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Abstract-In this paper, a new hybrid decomposition-based multi-objective evolutionary algorithm (MOEA) is proposed 

for the optimal power flow (OPF) problem including Wind, PV, and PEVs uncertainty with four conflicting objectives. 

The proposed multi-objective OPF (MOOPF) problem includes minimization of the total cost (TC), total emission (TE), 

active power loss (APL), and voltage magnitude deviation (VMD) as objectives and a novel constraint handling 

method, which adaptively adds the penalty function and eliminates the parameter dependence on penalty function 

evaluation is deployed to handle several constraints in the MOOPF problem. In addition, summation-based sorting and 

improved diversified selection methods are utilized to enhance the diversity of MOEA. Further, a fuzzy min-max method 

is utilized to get the best-compromised values from Pareto-optimal solutions. The impact of intermittence of Wind, PV, 

and PEVs integration is considered for optimal cost analysis. The uncertainty associated with Wind, PV, and PEV 

systems are represented using probability distribution functions (PDFs) and its uncertainty cost is calculated using the 

Monte-Carlo simulations (MCSs). A commonly used statistical method called the ANOVA test is used for the 

comparative examination of several methods. To test the proposed algorithm, standard IEEE 30, 57, and 118-bus test 

systems were considered with different cases and the acquired results were compared with NSGA-II and MOPSO to 

validate the suggested algorithm's effectiveness. 
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1. INTRODUCTION 

The increase in integration of renewable energy sources 

(RESs) and the rise in load demand is making the power 

system planning and operation highly challenging[1]. In 

power systems, the OPF is a tool for determining the 

optimal operating point in terms of control variables for 

planning and operation. The OPF aims to optimize the 

selective objective function by tuning the control 

variables and also meeting the various constraints [2, 3]. 

The main decision variables are the generator's real 

power, the magnitude of the bus voltage, the shunt 

compensators, and the off-nominal transformer tap 

settings. 

In the literature, numerous scholars have proposed 

optimization approaches to handle the OPF problem 

with and without RESs. In general, two types of 

optimization approaches exist i) deterministic 

optimization techniques and ii) meta-heuristic 

optimization techniques. The deterministic methods are 

linear programming, non-linear programming, 

Quadratic programming, gradient technique, etc. In [4], 

the authors proposed a quadratic programming method 

to minimize power loss in the OPF problem. In [5] 

interior point method was proposed by the authors for 

solving the OPF problem. However, these deterministic 

approaches [6] are sensitive to initial values of the 

problem, sensitive to problem dimensions, and also 

theoretical assumptions related to problems that lead to 

trapping the solution to local optima. Moreover, these 

methods are difficult to handle mixed variable problems 

and constraints. It also exhibits poor convergence.   

To overcome the problems with deterministic 

methods, various meta-heuristic methods are deployed 

to solve the OPF problems with and without RES. In 

[7], the Symbiotic organisms search (SOS) algorithm 

was proposed to solve security-constrained AC-DC OPF 

including uncertainty of Wind, PV, and PEV systems. 

In [8], a robust cross-entropy covariance matrix 

adaption evolutionary strategy (CE-CMAES) was 

proposed for solving the dynamic OPF problems. In this 

work, the dynamic OPF problem is modelled by 

considering the uncertainties of RESs and PEVs. In [9], 
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the authors proposed an SOS algorithm for resolving the 

optimal AC power flow problem with thermal-wind-

solar-tidal systems. The uncertainties associated with 

wind-solar-tidal systems were modelled using Weibull, 

Lognormal, and Gumbel PDFs respectively. In [10], the 

authors developed and solved different constrained OPF 

problems for power systems containing RESs like wind 

and solar power using a hybrid modified imperialist 

competitive algorithm and sequential quadratic 

programming (HMICA-SQP). Numerous authors [11-

14] focused on single-objective optimization issues in 

the literature. The researchers presented multi-objective 

optimization strategies to circumvent these limitations. 

The MOEAs are gaining popularity for solving multi-

objective optimization problems. The MOOPF is a non-

linear, non-convex, constrained optimization problem 

and demands efficient methods [15]. In [16], to solve 

the OPF problem, a weighted sum-based differential 

evolutionary (DE) algorithm was presented. In this 

method, multiple objectives are transformed into a 

single-objective optimization problem by multiplying 

each objective with a weight such that the sum of the 

weights must be unity. In [17], the authors proposed a 

weighted sum-based Manta-Ray Foraging optimization 

(MRFO) algorithm to solve both single and multi-

objective OPF problems with RES. The authors 

modified the test systems by incorporating wind and 

solar units at different buses and the results were 

analyzed for the original test system, Modification-1, 

and Modification-2 scenarios. In [18-20], the authors 

proposed weighted sum-based methods to solve the 

MOOPF problem. These methods are simple and easy 

to implement. However, the drawback of this method is, 

that it depends on the weights that are allocated to each 

objective and it fails to obtain the trade-off solutions. 

