by the
total constraint violation

Ts the number of feasible
solutions greater than N.2

Camy out objective normalization, selection, and
updating ofthe top N individuals to serve as new POPs

The combined population's top N members
become new POP members

Is stopping
criteria reached?

Fig.1. Flow chart of the suggested method

5. SIMULATION AND RESULTS
To evaluate the efficacy of the suggested method, it is
implemented on three test systems, namely, IEEE 30,
57, and 118-bus power systems. The suggested method
for the MOOPF problem was executed in MATLAB
R2016a and the simulations were carried out on i3-

Processor with 4GB RAM.
Table 2. Control parameters of various methods

Method Control Parameters

1. | Proposed |Population size (N) =100, No. of divisions made
Method |along with every object (D) =12, neighbourhood
size (T) =20, Crossover rate (P;) =1.0, Mutation
rate (Pm) =0.05, No. of iterations=100.

2. NSGA-II |Population size (N) =100, No. of iterations=100,
[40] Crossover rate (P.) =0.8, Mutation rate (P,,) =0.01.

3. MOPSO |Population size (N) =100, C1=C2=2, W=0.5, No.
[41] of iterations=100.

Table 3. Various cases considered in this paper

No Test system Case TC | TE APL VMD
Case-1 v v -
Case-2 v - v
1. IEESESfSn;bUS Case-3 v |V v -
4 Case-4 v v v
Case-5 v v v v
Case-6 v v -
Case-7 v - v
2 IEESESt567n-1bus Case-8 7 7 7
4 Case-9 v v - v
Case-10 |V v v v
3 IEEE 118-bus Case-11 v - v -
: system Case-12 |V v v

5.1. Modified IEEE 30-bus system
The IEEE 30-bus power system has 6 thermal
generators placed at buses 1, 2, 5,8,11, and 13 (# 1

generator acts as a slack generator) with 41 lines. In this
paper, 4 off-nominal transformers are considered
between lines 6-10, 6-9, 4-12, and 27-28 and 9 shunt
VAR compensators are placed at the buses. The whole
real and reactive power demand on the system is
238.40MW and 126.20MVAR respectively [45]. In
addition to the above, the system is modified by
connecting Wind, PV, and PEV systems at buses 21, 7,
and 30 respectively.

5.1.1. Case-1: Minimize TC and TE simultaneously
In this case, TC and TE are the objectives considered for
minimizing simultaneously. The optimal decision
variables obtained by the suggested method are included
in Table 4. The best-compromised values using the
proposed algorithm have a TC of 858.9256%/h and TE
of 0.2093ton/h which is the lowest value compared with
NSGA-II [40] and MOPSO [41] as reported in Table 5.
The best-compromised values achieved using the above
methods are  859.9519%/h,  0.2101lton/h, and
863.2138%/h, 0.2116ton/h respectively. Fig. 2 depicts
the Pareto optimal (PO) fronts for each approach.

5.1.2. Case-2: Minimize TC and APL simultaneously
In this case, TC and APL are the objectives that need to
be minimized simultaneously. The optimal decision
variables obtained by the suggested method are included
in Table 4. The best-compromised values using the
proposed algorithm have a total cost of 853.6756%/h and
an APL of 2.3263MW which is the lowest value
compared with NSGA-II [40] and MOPSO [41] as
reported in Table 5. The best-compromised values
achieved using the above methods are 855.2758%/h,
2.4230MW, and 858.9110%/h, 2.5328MW respectively.
Fig. 3 depicts the PO fronts for each approach.

5.1.3. Case-3: Minimize TC, TE and APL
simultaneously

In this case, TC, TE, and APL are the objectives that
need to be minimized simultaneously. The optimal
decision variables obtained by the suggested method are
included in Table 4. The best-compromised values using
the proposed algorithm have a TC of 868.3559%/h, TE
of 0.2079%ton/h, and APL of 2.1775MW which is the
lowest value compared with NSGA-II [40] and MOPSO
[41] as reported in Table 5. The best compromised
values achieved using the above methods are
869.2563%/h, 0.2078ton/h, 2.3740MW and 876.5231%/h,
0.2058ton/h, 3.2157MW respectively. Fig.4 depicts the
PO fronts for each approach.

5.1.4. Case-4: Minimize TC, TE and VMD
simultaneously.
In this case, TC, TE, and VMD are the objectives
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considered for minimizing simultaneously. The optimal
decision variables obtained by the suggested method are
included in Table 4. The best-compromised values using
the proposed algorithm have a TC of 842.3661%/h, TE
of 0.2184ton/h, and VMD of 0.0973p.u.which is the
lowest value compared with NSGA-I1I [40] and MOPSO
[41] as reported in Table 5. The best compromised
values achieved using the above methods are
843.7067%/h, 0.2154ton/h, 0.1335p.u.and 854.4809%/h,
0.2142ton/h, 0.1606p.u.respectively. Fig. 5 depicts the
PO fronts for each approach.