In [21], the authors proposed a parallel epsilon 

variable multi-objective genetic algorithm (PeV-

MOGA) approach for probabilistic OPF with hybrid 

Wind-PV-PEV systems. In this approach, the MCS was 

merged with the antithetic variable method (AVM) to 

compute the PDF of the power generated by the wind-

PV-PEV system. To reduce the computational burden, 

the POPF problem was solved using a master-slave 

PeV-MOGA. In [22], a novel multi-objective 

glowworm swarm optimization (MO-GSO) algorithm 

was introduced for tackling the MOOPF in a wind 

integrated power system. In [23], a new hybrid 

algorithm based on modified GAPSO was proposed for 

solving the MOOPF problem. In comparison to normal 

PSO, PSO-GA is more trustworthy in terms of 

producing high-quality solutions in a fair amount of 

time, because the hybrid strategy avoids early 

convergence to local optima and allows for better 

exploration of the search process.  In [24-26], the 

authors proposed Pareto dominance-based methods for 

the MOOPF problem. However, the Pareto-based 

methods suffer from limitations, such as the 

deterioration of selection pressure as the number of 

objectives increases, as a result, the effectiveness of the 

solution reduces. 

In this work, the uncertainties associated with wind, 

PV, and PEV systems are represented using Weibull, 

lognormal and normal PDFs, and uncertainty costs are 

calculated using MCSs. However, in the literature, there 

are many uncertainties to consider and several ways to 

calculate the uncertainty cost. In [27], the authors 

introduced the stochastic optimization process by 

considering uncertainties in electricity demand, natural 

gas infrastructures, PV units, and wind generation using 

mixed-integer linear programming (MILP). To prove 

the effectiveness of the stochastic optimization 

approach, a modified IEEE 31-bus system was used. In 

[28], the authors proposed a modified Metropolis-

coupled Markov chain Monte Carlo (MC)3 simulation to 

predict the stochastic behavior of different uncertain 

sources. Solar radiation, wind speed, the water flow of a 

river, load consumption, and electricity prices are 

considered primary sources of uncertainty. In addition, a 

novel curve-fitting approach is proposed to improve the 

accuracy of distribution functions. Generally, MOEAs 

are modeled to handle conflicting goals like 

convergence and diversity [29].  

Table1. Novelties, pros, and cons of the proposed method 

Novelties Pros Cons 

1. A new selection 

approach called 

summation of 
normalized objectives 

values with IDS is 

introduced. 

1. More uniformly 

distributed Pareto 

fronts and improved 
convergence 

characteristics are 

obtained. 

1. The performance 

of the algorithm 

depends on parameter 
settings. 

 

2. Efficient constant 

handling method 

called the superiority 
of feasible solutions 

(SF) method is used to 

tackle various 
constants.  

2. A penalty-free 

constraint handling 

technique was 
proposed which can 

handle constraints very 

effectively 

2. Parameters are to 

be selected by trial 

and error. 

3. A single run is 

sufficient to achieve 

the Pareto optimal 
solution. 

3. More 

computational time is 

needed, when the 
number of objective 

functions increases. 4. It is capable of 

optimizing many 

objectives concurrently 
without the decision-

makers knowledge  

Convergence is about achieving a globally optimal 

solution, while diversity is about searching a wide 

search space. Since these are conflicting objectives, both 

cannot be optimized at a time and therefore a tradeoff 
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between convergence and diversity is used to select a 

good quality solution. Hence, a novel hybrid MOEA is 

developed and evaluated on standard test systems for 

resolving the MOOPF using Wind, PV, and PEVs. In 

this paper, IEEE 30, 57, and 118-bus test systems were 

modified by adding wind, solar, and PEV energy 

systems. The conventional OPF itself is a large-scale, 

non-linear, non-convex constrained optimization 

problem, while integrating the Wind, PV, and PEVs, the 

complexity further escalates due to the intermittency of 

these sources. To address this problem, a new hybrid 

MOEA along with an effective constant handling 

method called superiority of feasible solutions (SF), is 

proposed to solve the MOOPF problem with Wind-PV-

PEV. 

The main contributions of the paper include: 

 Proposing a unique hybrid MOEA for solving the 

MOOPF problem based on the decomposition and 

summation of normalized objectives with an 

enhanced diverse selection. 

 Integrating Wind, PV, and PEV energy systems 

into the traditional OPF to investigate the effect of 

the stochastic nature of the sources.  

 Modeling uncertainty associated with Wind, PV, 

and PEV systems using PDFs, and the associated 

uncertain cost are evaluated using Monte-Carlo 

simulations. 

 Considering the total cost (TC), total emission 

(TE), APL, and VMD are the objective functions. 

 Using an efficient constant handling method called 

the superiority of feasible solutions (SF) method to 

tackle various constants in the MOOPF problem. 

The rest of the paper is structured as follows: Section 

2 discusses the formulation of the problem. Section 3 

deals with the mathematical modelling of Wind, PV, 

and PEV systems. Section 4 presents the proposed 

algorithm. Section 5 deals with simulation studies. 

Conclusions are made in section 6. 

2. PROBLEM FORMULATION 

The objectives and constants for the considered MOOPF 

problem are expressed as follows: 

2.1. Optimization objectives 

Total cost (TC): 

2

1
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where 
TCf -total cost of generation ($/h);

TGiP -real 

power generation of a 
thi thermal generator; , ,i i ia b c -

thi generator cost coefficients; 

Total emission (TE): 

2

1

min ( )                                                          (2)i TGi

NTG
P

TE i i TGi i TGi i

i

f P P e
   



     

where
TEf -total emission of generators (ton/h);

, , , ,i i i i i     -
thi generator emission coefficients; 

Active power loss (APL): 

2 2

1

min ( ( 2 cos ))                                                           (3)
NL

APL k i j i j ij

k

f G V V VV 

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where
APLf -active power loss (MW);

kG -

conductance of 
thk line;  

 Voltage magnitude deviation (VMD): 

1

min | ( ) |                                                                                     (4)
NPQ

VMD i ref

i

f V V


    

where
VMDf -voltage magnitude deviation (p.u.);

1.0refV  p.u. i.e., reference voltage. 