5.1.5. Case-5: Minimize TC, TE, APL, and VMD
simultaneously.

In this case, TC, TE, APL, and VMD are the objectives
considered to be minimized simultaneously. The
optimal decision variables obtained by the suggested
method are included in Table 4. The best-compromised
values using the proposed algorithm have a TC of
865.0922%/h, TE of 0.2095ton/h, APL of 2.2978MW,
and VMD of 0.1336p.u. which is the lowest value
compared with NSGA-Il [40] and MOPSO [41] as
reported in Table 5. The best compromised values
achieved using the above methods are 869.8337%/h,
0.2107ton/h, 2.5380MW, 0.2561p.u.and 918.3540%/h,
0.2026ton/h, 1.8499MW, 0.1804p.u. respectively.
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Fig.2.Case-1: IEEE 30-bus system Pareto optimal fronts
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Table 4. IEEE 30-bus system: best-compromised values achieved
by the suggested method for Case-1to 5

Control | Limits
Control  |variables
variables at Min [ Max
bus/line

w

N Case-1 | Case-2 | Case-3 | Case-4 | Case-5

o

2 20 |80 45.9458 |43.7045 |45.7895 |45.0363 [45.0262

5 15 |50 |27.8704 [32.3782 |32.0212 |24.5831 |31.3830

8 10 |35 |25.4106 [22.3175 |22.3489 |20.9377 |25.9356

Power 11 |10 (30 [23.7889 |15.9720 [22.8090 |16.0211 [18.7876

(MW) 13 12 |40 |26.8761 |18.4583 |23.7380 |22.8131 [23.3002

21 0 |50 [34.2826 |38.0159 [36.5405 |33.2034 [34.9378

7 0 |50 [36.6994 |44.6478 |41.7745 |41.6915 [41.3679

30 |0 (15 [3.4689 |8.9195 [8.1977 |9.6364 [9.8781

1 0.95|1.1 |1.0366 [1.0412 |1.0395 [1.0115 |1.0296

2 0.95|1.1 |1.0239 [1.0339 |1.0323 |1.0098 |1.0199

Voltage 5 0.95/1.1 |0.9942 [1.0128 [1.0103 [0.9947 [0.9953

(p.u) 8 0.95|1.1 |1.0172 [1.0213 [1.0238 [0.9926 [1.0028

11 109511 [1.0222 ]1.0305 [1.0377 |1.0176 [0.9882

13 109511 [1.0210 |1.0386 [1.0291 |1.0192 [1.0209

11 109 (1.1 [0.9851 ]0.9929 [1.0002 |1.0266 [1.0108

12 0.9 |1.1 |0.9905 [0.9912 [1.0128 [1.0231 [1.0012

Tapratio 75159 {11 [1.0200 [0.9904 [0.9873 [0.9744 [0.9872

36 0.9 |1.1 |0.9873 [0.9814 [0.9976 [0.9859 [0.9827

10 |0 |5 2.0773  [2.2870 |2.8454 [2.2417 |2.2433

2.8681 [2.2815 |5.5854 [2.4882 [3.5771

2.2181 [3.0105 |3.8380 [2.2779 |2.2404

Shunt VAR 17 1.5441 [2.4913 ([2.5731 [1.9535 [2.3970

compensator| 20 21519 [2.7815 |2.8305 |4.0611 [3.2049

0. [5
0 |5
0 |5
0 |5
(MVAR) 21 [0 |5 21637 |2.3464 |2.2532 |1.7295 [2.5201
0 |5
0 |5
0 |5

NEANENNNNN NN N R N N NN N N N NN NN RN NN
0 I il ol ol Bt S IS Ll RS ] Kool Bl i Kol ol End I Kl Kol R A Y A A A N R

23 2.0966 |2.4114 |1.4699 |3.1976 |2.6193
24 2.8898 |2.8234 |3.0354 |3.6187 |2.9410
29 2.6363 |2.4902 |3.1590 |3.4609 |1.8377
TC(Eh) - |- |- [858.9256/853.6756868.3559 | 842.3661] 865.0922
TE(ton/h) -~ |- |- [02003 |- 0.2079_|0.2184 |0.2095
APL(MW) - - | 2.3263|2.1775 |- 2.2978
VMD(p.1.) B - 0.0973_[0.1336

Table 5. IEEE 30-bus system: Comparison of the suggested
method with NSGA-I1 [40] and MOPSO [41] for Case-1to 5

Case Objective Proposed NSGA-II
Name Functions Method [40] MOPSO [41]
Case-1 TC($/h) 858.9256 859.9519 863.2138
TE(ton/h) 0.2093 0.2101 0.2116
Case-2 TC($/h) 853.6756 855.2758 858.9110
APL(MW) 2.3263 2.4230 2.5328
TC($/h) 868.3559 869.2563 876.5231
Case-3 | TE(ton/h) 0.2079 0.2078 0.2058
APL(MW) 2.1775 2.3740 3.2157
TC($/h) 842.3661 843.7067 854.4809
Case-4 | TE(ton/h) 0.2184 0.2154 0.2142
VMD(p.u.) 0.0973 0.1335 0.1606
TC($/h) 865.0922 869.8337 918.3540
Case-5 TE(ton/h) 0.2095 0.2107 0.2026
APL(MW) 2.2978 2.5380 1.8499
VMD(p.u.) 0.1336 0.2561 0.1804

5.2. Modified IEEE 57-bus system

To demonstrate the scalability of the proposed approach,
the MOOPF problem is solved using the IEEE 57-bus
system. It contains 7 thermal generators placed at buses
1,2,3,6,8,9 and 12 (# 1 generator acts as a slack
generator) with 80 lines. In this paper, 15 off-nominal
transformers are considered along with 3 shunt VAR
compensators. The entire real and reactive power
demand on the system is 1250.80MW and
336.40MVAR respectively [45]. The standard system is
modified by connecting Wind, PV, and PEV systems at
buses 45, 16, and 49 respectively.

5.2.1. Case-6: Minimize TC and TE simultaneously
In this case, TC and TE are the objectives that need to

be minimized simultaneously. The optimal decision
variables obtained by the recommended method are
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included in Table 6. The best compromise solution using
the proposed algorithm has a TC of 35815.04$/h and TE
of 0.8950ton/h which is the lowest value compared with
NSGA-II [40] and MOPSO [41] as reported in Table 7.
The best-compromised values achieved using the above
methods are  35850.00$/h,  0.9928ton/h,  and
35910.00%$/h, 1.0120ton/h respectively. Fig. 6 depicts
the PO fronts for each approach.

5.2.2. Case-7: Minimize TC and APL simultaneously
In this case, TC and APL are the objectives that need to
be minimized simultaneously. The optimal decision
variables obtained by the suggested method are included
in Table 6. The best compromise solution using the
proposed algorithm has a total cost of 35169.27%/h and
an APL of 9.8050MW which is the lowest value
compared with NSGA-II [40] and MOPSO [41] as
reported in Table 7. The best-compromised values
achieved using the above methods are 35344.00%/h,
9.9855MW, and 35404.00%/h, 11.2682MW respectively.
Fig. 7 depicts the PO fronts for each approach.

5.2.3. Case-8: Minimize TC, TE and APL
simultaneously

In this case, TC, TE, and APL are the objectives that
need minimizing simultaneously. The optimal decision
variables obtained by the suggested method are included
in Table 6. The best-compromised values using the
proposed algorithm have a TC of 35558.26%/h, TE of
0.9673ton/h, and APL of 10.0796MW, which is the
lowest value compared with NSGA-II [40] and MOPSO
[41] as reported in Table 7. The best compromised
values achieved using the above methods are
36336.00%/h, 1.2498ton/h, 11.0813MW and
36402.69%/h, 1.0450ton/h, 12.5591MW respectively.
Fig. 8 depicts the PO fronts for each approach.

5.2.4. Case-9: Minimize TC, TE and VMD
simultaneously

In this case, TC, TE, and VMD are the objectives that
need minimizing simultaneously. The optimal decision
variables obtained by the suggested method are included
in Table 5. The best-compromised values using the
proposed algorithm have a TC of 35888.04%/h, TE of
0.9012ton/h, and VMD of 0.7043p.u. which is the
lowest value compared with NSGA-1[40] and MOPSO
[41] as reported in Table 6. The best compromised
values achieved using the above methods are
36224.00%/h, 0.9074 ton/h, 0.8284p.u. and 36989.00%/h,
1.0916ton/h, 0.8060p.u. respectively. Fig.9 depicts the
PO fronts for each approach.

5.2.5. Case-10: Minimize TC, TE, APL, and VMD
simultaneously

In this case, TC, TE, APL, and VMD are the objectives
that need to be minimized simultaneously. The optimal
decision variables obtained by the suggested method are
included in Table 6. The best-compromised values using
the proposed algorithm have a TC of 35980.02%/h, TE
of 1.1696ton/h, APL of 10.5229MW, and VMD of
0.8308p.u. which is the lowest value compared with
NSGA-II [40] and MOPSO [41] as reported in Table 7.
The best compromised values achieved using above
methods are 36250.00$/h, 1.4175ton/h, 12.3871MW,
1.0481p.u. and 36662.59%/h, 0.9367ton/h, 14.1833MW,
1.0669p.u respectively.
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5.3. Modified IEEE 118-bus system

To show the scalability of the proposed algorithm for a
large-scale test system in solving the MOOPF problem,
IEEE 118-bus system was considered. It contains 54
thermal generators (# 69 generator as a slack generator),
and 186 lines. In this paper, 9 off-nominal transformers
and 12 shunt VAR compensators are considered. The
sum of real and reactive power demand on the system is
4242.00MW and 1439.00MVAR respectively [45]. The
test system is modified by connecting Wind, PV, and
PEV systems at buses 81, 64, and 117 respectively.

53.1. Case-11:
simultaneously

Minimize TC and APL
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In this case, TC and APL are the objectives that need to
be minimized simultaneously. The optimal decision
variables obtained by the suggested method are included
in Table 8. The best compromise values using the
suggested algorithm have a total cost of 129019.12%/h
and APL of 36.7616MW, which is the lowest value
compared with NSGA-Il [40] and MOPSO [41] as
reported in Table 8. The best-compromised values
achieved using the above methods are 129582.23%/h,
37.3464MW, and 130673.5%/h, 38.0368MW
respectively. Fig. 10 depicts the PO fronts for each

approach.
Table 6. IEEE 57-bus system: best-compromised values achieved
by the proposed method for Case-6 to 10

Control | Limits
Control |variables

\ Proposed Method
NSGA-Il
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Table 8. IEEE 118-bus system: best-compromised values for Case-
11 and Case-12