2.2. Constraints  

Power flow constraints 

1

( cos sin ) 0;  1,2,...                                   (5)
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j
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Generator constraints 
min max                            1,2,.............                                      (7)TGi TGi TGiP P P i NTG    

min max

, , ,                            1,2,..........                                       (8)ws j ws j ws jP P P j NWG                                                         

min max

, , ,                            1,2,...........                                       (9)ss k ss k ss kP P P k NSG    

min max

, , ,                         1,2,...........                                      (10)pev l pev l pev lP P P l NPEV    

min max                           1,2,.............                                      (11)TGi TGi TGiQ Q Q i NTG    

min max

, , ,                          1, 2,.............                                     (12)ws j ws j ws jQ Q Q j NWG    

min max

, , ,                          1,2,..............                                     (13)ss k ss k ss kQ Q Q k NSG    

min max                            1, 2,.............                                          (14)Gi Gi GiV V V i NG    

Shunt compensator constraints 
min max                          1, 2,..............                                          (15)Ci Ci CiQ Q Q i NC    

Transformer constraints 
min max                            1, 2,.............                                           (16)k k kT T T k NT    

Security constraints 
min max                          1, 2,..............                                         (17)Lp Lp LpV V V p NLB  

max| |                                    1, 2,..............                                           (18)lq lqS S q NL 
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where
GiP ,

GiQ -real and reactive power injection at
thi

bus;
DiP ,

DiQ -real and reactive power demand at
thi bus ;

 

ijG ,
ijB -conductance and susceptance between buses i

and j ; NB , NTG , NWG , NSG , NPEV , NC ,

NPQ , NT , NLB and NL -number of buses, thermal 

generators, wind generators, solar units, PEVs, shunt 

VAR compensators, PQ buses, transformers, load buses 

and lines respectively; min

TGiP , max

TGiP -min-max limits on 

thi thermal generator real power;
 

min

,ws jP , max

,ws jP -min-max 

limits on 
thj wind generator real power;

 
min

,ss kP , max

,ss kP -

min-max limits on 
thk solar unit real power;

 
min

,pev lP ,

max

,pev lP -min-max limits on 
thl PEV real power; min

TGiQ ,

max

TGiQ -min-max limits on 
thi thermal generator reactive 

power;
 

min

,ws jQ , max

,ws jQ -min-max limits on thj wind 

generator reactive power;
 

min

,ss kQ , max

,ss kQ -min-max limits 

on 
thk solar unit reactive power; max,lq lqS S -apparent 

power flow and its maximum limit respectively;
 

min

CiQ ,

max

CiQ -min-max limits of 
thi  shunt VAR compensator; 

min

kT , max

kT -min-max limits of thk transformer tap 

positions; min

GiV , max

GiV - min-max limits of 
thi bus 

voltages;
ij -voltage angle between buses i and j ; 

Two equality constraints (Eqs.5 and 6) are 

automatically satisfied when the power flow converges 

to an optimal solution. The generator buses' real power 

(excluding slack bus), transformer tap ratios, voltage 

limits, and shunt compensator ranges are considered 

control variables that are self-limiting. The remaining 

inequality constraints require a constraint handling 

method. 

 

3. MODELING OF STOCHASTIC WIND, PV, 

AND PEV SYSTEMS 

In this part, the Wind, PV, and PEV systems are 

integrated into the conventional OPF problem. 

Modeling of Wind, PV, and PEV systems are discussed 

below: 

3.1. Wind, PV, and PEV Modeling 

3.1.1. Wind Energy Modelling 

The wind speed distribution likely follows the Weibull 

PDF [30, 31]. And it is mathematically written as: 

( 1)
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where v is the wind speed (m/sec); ,k c are the shape, 

and scale factors set at 2,10 respectively. 

The power output of a wind turbine in terms of wind 

speed is expressed as: 
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where
wrp is the rated wind power output;

inv , 
rv and 

outv are the cut-in, rated and cut-out wind speeds with 3 

m/sec, 16 m/sec, and 25 m/sec respectively. 

Referring to Eq. (20), it is noticed that the power 

output is zero when the wind speed lies between cut-in 

and cut-out speeds. The wind turbine gives its rated 

power when the wind speed lies between its rated and 

cut-out speeds. The power production is continuous 

while the wind speed ranges between the cut-in and the 

rated speed. For discrete regions, the probabilities are 

expressed as:  
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3.1.2. Photo-voltaic (PV) Energy Modelling 

The output of a PV unit is determined by solar 

irradiance (
sG ) which most often follows a lognormal 

distribution [31, 32]. The lognormal PDF is 

mathematically expressed as: 
2
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where  and are the mean and standard deviations 

set as 6 and 0.6 respectively.  

The conversion of solar irradiance to energy can be 

described as: 
2
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where
stdG is the standard solar irradiance set to 800 

W/m2;
cR is the particular irradiance point set to 120 

W/m2;
srP is the PV unit rated power output. 

3.1.3. Plug-in electric vehicle (PEV) Modelling 

In recent days, public transport electric vehicles ply 

most of the time during the day and are charged during 

off-peak periods and so are not suitable for V2G 

application. The use of privately-owned vehicles is 

observed to be opposite to that of public transport PEVs. 