S.No. variables at Min | Max Case-6 | Case-7 | Case-8 | Case-9 | Case-10
bus/line
L 2 |0 [100 [95.7907 |25.0904 |84.1793 |100.0000]57.9085
2. 3 |0 [140 [69.0738 [49.7571 |53.1935 |75.5083 |80.1009
3. 6 |0 [100 [97.6214 |54.1223 |95.7712 [79.7732 |57.4498
Z, Power 8 |0 [550 [304.0230]369.2352|302.8312314.7732| 329.5786
5 (MW) 9 |0 [100 [82.3521 [70.0209 |98.7022 |83.9870 |64.9448
5. 12 |0 |410 |294.0245]384.9806| 331.1684 | 282.9023| 379.1110
7. 450 [80 [79.8467 |79.8727 |79.7886 |79.4149 |78.2859
8. 16 [0 |80 [79.7469 [79.9213 |79.9465 |79.8968 |78.5326
9, 49 [0 |20 [19.3799 [19.9008 |19.8993 |19.6642 |14.6734
10. 1 |0.95[1.1 [1.0385 [1.0398 |1.0340 [1.0394 |1.0226
11 2 |0.95[1.1 [1.0279 [1.0305 |1.0286 [1.0267 [1.0102
12. 3 |0.95[1.1 |1.0313 |1.0244 |1.0252 |1.0227 |1.0144
13| Voltage 6 |0.95/1.1 [1.0343 |1.0185 |1.0203 |L.0228 |L.0127
14, G 8 |0.95[1.1 [1.0394 [1.0185 |1.0201 [1.0253 [1.0224
15. 9 |0.95[11 [1.0214 [1.0013 |1.0123 [1.0102 [1.0125
16. 12 [0.95[1.1 [1.0341 [1.0209 |1.0353 |1.0217 [L.0421
17. 10 |09 |11 [1.0362 [1.0148 |1.0016 |1.0159 [L.010L
18. 20 |09 |11 [1.0250 [0.9987 |0.9939 [1.0109 |0.9964
19. 31|09 |11 [1.0036 [0.9842 |0.9826 [0.9953 [1.0142
20. 35 |09 |11 [1.0307 [0.9945 |1.0275 [0.9830 |0.9855
21 36 [0.9 |11 [0.9769 [0.9873 |0.9881 [1.0323 [0.9927
22. 37|09 |11 [1.0448 [1.0182 |1.0359 [0.9926 [1.0270
23. 41 0. |1.1 |1.0065 |1.0187 [0.9990 |1.0269 |1.0064
2a. 46|09 |11 [0.9927 [0.9800 |0.9800 [0.9426 |0.9956
25. | Tapratio | 54 |09 |11 [1.0014 [0.9573 |0.9536 [0.9030 |0.9065
26. 58 0.9 |1.1 [0.9821 [0.9654 |0.9724 [0.9762 [0.9780
27. 59 0.9 |11 [0.9530 [0.9667 |0.9719 [0.9575 [0.9732
28. 65 [0.9 |11 [0.9719 [0.0724 |0.9847 [0.9902 [0.9799
29. 66 |09 |11 [0.9873 [0.0397 |0.9485 [0.9260 |0.9536
30. 71|09 |11 [0.9720 [0.9465 |0.9750 [0.9538 |0.9620

73 (0.9 (1.1 10.9815 [0.9910 [1.0087 1.0263 |1.0091

76 0.9 |1.1 10.9844 [0.9750 ]0.9706 [0.9188 |0.9641

80 (0.9 |1.1 |1.0118 [0.9906 ]0.9973 [1.0165 |1.0106

compensator 25 20 |10.5195 11.2397 |10.2799 |13.0381 |11.1002

0
(MVAR) 53 0 |20 [10.8182 |8.9104 |6.1637 |10.1057 [8.4158

TC($/h) - - 35815.04|35169.2735558.26 | 35888.04| 35980.02

TE(ton/h) - - - 0.8950 |- 0.9673 [0.9012 |1.1696

APL(MW) - - - - 9.8050 |10.0796 |- 10.5229

31
32
33
34. | Shunt VAR 18 0 |20 [11.6868 |10.7152 [8.9393 [7.2739 |11.0809
35
36
1
2
3
4

VMD(p.u.) S N - E 0.7043 |0.8308

Table 7. IEEE 57-bus system: Comparison of the suggested
method with NSGA-11 [40] and MOPSO [41] for Case-6 to 10

Case Name |Objective Proposed NSGA-II MOPSO [41]
Functions Method [40]

Case-6 TC($/h) 35815.04 35850.00  [35910.00
TE(ton/h) 0.8950 0.9928 1.0120

Case-7 TC($/h) 35169.27 35344.00  [35404.00
APL(MW)  [9.8050 9.9855 11.2682
TC($/h) 35558.26 36336.00  [36402.69

Case-8 |TE(ton/h) 0.9673 1.2498 1.0450
APL(MW) [10.0796 11.0813 12.5591
TC($/h) 35888.04 36224.00  [36989.00

Case-9 |TE(ton/h) 0.9012 0.9074 1.0916
VMD(p.u.) |0.7043 0.8284 0.8060
TC($/h) 35980.02 36250.00  [36662.59

Case-10 TE(ton/h) 1.1696 1.4175 0.9367
APL(MW)  [10.5229 12.3871 14.1833
VMD(p.u.) |0.8308 1.0481 1.0669

Limits Case-11 Case-12
Control Bus /

s.No.| ©© u
variables | line uin | max | Proposed | NSGA-II | MOPSO | Proposed | NSGA-11 | MOPSO
Method |  [40] [41] | Method | [40] | [41]
T T | 0 | 100 | 400447 | 48.3405 | 63.6501 | 634515 | 33.3504 | 63.3967
2. 4 | 0 | 100 | 49.0982 | 48.9338 | 53.5327 | 35.6629 | 33.2645 | 49.8530
3. 5 | 0 | 100 | 59.1167 | 59.3328 | 47.0428 | 35.0138 | 42.7372 | 55.9243
4 8 | 0 | 100 | 45.0837 | 44.6111 | 33.0415 | 47.8250 | 37.5502 | 42.1967
B 10 | 0 [ 550 | 193.3528 | 198.6711 |225.9731] 164.2240 [212.8393 | 188.3711
6. 12 [ 0 [ 185 | 66.1489 | 659076 | 77.3970 | 76.0734 | 88.2417 | 86.2172
7. 15 | 0 | 100 | 48.0935 | 49.1643 | 56.4980 | 56.2799 | 43.1842 | 47.2287
5. 18 | 0 | 100 | 43.7256 | 43.0544 | 35.1805 | 39.0496 | 58.9581 | 518238
9. 19 | 0 | 100 | 28.7879 | 28.7425 | 56.6487 | 70.2897 | 41.3202 | 60.0969
10, 24 | 0 | 100 | 33.8075 | 37.6122 | 41.0475 | 48.7321 | 55.7882 | 410088
1L 25 | 0 | 320 | 120.0409 | 119.1804 | 91.3385 | 60.8414 |105.1466|106.7849
2. 26 | 0 | 414 | 120.6440 | 125.8632 | 139.7833] 160.9155 | 133.5220 138.8390
13. 27 | 0 [ 100 | 46.2456 | 46.4613 | 42.275L | 61.7409 | 59.3025 | 41.7592
14, 31 [ 0 [ 107 | 22.3000 | 23.2030 | 14.1244 | 22.4692 | 15.4927 | 26.9107
IS, 32 | 0 | 100 | 551251 | 55.1034 | 43.5045 | 27.1559 | 29.6347 | 535314
To. 3¢ | 0 | 100 | 516765 | 49.7872 | 30.0776 | 56.3221 | 50.3974 | 43.8198
17, 36 | 0 | 100 | 55.7278 | 55.8064 | 46.3354 | 26.4301 | 47.3615 | 38.8550
1. 40 | 0 | 100 | 58.4507 | 53.2461 | 50.4651 | 54.0550 | 45.0434 | 49.0854
To. 42 | 0 | 100 | 611600 | 559346 | 49.2207 | 78.9208 | 58.3905 | 43.4171
20. 46 | 0 | 110 | 42.4237 | 41.7433 | 32.4406 | 36.1427 | 54.2950 | 48.1913
2L 49 | 0| 304 | 178.0395 | 148.7433 | 183.1493| 177.0807 | 1311200 184.0774
2. 54 | 0 | 148 | 68.7727 | 619638 | 69.9576 | 93.0152 | 84.6001 | 54.0001
2. 55 | 0 | 100 | 414856 | 40.9550 | 43.8303 | 64.4180 | 44.6150 | 60.1522
2. 56 | 0 | 100 | 56.0731 | 52.8332 | 56.7490 | 39.1371 | 53.4836 | 51.1180
2. 59 | 0 | 255 | 141.0098 | 123.3472 | 152.7499 | 133.8040 | 165.7378 | 117.9661
2. 61 | 0 | 260 | 106.4001 | 105.3442 | 125.3087 | 112.9721 | 60.7726 | 106.7301
27, 52 | 0 | 100 | 60.9986 | 610078 | 33.7938 | 56.6838 | 57.5269 | 49.1312
28| Power | 65 | 0 | 491 | 220.8742 | 2005479 | 2265447 232.4857 |200.8274228.0551
29| (Mw) [ 66 | 0 | 492 | 204.3118 | 208.6433 | 171.8156] 137.5718 |207.0250|192.0830
30. 70 | 0 | 100 | 57.4507 | 50.8371 | 20.1797 | 45.9800 | 59.0853 | 58.5005
3L 72 | 0 [ 100 | 40.2247 | 39.6023 | 45.6147 | 355260 | 32.2217 | 52.1747
2. 73 | 0 | 100 | 33.4507 | 33.2678 | 44.7217 | 40.8232 | 50.1046 | 43.8125
3. 74 | 0 | 100 | 626285 | 49.9213 | 63.6268 | 525801 | 54.5108 | 44.4446
3. 76 | 0 | 100 | 58.4179 | 58.0876 | 49.2420 | 60.1585 | 56.0626 | 46.0866
35 77 | 0 | 100 | 58.7750 | 59.6641 |45.42557| 47.9148 | 68.9018 | 54.1347
36. B0 | 0 | 577 | 277.4308 | 2755281 | 251.2416] 307.3935 | 213.9730 262.9793
37, 85 | 0 | 100 | 456938 | 45.1100 | 25.9303 | 50.420 | 41730 | 44.7471
3. 87 | 0 | 104 | 8.7870 | 84396 | 5.1801 | 9.0718 | 22.7264 | 159175
39. 89 | 0 | 707 | 265.0201 | 266.5600 | 323.5939| 217.2268 | 253.6893 | 234.4638
0. 90 | 0 [ 100 | 37.1072 | 37.4954 | 48.6774 | 40.0967 | 42.9491 | 47.3719
a1 91 | 0 | 100 | 38.8530 | 38.8713 | 44.3201 | 31.8664 | 40.5407 | 43.0382
[ 92 | 0 | 100 | 48.4612 | 53.1343 | 25.9523 | 49.3316 | 51.6078 | 44.1538
. 99 | 0 | 100 | 37.8606 | 38.6321 | 13.4615 | 30.9745 | 50.4100 | 54.8767
4. 100 | 0 | 352 | 97.0986 | 96.8499 |125.8402] 130.9657 | 138.1789123.3379
5. 103 | 0 | 140 | 71.3612 | 71.9647 | 55.1600 | 504524 | 63.5971 | 503507
7. 104 | 0 | 100 | 54.0455 | 53.9685 | 47.1531 | 511611 | 43.8495 | 52.8388
7. 05 | 0 | 100 | 37.0765 | 36.6977 | 31.9361 | 43.3530 | 314387 | 47.6000
8. 107 | 0 | 100 | 46.0683 | 47.0195 | 37.6778 | 38.7497 | 40.0955 | 37.4718
9. T10 | 0 | 100 | 41.0868 | 40.7633 | 27.3572 | 31.8345 | 37.3201 | 36.9108
50. TI1 | 0 | 136 | 30.3153 | 40.0204 | 42.3744 | 42.3214 | 52.6251 | 53.6456
5L T12 | 0 | 100 | 38.6270 | 38.9172 | 37.9132 | 34.9003 | 43.7788 | 33.6074
52. T13 | 0 | 100 | 51.6430 | 514637 | 36.8854 | 44.9313 | 613156 | 47.0220
53, Ti6 | 0 | 100 | 43.0444 | 43.1406 | 31.9503 | 42.0291 | 46.2930 | 45.0701
54, BL | 0 | 150 | 95.3791 | 97.9346 |146.8197 128.3143 | 87.0087 | 911115
55, 64 | 0 | 150 | 134.1229 | 147.8063 | 95.3558 | 142.1814 | 97.1495 | 99.4261
56. 107 | 0 | 40 | 150465 | 160712 | 17.8543 | 19.7354 | 19.5185 | 205103
57. T [095 [ 1L | 1.0263 | 1.0285 | 1.0389 | 10471 | 1.0250 | LOLLL
58. 4 095 | 11 [ 10310 | 10321 | L0014 | 1.0050 | 1.0286 | 1.0148
59, 5 | 0.95| 11 | 10355 | 10340 | 10346 | 1.0291 | 10207 | 10179
60. 8 | 095 | 11 | 10093 | 10057 | L0157 | 10193 | 10126 | 10203
6L "(""59)‘9 10 | 095 | 1.1 | 10374 | 10377 | 10172 | 10024 | 1.0057 | 10107
62, pu T2 [ 095 1.1 | 10158 | 10146 | 10370 | 10224 | 1.0187 | 1.0214
63, 5 [ 095 | 1.1 | 10206 | 10213 | 10179 | L0179 | 1.0016 | LOILL
64, 18 | 095 | 1.1 | 10285 | 10204 | 10222 | 10259 | 1.0172 | 10135
5. 19 [ 095 | 1.1 | 10103 | 10101 | 10255 | 1.0269 | 1.0224 | 1.0180
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66. 24 ] 095 11 | 10230 | 10226 | 1.0228 | 10235 | 1.0154 | 1.0256 [P ;
= oo T Toss T Loos T oo | Goses T Loice 0035 Tables 9a-9b. From Tables 9a-9b, it is evident that the
68. 26 | 0.95 | 11 | 10157 | 10143 | 1.0175 | 10212 | 1.0346 | 1.0258 :