The privately-owned PEVs are generally idle for most 

of the time during the day and hence these PEVs are 

suitable for the vehicle to grid (V2G) power fed 

capability. 

The availability of electric vehicles as V2G source 

follows the normal distribution as follows [33]:  
2

2

( )1
( ) exp                                                                   (26)

22

pev

pev

P
f P
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where  and are the mean and standard deviations 

set as 3.2 and 0.88 respectively. 
pevP is the available 

V2G power; 

Here, the PEVs are used as a source of power feeding 

grid through suitable infrastructure. The following 

assumptions are made regarding the use of PEV as a 

power source. 

 All PEVs supply battery power to the power 

network through DC/AC inverter. 

 All PEVs represent one big V2G 

charging/discharging station. 

 V2G system as power source controller. 

Depending on the probability of PEVs available, the 

direct, reserve, and penalty costs are calculated 

Since Wind, PV, and PEV sources are intermittent in 

nature, the Monte-Carlo simulations are used to account 

for uncertainty and to calculate the uncertainty cost. The 

estimated price for the intermittency of Wind, PV, and 

PEV powers is reflected in three ways: direct price, 

reserve price, and penalty price. Whenever power is 

underestimated, extra unusable power is wasted; 

however, in practical power system applications, such 

power can be saved in an energy storage system and 

thus counted as the reserve price. The price of 

overestimating power that is lower than the scheduled 

power is considered a penalty price in the case of 

overestimation. 

3.2. Direct cost calculation of Wind, PV and PEV  

Direct cost associated with thj wind unit is modelled as 

shown below: 

, , ,( )                                                                                            (27)w j ws j j ws jC P g P   

The direct cost associated with
thk PV unit is modelled 

below: 

, , ,( )                                                                                              (28)s k ss k k ss kC P h P   

Similarly, the direct cost pertaining to
thl PEV unit is 

modelled below: 

, , ,( )                                                                                        (29)pev l pevs l l pevs lC P d P   

where
 ,ws ssP P and 

pevsP are the scheduled powers 

of wind, PV, and PEV system respectively; ,j kg h and
ld

are the direct cost coefficients of thj wind, thk PV and

thl PEV systems respectively set as 1.75, 1.60, and 1.60; 

3.3. Uncertainty cost calculation of wind power 

When the wind farm's actual output falls short of the 

predicted value, the system operator must maintain a 

spinning reserve to ensure that consumers receive 

uninterrupted power. This is called overestimation of 

power delivered from uncertain sources and the cost 

incurred to maintain the spinning reserve is known as 

Reserve cost [30, 31]. Reserve cost associated with
thj

wind unit is defined as: 

,

, , , , , , , , , ,
0

( ) ( , ) = ( ) ( )  (30)
ws jP

Rw j ws j wav j Rw j ws j wav Rw j ws j w j w w j w jC P P K P P j K P p f p dp     

In contrast to the overestimation case, when the 

actual power produced by the wind farm exceeds the 

predicted value, the surplus power is squandered if it 

cannot be utilized. As a result, the independent system 

operator (ISO) is required to pay a penalty fee for 

excess power. This is referred to as the underestimation 

of power delivered from uncertain sources. Penalty cost 

associated with
 

thj wind unit is defined as: 

,

,
, , , , , , , , , , ,( ) ( ) = ( ) ( )   (31)

wr j

ws j

P

Pw j wav j ws j Pw j wav j ws j Pw j w j ws j w w j w j
P

C P P K P P K p P f p dp     

where
,Rw jK and 

,Pw jK are the reserve and penalty 

cost coefficients of thj  wind power plant set as 3 and 

1.5 respectively;
,wr jP and

,wav jP  are the rated and 

actual available powers of thj  wind unit;
,( )w w jf p  be 

the possibility of thj wind power.  

3.4. Uncertainty cost calculation of PV  

Like the wind, PV power also shows intermittency in 

output power. The approach to calculating the over and 

underestimation costs of PV is as follows [32]. Reserve 

cost associated with 
thk PV plant is defined as: 

, , , , , , , , , , , ,( ) ( ) = ( ) [ ( )] (32)Rs k ss k sav k Rs k ss k sav k Rs k s sav k ss k ss k sav k ss kC P P K P P K f P P P E P P         
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Penalty cost associated with 
thk PV plant is defined as: 

, , , , , , , , , , , ,( ) ( ) = ( ) [ ( ) ] (33) Ps k sav k ss k Ps k sav k ss k Ps k s sav k ss k sav k ss k ss kC P P K P P K f P P E P P P         

where
,Rs kK and

,Ps kK  are the reserve and penalty cost 

coefficients of thk PV plant respectively set as 3 and 

1.5;
,sav kP  is the actual available power of

thk PV plant;

, ,( )s sav k ss kf P P  and 
, ,( )s sav k ss kf P P are the 

probabilities of solar power shortage and surplus 

respectively;
, ,( )sav k ss kE P P  and 

, ,( )sav k ss kE P P

are the expectations of solar power below and above

,ss kp  respectively.  

3.5. Uncertainty cost calculation of PEV  

Similarly, PEVs also show intermittency in output 

power. The approach to calculating the over and 

underestimation costs of PEV is as follows [34, 35]. 