5 o7 T095 | 11 | 1035 | 1033 | Tots: | Tooe | Toood | 10530 proposed algorithm shows better performance compared
70. 31 | 095 11 | 10378 | 10379 | 1.0283 | 10260 | 1.0117 | 1.0245

71 32 | 095 11 | 10211 | 1.0218 | 10302 | 10335 | 1.0150 | 10035 to NSGA-11 and MOPSO methods.

72. 34 | 095 | 1.1 | 10250 | 1.0243 | 10269 | 1.0250 | 0.9999 | 10059

73. 3 | 095 | 1.1 | 10379 | 1.0375 | 10800 | 1.0142 | 10044 | 10051

74, 40 | 095 | 11 | 10346 | 10340 | 1.0288 | 10075 | 1.0088 | 1.0236 i . ictical i i
2 e e L s | e e Table 9a. IEEE 57-bus system: Statistical inferences for Case-6
76. 46 | 095 | 1.1 [ 1.0123 | 10124 | 1.0189 | 10215 | 1.0216 | 1.0224 Case-6

77. 49 | 095 | 11 | 10274 | 10285 | 1.0157 | 09947 | 1.0179 | 10163 Algorithms Objectives

78. 54 ] 095 [ 11 1.0252 1.0259 [ 1.0211 | 1.0138 | 1.0034 | 1.0197 Best value |Worst value [% Error
79. 55 | 0.95 | 11 | 10079 | 10078 | 1.0370 | 10267 | 1.0203 | 10203

80. 56 | 0.95 | 11 | 10059 | 10040 | 1.0313 | 10278 | 1.0147 | 10172 Proposed Method | TC($/h) 3.557E+4 |3.645E+4 2.42

8L 50 | 0.95 | 11 | 10022 | 10021 | 1.0328 | 10261 | 1.0193 | 10278

82. 61 | 0.95 | 11 | 10346 | 10342 | 1.0202 | 10459 | 1.0223 | 10827 TE(ton/h) 10833 0.9545 12.72
83. 62 | 095| 11 | 10200 | 10201 | 10132 | 10243 | 10121 | 10174 NSGA-I11 [40] TC($/h) 3.536E+4 |3.742E+4 5.49

84 65 | 0.95 | 11 | 10782 | 10788 | 1.0433 | 10170 | 1.0304 | 1.0022

85. 66 | 0.95 | 11 | 10376 | 10301 | 1.0247 | 10277 | 0.9996 | 1.0391 TE(ton/h) 10.8097 1138 28.81
86. 69 [ 095 1.1 | 10270 | 1.0266 | 1.0247 | 1.0202 | 1.0051 | 0.9985 MOPSO [41] TC($/h) 3.534E+4 |3.686E+4 4.10

87. 70 | 095 | 1.1 | 10283 | 1.0231 | 10293 | 1.0337 | 10106 | 10107

88 72 | 095 | 1.1 | 10330 | 1.0334 | 10173 | 1.0119 | 10223 | 10256 TE(ton/h) [0.9391 1.203 21.91
89. 78 10951 11| LOA7 | 10415 | 10185 | 10283 | 10146 } 1.0270 Table 9b. IEEE 118-bus system: Statistical inferences for Case-11
90. 74 | 095 | 1.1 | 10268 | 1.0314 | 09992 | 1.0272 | 10090 | 10156