Reserve cost associated with 
thl PEV is defined as: 

,

, , , , , , , , , , ,
0

( ) ( ) ( ) ( )  (34)
pev lP

Rpev l pevs l pevav l Rpev l pevs l pevav l Rpev l pevs l pev l pev pev l pev lC P P K P P K P p f p dp      

Penalty cost associated with 
thl PEV is defined as: 

,

,
, , , , , , , , , , ,( ) ( ) = ( ) ( )  (35)

pevr l

pevs l

P

Ppev l pevav l pevs l Ppev l pevav l pevs l Ppev l pev l pevs l pev pev l pev l
P

C P P K P P K p P f p dp   
 

where
,Rpev lK and 

,Ppev lK are the reserve and penalty 

cost coefficients of 
thl PEV set as 3 and 1.5 

respectively; 
,pevr lP and 

,pev lP  are the rated and actual 

available powers of
thl PEV respectively;

,( )pev pev lf p  

is the 
thl PEV power probability. 

3.6. Constraint Handling Method (CHM) 

A CHM must be used in conjunction with an 

evolutionary algorithm to guide the search process 

toward a globally optimal solution. Among the many 

CHMs, the most frequently employed is the penalty 

approach, which involves adding a penalty to the fitness 

of a non-feasible solution. Despite its simplicity and 

ease of implementation, this method's performance is 

highly dependent on the penalty factor, which must be 

calibrated through trial and error. To tackle this 

difficulty, in this study a new parameter-free CHM 

superiority of feasible solution (SF) is introduced in the 

study for solving the MOOPF problem. 

In [36], Deb introduced the SF method for handling 

different constraints efficiently. In the SF method, a 

comparison is drawn between a pair of solutions. When 

a pair of solutions is compared, the following cases 

emerge: 

(1) While comparing two non-feasible solutions, the 

solution having the smallest constraint violation is 

selected. 

(2) When two feasible solutions are compared, the one 

with a better fitness solution is selected. 

(3) When a feasible solution is compared to a non-

feasible solution, the feasible solution is selected. 

Comparing non-feasible solutions based on constraint 

violation helps push non-feasible answers into the 

feasible region while comparing viable solutions based 

on the fitness value enables solution quality to be 

improved.    

By incorporating these three rules into the proposed 

algorithm to solve the MOOPF problem, two situations 

arise, the first of which is when the population size is 

lower than the number of feasible solutions, and the 

second method is to ignore non-feasible solutions. The 

use of the summation-based method is to select feasible 

solutions if the number of feasible solutions is greater 

than the population size. 

4. PROPOSED ALGORITHM 

The MOEAs are normally modeled to handle different 

conflicting goals, such as maximizing the spread of 

solutions along the Pareto front (i.e., diversity) and 

minimizing the distance between the solutions along the 

Pareto front (i.e., convergence) [37]. The trade-off 

between convergence and diversity is important to 

choose the best solution among the obtained solutions. 

Therefore, a new strategy is proposed in this study to 

strike a compromise between convergence and diversity. 

In this paper, a summation of normalized objective 

values (SNOV) with improved diversified selection 

(IDS) is suggested and integrated with the multi-

objective evolution algorithm based on the 

decomposition (MOEA/D) [38] method to solve the 

MOOPF problem with RES. The MOEA/D method 

decomposes the multi-objective optimization problem 

into several single scalar optimization problems and 

optimizes them all at the same time using weight 

vectors. The weight vectors' distance is used to create 

neighborhoods. In every population evolution, 

information from the neighborhood is used to find a 

solution. The non-dominated sorting used in MOEA/D 

is complex and time-taking. Some useful information 

may be lost if the dominant solutions are completely 

discarded. In addition, diversity may be lost during the 

search process and lead to local optima. To overcome 

these problems, the summation of normalized objectives 

values [39] with IDS is employed in this paper instead 

of non-dominated sorting selection to get uniformly 

distributed Pareto front and improved convergence 

characteristics.  



R. K. Avvari, V. Kumar: A Novel Hybrid Multi-Objective Evolutionary Algorithm …                                                                136 

A new constraint handling strategy called the 

superiority of feasible solutions (SF) approach is 

employed to tackle various constraints (i.e. equality and 

inequality) of the MOOPF problem. The suggested 

algorithm employs the fuzzy method to get the best-

compromised values. The outcomes of the suggested 

method are compared with popular methods like NSGA-

II [40] and MOPSO [41] for different cases. 

The main steps in the proposed method can be stated 

as follows: 

Step 1: Input: 

 Dimensions of the problem. 

 Population size (N). 

 Stopping criteria. 

 Decision variable size.  

 Limits of decision variables in vector form.  

 Control parameters of the corresponding 

method. 

 Test system data.  

Step 2: Initialization: 

 POP: Generate an initial population (Pt) of size 

N.  

 Generate uniformly distributed weight vectors 

using a systematic sampling approach (SSA) 

[42] with the number of weight vectors defined 

as: 

1
( , )                                                                                      (36)

1

D M
N D M

M

  
  

 

 

 where M be the number of objective functions.  

 Run the load flow, and calculate the fitness of 

the selected objective and total constraint 

violation. 

 Locate neighbors with the smallest angles for 

each weight vector using angle criteria [43] as 

follows: 

2

1

tan                                                                                                             (37)
d

d
 

 

1 2 1,                                                                            (38)

T

i j j

i

j j

w w w
d d w d

w w
  

 

where ,i jw w are the weight vectors. 

 Find the smallest objective values to form the 

present ideal point. 

 Find the largest objective values to form the 

present nadir point. 

 Set iteration count=1. 

Step 3: Reproduction: 

 Use an angle criterion to choose N pair of 

mating parents. A set of mating parents is 

picked from neighbors with a probability of
for each weight vector. 

 Perform two-point crossover and mutation 

operations to generate a new population (Qt).  

 Calculate the fitness of objective functions for 

the newly generated population (Qt).  

 Calculate the total constraint violation for the 

new population (Qt). 

 Merge the original population (Pt) and the new 

population (Qt). 

Step 4: Investigation of feasible solutions: 

 Sort the total population ascending by total 

constraint violation values. 

 Discover feasible solutions. 

 If the number of feasible solutions is lower 

than the population size (N), Go to Step 6.  

 If minimum N feasible solutions exist in the 

combined population, Go to Step 5.  

Step 5: Normalization and selection: 

 Determine the normalized objective value for 

each objective and solution using the below 

equation [39, 44]. 

,min"

,max ,min

( )
( )                                                                                        (39)

m

i im

i

i i

f x f
f x

f f






 

where "( )m

if x is the normalized value of
mx

for i -th objective,
,min ,max,i if f are the min, 

max.values of the i -th objective.  

 Obtain a summation of the normalized 

objective values for all solutions [39, 44]. 

" "

1

( ) ( )                                                                                             (40)
M

m m

i

i

F x f x


  

 Calculate the Euclidian distance between the 

origin and the sum of all normalized objective 

values. The stopping point is determined by the 

solution that produces total normalized 

objective values close to the origin. 

 Equally, divide the objective space into 100 

bins where scanning of the bins should 

continue until the scanning procedure reaches a 

stopping point. The solution with the shortest 

sum of normalized objective values is chosen 

to enter the preferred set for each scanned bin. 

 The backup set includes unselected solutions as 

well as solutions dominated by the stopping 

point. 

Step 6: Termination: 

 Increase iteration number by one i.e. 

iter=iter+1. 
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 If the stopping requirement is met, Stop else 

Go to Step 3. 

 

 
Fig.1. Flow chart of the suggested method 

5.  SIMULATION AND RESULTS 

To evaluate the efficacy of the suggested method, it is 

implemented on three test systems, namely, IEEE 30, 

57, and 118-bus power systems. The suggested method 

for the MOOPF problem was executed in MATLAB 

R2016a and the simulations were carried out on i3-

Processor with 4GB RAM.  

Table 2. Control parameters of various methods 

S. 

No. 
Method Control Parameters 

1. Proposed 

Method 

Population size (N) =100, No. of divisions made 

along with every object (D) =12, neighbourhood 

size (T) =20, Crossover rate (Pc) =1.0, Mutation 
rate (Pm) =0.05, No. of iterations=100. 

2. NSGA-II 

[40] 

Population size (N) =100, No. of iterations=100, 

Crossover rate (Pc) =0.8, Mutation rate (Pm) =0.01. 

3. MOPSO 
[41] 

Population size (N) =100, C1=C2=2, W=0.5, No. 
of iterations=100. 

Table 3. Various cases considered in this paper 

S. 
No 

Test system Case TC TE APL VMD 

1. 
IEEE 30-bus 

system 

Case-1      -   - 

Case-2    -     - 

Case-3         - 

Case-4      -   

Case-5         

2. 
IEEE 57-bus 

system 

Case-6      -   - 

Case-7    -     - 

Case-8         - 

Case-9      -   

Case-10         

3. 
IEEE 118-bus 

system 

Case-11    -     - 

Case-12    -     

 
5.1. Modified IEEE 30-bus system  

The IEEE 30-bus power system has 6 thermal 

generators placed at buses 1, 2, 5,8,11, and 13 (# 1 

generator acts as a slack generator) with 41 lines. In this 

paper, 4 off-nominal transformers are considered 

between lines 6-10, 6-9, 4-12, and 27-28 and 9 shunt 

VAR compensators are placed at the buses. The whole 

real and reactive power demand on the system is 

238.40MW and 126.20MVAR respectively [45]. In 

addition to the above, the system is modified by 

connecting Wind, PV, and PEV systems at buses 21, 7, 

and 30 respectively. 

5.1.1. Case-1: Minimize TC and TE simultaneously 

In this case, TC and TE are the objectives considered for 

minimizing simultaneously. The optimal decision 

variables obtained by the suggested method are included 

in Table 4. The best-compromised values using the 

proposed algorithm have a TC of 858.9256$/h and TE 

of 0.2093ton/h which is the lowest value compared with 

NSGA-II [40] and MOPSO [41] as reported in Table 5. 

The best-compromised values achieved using the above 

methods are 859.9519$/h, 0.2101ton/h, and 

863.2138$/h, 0.2116ton/h respectively. Fig. 2 depicts 

the Pareto optimal (PO) fronts for each approach. 

5.1.2. Case-2: Minimize TC and APL simultaneously 

In this case, TC and APL are the objectives that need to 

be minimized simultaneously. The optimal decision 

variables obtained by the suggested method are included 

in Table 4. The best-compromised values using the 

proposed algorithm have a total cost of 853.6756$/h and 

an APL of 2.3263MW which is the lowest value 

compared with NSGA-II [40] and MOPSO [41] as 

reported in Table 5. The best-compromised values 

achieved using the above methods are 855.2758$/h, 

2.4230MW, and 858.9110$/h, 2.5328MW respectively. 

Fig. 3 depicts the PO fronts for each approach. 