91 76 | 095 | 1.1 | 10088 | 1.0051 | 10253 | 1.0119 | 10085 | 10071 Case-11

9. 77 | 095 | 1.1 | 10187 | 1.0192 | 10427 | 1.0314 | 10021 | 10065 Algorithms Objectives

93. 80 | 095 | 1.1 | 10252 | 10254 | 1.0217 | 1.0404 | 1.0176 | 1.0109 Best value |Worst value |% Error
94. 85 | 095 | 11 | 10134 | 10140 | 1.0065 | 10240 | 1.0061 | 10142

9. 87 | 095 | 11 | 10207 | 10182 | 1.0373 | 10161 | 1.0299 | 1.0236 Proposed TC($/h) 1.283E+5 [1.296E+5 0.95

9. 89 | 095 11 | 10214 | 10210 | 1.0293 | 10363 | 1.0298 | 1.0384

97. 90 | 095 11 | 10218 | 10209 | 1.0132 | 10280 | 1.0272 | 1.0248 Method APL(MW) |36.38 39.19 7.17

9. 91 [ 095 | 11 | 1.0264 | 1.0243 | 1.0225 | 10480 | 10097 | 10840 NSGA-II [40] |TC($/h) 1.291E+5 |1.309E+5 1.37

99. 92 | 095 | 11 | 10262 | 10276 | 1.0243 | 10312 | 1.0201 | 10213

100, 99 | 0.95 | 11 | 10083 | 10065 | 1.0235 | 10415 | 1.0471 | 10092 APL(MW) |35.04 40.38 13.22
101 100 | 0.95 | 1.1 | 1.0155 | 1.0091 | 1.0263 | 1.0291 | 1.0145 | 1.0414 MOPSO [41] TC($/h) 1.302E+5 1.333E+5 2.36
102, 103 | 095 | 1.1 | 1.0270 | 1.0280 | 10238 | 1.0226 | 10348 | 10165
103, 104 | 095 | 1.1 | 1.0178 | 1.0168 | 10251 | 1.0103 | 10264 | 10018 APL(MW) |36.09 45.04 19.87
104, 105 | 095 | 1.1 | 1.0316 | 1.0352 | 10296 | 1.0118 | 10302 | 10263
105, 107 | 095 | 1.1 | 1.0132 | 1.0127 | 10197 | 1.0042 | 10110 | 10340
106. 110 | 0.95 | 11 | 10212 | 10226 | 10144 | 10117 | 10140 | 10164 Table 10a. Case-1: TC ($/h)

107, 111 [ 095 | 1.1 | 1.0209 | 1.0203 | 10166 | 0.9956 | 10218 | 10386 —

108, 112 | 095 | 1.1 | 10184 | 10181 | 1.0249 | 10163 | 10233 | 1.0227 Variation SS df MS F P-value
109, 113 | 095 | 1.1 | 1.0333 | 1.0331 | 10292 | 1.0343 | 10289 | 10223 Between- 326734 2 163367 | 140.37 | 1.2215E-43
110, 116 [ 095 | 11 | 10418 | 10400 | 10044 | 10108 | 10042 | 1.0088
11 8 | 09 | 1.1 | 10165 | 1.0157 | 1.0369 | 0.9994 | 1.0045 | 09733 group
112. 32 | 09 | 11 | 1.0025 | 1.0020 | 0.9601 | 0.9958 | 0.9807 | 10123 Within-group | 345656.4 | 297 | 1163.8 - B
113, 36 | 09 | 11 | 09948 | 009871 | 1.0081 | 0.9237 | 0.9941 | 09875
114, 51 ] 09 | 1.1 | 10136 | 10109 | 1.0080 | 0.9826 | 09739 | 0.9739 Total 6723904 | 299 - - -

115 | Tapratio | 93 | 09 | 1.1 | 0.9876 | 0.9848 | 09975 | 0.9304 | 09834 | 0.9874 -

116 95 | 09 | 11 | 09931 | 009944 | 0.9947 | 0.9980 | 1.0004 | 0.9661 Table 10b. Case-1: TE (ton/h)

117. 102 | 09 [ 1.1 | 1.0057 | 1.0068 | 0.9798 | 0.9999 | 0.9913 | 1.0148 Variation SS df MS F P-value
118, 107 | 09 | 11 | 09818 | 09817 | 0.9925 | 09784 | 0.9780 | 0.9813
119, 127 | 09 | 1.1 | 09806 | 0.9842 | 0.9931 | 0.9861 | 1.0129 | 1.0087 Between-group | 0.00515 2 0.00257 | 29.81 | 1.5912E-12
120. 34 | 0 | 25 | 113179 | 11.3041 | 11,8443 | 14.5351 | 156509 | 112427 Within-group | 0.02564 | 297 | 0.00009 R R
2L 44 | 0 | 25 | 10.0859 | 10.2002 | 13.0331 | 14.2184 | 100191 | 8.9692
122. 45 | 0 | 25 | 14.7235 | 14.7171 | 12.0710 | 9.0981 | 10.7855 | 14.2602 Total 0.03079 | 299 - - -

123, 46 | 0 | 25 | 13.0587 | 135962 | 12.6628 | 6.1809 | 9.0046 | 8.7527
24 48 | 0 | 25 | 11.7728 | 11.7501 | 12.2913 | 14,5004 | 10.2403 | 12.7883 —
15| S VAR 74 |0 | 25 | 1ado74 | 128144 | 138017 | 140292 | 114761 | 12.4056 . )

126, (MpVAR) 79 | 0 25 | 12.0556 | 11.9471 | 10.6996 | 6.2538 | 11.0239 | 15.1773 02/