5.1.3. Case-3: Minimize TC, TE and APL 

simultaneously 

In this case, TC, TE, and APL are the objectives that 

need to be minimized simultaneously. The optimal 

decision variables obtained by the suggested method are 

included in Table 4. The best-compromised values using 

the proposed algorithm have a TC of 868.3559$/h, TE 

of 0.2079ton/h, and APL of 2.1775MW which is the 

lowest value compared with NSGA-II [40] and MOPSO 

[41] as reported in Table 5. The best compromised 

values achieved using the above methods are 

869.2563$/h, 0.2078ton/h, 2.3740MW and 876.5231$/h, 

0.2058ton/h, 3.2157MW respectively. Fig.4 depicts the 

PO fronts for each approach. 

5.1.4. Case-4: Minimize TC, TE and VMD 

simultaneously. 

In this case, TC, TE, and VMD are the objectives 
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considered for minimizing simultaneously. The optimal 

decision variables obtained by the suggested method are 

included in Table 4. The best-compromised values using 

the proposed algorithm have a TC of 842.3661$/h, TE 

of 0.2184ton/h, and VMD of 0.0973p.u.which is the 

lowest value compared with NSGA-II [40] and MOPSO 

[41] as reported in Table 5. The best compromised 

values achieved using the above methods are 

843.7067$/h, 0.2154ton/h, 0.1335p.u.and 854.4809$/h, 

0.2142ton/h, 0.1606p.u.respectively. Fig. 5 depicts the 

PO fronts for each approach. 

5.1.5. Case-5: Minimize TC, TE, APL, and VMD 

simultaneously. 

In this case, TC, TE, APL, and VMD are the objectives 

considered to be minimized simultaneously. The 

optimal decision variables obtained by the suggested 

method are included in Table 4. The best-compromised 

values using the proposed algorithm have a TC of 

865.0922$/h, TE of 0.2095ton/h, APL of 2.2978MW, 

and VMD of 0.1336p.u. which is the lowest value 

compared with NSGA-II [40] and MOPSO [41] as 

reported in Table 5. The best compromised values 

achieved using the above methods are 869.8337$/h, 

0.2107ton/h, 2.5380MW, 0.2561p.u.and 918.3540$/h, 

0.2026ton/h, 1.8499MW, 0.1804p.u. respectively.  

 
Fig.2.Case-1: IEEE 30-bus system Pareto optimal fronts 

 
Fig.3. Case-2: IEEE 30-bus system Pareto optimal fronts 

 
Fig.4. Case-3: IEEE 30-bus system Pareto optimal fronts 

 
Fig.5. Case-4: IEEE 30-bus system Pareto optimal fronts 

Table 4. IEEE 30-bus system: best-compromised values achieved 

by the suggested method for Case-1 to 5 

S.No. 
Control 

variables 

Control 

variables 

at 

bus/line 

Limits 

Case-1 Case-2 Case-3 Case-4 Case-5 
Min Max 

1. 

Power 

(MW) 

2 20  80  45.9458 43.7045 45.7895 45.0363 45.0262 

2. 5 15  50  27.8704 32.3782 32.0212 24.5831 31.3830 

3. 8 10  35  25.4106 22.3175 22.3489 20.9377 25.9356 

4. 11 10 30  23.7889 15.9720 22.8090 16.0211 18.7876 

5. 13 12 40  26.8761 18.4583 23.7380 22.8131 23.3002 

6. 21 0 50 34.2826 38.0159 36.5405 33.2034 34.9378 

7. 7 0 50 36.6994 44.6478 41.7745 41.6915 41.3679 

8. 30 0 15 3.4689 8.9195 8.1977 9.6364 9.8781 

9. 

Voltage 

(p.u) 

1 0.95  1.1  1.0366 1.0412 1.0395 1.0115 1.0296 

10. 2 0.95  1.1  1.0239 1.0339 1.0323 1.0098 1.0199 

11. 5 0.95  1.1  0.9942 1.0128 1.0103 0.9947 0.9953 

12. 8 0.95  1.1  1.0172 1.0213 1.0238 0.9926 1.0028 

13. 11 0.95  1.1  1.0222 1.0305 1.0377 1.0176 0.9882 

14. 13 0.95  1.1  1.0210 1.0386 1.0291 1.0192 1.0209 

15. 

Tap ratio 

11 0.9  1.1  0.9851 0.9929 1.0002 1.0266 1.0108 

16. 12 0.9  1.1  0.9905 0.9912 1.0128 1.0231 1.0012 

17. 15 0.9  1.1  1.0200 0.9904 0.9873 0.9744 0.9872 

18. 36 0.9  1.1  0.9873 0.9814 0.9976 0.9859 0.9827 

19. 

Shunt VAR 

compensator  

(MVAR) 

10 0 5 2.0773 2.2870 2.8454 2.2417 2.2433 

20. 12 0. 5 2.8681 2.2815 5.5854 2.4882 3.5771 

21. 15 0  5 2.2181 3.0105 3.8380 2.2779 2.2404 

22. 17 0  5 1.5441 2.4913 2.5731 1.9535 2.3970 

23. 20 0  5 2.1519 2.7815 2.8305 4.0611 3.2049 

24. 21 0  5 2.1637 2.3464 2.2532 1.7295 2.5201 

25. 23 0  5 2.0966 2.4114 1.4699 3.1976 2.6193 

26. 24 0  5 2.8898 2.8234 3.0354 3.6187 2.9410 

27. 29 0  5 2.6363 2.4902 3.1590 3.4609 1.8377 

1. TC($/h)  - -  -  858.9256 853.6756 868.3559 842.3661 865.0922 

2 TE(ton/h) - - - 0.2093 - 0.2079 0.2184 0.2095 

3. APL(MW) - -  -  - 2.3263 2.1775 - 2.2978 

4. VMD(p.u.) - - - - - - 0.0973 0.1336 

 