127, 82 | 0 | 25 | 16.3087 | 165841 | 13.5684 | 16.4578 | 12.8005 | 12.9986 a0 oal
128, 83 | 0 | 25 | 11.7913 | 11.7448 | 8.8350 | 11.4913 | 9.8887 | 14.9399 “

129, 105 | 0 | 25 | 126136 | 125049 | 12.5140 | 10.658L | 12.8361 | 14.2250 wb
130. 107 | 0 | 25 | 88002 | 93753 | 154349 | 12.8524 | 10.2346 | 115393 . |
131, 110 | 0 | 25 | 117193 | 11.8521 | 163327 | 152300 | 12.9425 | 12.0121 EEY | -

T Tcem | - | - | 129019.12|129582.23| 130673.5 | 130796.33| 1343955 133574.6 = $
2 _[APLMW) | - | - ~_| 36.7616 | 37.3464 | 36.0368 | 32.5358 | 40.0724 | 41.3020 &0 $ e
3 [ V™MD | - | - - - - - 05165 | 0.6876 | 0.9706 N .
860 N 021 T
| I “ i
. - - - 1 I 3
5.3.2. Case-12: Minimize TC, APL and VMD a0 o4 : o208 ! H
|
. o 1 .
simultaneously :
. . . Proposed Method NSGA-I1 MOPSO Proposed Method NSGA-II MOPSO
In this case, TC, APL, and VMD are the objectives that
Fig.12(a) Fig.12(b)

need to be minimized simultaneously. The optimal
decision variables obtained by the suggested method are
included in Table 8. The best-compromised values using
the proposed algorithm have a total cost of
130796.33%/h, APL of 32.5358MW, and VMD of
0.5165p.u., which is the lowest value compared with
NSGA-II [40] and MOPSO [41] as reported in Table 8.
The best compromised values achieved using the above
methods are 134395.5%/h, 40.0724MW, 0.6876p.u. and
133574.6$/h,  41.3020MW,  0.9706p.u.respectively.
Fig.11 depicts the PO fronts for each approach.

5.4. Statistical Analysis

The statistical inference including best value, worst
value, and percentage of errors for Case-6 and Case-11
of IEEE 57 and 118-bus power systems are tabulated in

Fig.12. Case-1: IEEE 30-bus system: Box plots of best-
compromised values

To further instigate the efficiency and robustness of
the proposed algorithm on the MOOPF problem, one-
way analysis of variance (ANOVA) [8] test was
conducted to analyze the statistical significance of each
of the tested algorithms over other algorithms. ANOVA
is a statistical test that is used to determine the mean of
many strategies generated for each trial that exhibits a
significant difference. Within-group variation quantifies
the degree to which individuals deviate from the group
mean. The term “residual" refers to the difference
between an individual's value and the group mean. The
squares of these residuals are joined together to obtain
the sum of squares (SSwimin). Between-group variation
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quantifies the degree to which group means deviate
from the mean for the entire population (SSpetween). This
is done by conducting a hypothesis test to ensure the
techniques' robustness. Here, the degree of significance
is set to 0.05 to account for the variability in all of the
procedures used in the hypothesis test. The F-ratio is
calculated as the ratio of two mean square (MS) values.
The P-values are calculated using the F-ratio, and the
two degrees of freedom (df) are listed in Tables10a-10b.
If the P-value for the one-way ANOVA test is less than
0.05, there is adequate evidence that one or more
approaches are statistically different from one another.

The statistical studies were also performed using box
plots. A box plot is a graphical tool that summarizes
numerous critical parameters in a distribution visually.
A box plot ranges from the lower hinge (25th percentile)
to the top hinge (75th percentile) and contains the
distribution's middle half of scores. The median is
denoted by a line that passes through the centre of the
box. Thus, one-fourth of the distribution resides
between this line and the box's top, and one-fourth lies
between this line and the box's bottom. The box plots
for the best-compromised values of Case-1 are shown in
Fig.12. It shows that the proposed method achieves the
best variance of distribution and mean value over other
algorithms, which means that the proposed algorithm is
more robust than other algorithms. From box plots, it is
clear that the proposed algorithm gives better results.
From all the ANOVA results, it is concluded that the
proposed algorithm gives the best optimal results over
other algorithms on the MOOPF problem.

6. CONCLUSIONS
This paper presents a solution to the MOOPF problem

by combining Wind, PV, and PEV systems. The
approach is based on MOEA-based decomposition and
summing up of normalized objective functions with an
improved diverse selection mechanism. It also deals
with tackling various constraints in the MOOPF
problem using the superiority of the feasible solution
(SF) technique. The cost of thermal energy and the cost
uncertainty associated with Wind, PV, and PEV energy
systems are minimized along with the minimization of
carbon emission, active power losses, and voltage
magnitude deviation. Monte-Carlo simulations were
used to assess the uncertainty of Wind, PV, and PEV
power. Apart from conventional cost minimization, this
paper chose factors that account for uncertain prices of
available Wind, PV, and PEV power. It showed the OPF
formulation along with factors affecting Wind, PV, and
PEV power's intermittency. To show the efficacy of the
proposed method, simulations were done on the same

test systems as with NSGA-Il and MOPSO algorithms.
The results show the superiority of the suggested
method compared to other methods. The statistical
analysis using the ANOVA test validates the proposed
method by demonstrating that its mean is significantly
superior from NSGA-II and MOPSO approaches.
Further research can consider innovative OPF problems,
such as varying time instances to model real-time
changes in load demand including RESs and PEVs. The
limitations of the proposed method are that the
performance of this method depends on parameter
settings and computing time grows as the number of
objectives increases. Hence, the suggested method can
be effectively used in operation when Wind, PV, and
PEV power generations are included in the power
system.
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