Table 5. IEEE 30-bus system: Comparison of the suggested 

method with NSGA-II [40] and MOPSO [41] for Case-1 to 5 

Case 

Name 

Objective 

Functions 

Proposed 

Method 

NSGA-II 

[40] 
MOPSO [41] 

Case-1 
TC($/h) 858.9256 859.9519 863.2138 

TE(ton/h) 0.2093 0.2101 0.2116 

Case-2 
TC($/h) 853.6756 855.2758 858.9110 

APL(MW) 2.3263 2.4230 2.5328 

Case-3 

TC($/h) 868.3559 869.2563 876.5231 

TE(ton/h) 0.2079 0.2078 0.2058 

APL(MW) 2.1775 2.3740 3.2157 

Case-4 

TC($/h) 842.3661 843.7067 854.4809 

TE(ton/h) 0.2184 0.2154 0.2142 

VMD(p.u.) 0.0973 0.1335 0.1606 

Case-5 

TC($/h) 865.0922 869.8337 918.3540 

TE(ton/h) 0.2095 0.2107 0.2026 

APL(MW) 2.2978 2.5380 1.8499 

VMD(p.u.) 0.1336 0.2561 0.1804 

5.2. Modified IEEE 57-bus system 

To demonstrate the scalability of the proposed approach, 

the MOOPF problem is solved using the IEEE 57-bus 

system. It contains 7 thermal generators placed at buses 

1, 2, 3, 6, 8, 9, and 12 (# 1 generator acts as a slack 

generator) with 80 lines. In this paper, 15 off-nominal 

transformers are considered along with 3 shunt VAR 

compensators. The entire real and reactive power 

demand on the system is 1250.80MW and 

336.40MVAR respectively [45]. The standard system is 

modified by connecting Wind, PV, and PEV systems at 

buses 45, 16, and 49 respectively. 

5.2.1. Case-6: Minimize TC and TE simultaneously 

In this case, TC and TE are the objectives that need to 

be minimized simultaneously. The optimal decision 

variables obtained by the recommended method are 
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included in Table 6. The best compromise solution using 

the proposed algorithm has a TC of 35815.04$/h and TE 

of 0.8950ton/h which is the lowest value compared with 

NSGA-II [40] and MOPSO [41] as reported in Table 7. 

The best-compromised values achieved using the above 

methods are 35850.00$/h, 0.9928ton/h, and 

35910.00$/h, 1.0120ton/h respectively. Fig. 6 depicts 

the PO fronts for each approach. 

5.2.2. Case-7: Minimize TC and APL simultaneously 

In this case, TC and APL are the objectives that need to 

be minimized simultaneously. The optimal decision 

variables obtained by the suggested method are included 

in Table 6. The best compromise solution using the 

proposed algorithm has a total cost of 35169.27$/h and 

an APL of 9.8050MW which is the lowest value 

compared with NSGA-II [40] and MOPSO [41] as 

reported in Table 7. The best-compromised values 

achieved using the above methods are 35344.00$/h, 

9.9855MW, and 35404.00$/h, 11.2682MW respectively. 

Fig. 7 depicts the PO fronts for each approach.  

5.2.3. Case-8: Minimize TC, TE and APL 

simultaneously 

In this case, TC, TE, and APL are the objectives that 

need minimizing simultaneously. The optimal decision 

variables obtained by the suggested method are included 

in Table 6. The best-compromised values using the 

proposed algorithm have a TC of 35558.26$/h, TE of 

0.9673ton/h, and APL of 10.0796MW, which is the 

lowest value compared with NSGA-II [40] and MOPSO 

[41] as reported in Table 7. The best compromised 

values achieved using the above methods are 

36336.00$/h, 1.2498ton/h, 11.0813MW and 

36402.69$/h, 1.0450ton/h, 12.5591MW respectively. 

Fig. 8 depicts the PO fronts for each approach. 

5.2.4. Case-9: Minimize TC, TE and VMD 

simultaneously 

In this case, TC, TE, and VMD are the objectives that 

need minimizing simultaneously. The optimal decision 

variables obtained by the suggested method are included 

in Table 5. The best-compromised values using the 

proposed algorithm have a TC of 35888.04$/h, TE of 

0.9012ton/h, and VMD of 0.7043p.u. which is the 

lowest value compared with NSGA-I[40] and MOPSO 

[41] as reported in Table 6. The best compromised 

values achieved using the above methods are 

36224.00$/h, 0.9074 ton/h, 0.8284p.u. and 36989.00$/h, 

1.0916ton/h, 0.8060p.u. respectively. Fig.9 depicts the 

PO fronts for each approach. 

5.2.5. Case-10: Minimize TC, TE, APL, and VMD 

simultaneously 

In this case, TC, TE, APL, and VMD are the objectives 

that need to be minimized simultaneously. The optimal 

decision variables obtained by the suggested method are 

included in Table 6. The best-compromised values using 

the proposed algorithm have a TC of 35980.02$/h, TE 

of 1.1696ton/h, APL of 10.5229MW, and VMD of 

0.8308p.u. which is the lowest value compared with 

NSGA-II [40] and MOPSO [41] as reported in Table 7. 

The best compromised values achieved using above 

methods are 36250.00$/h, 1.4175ton/h, 12.3871MW, 

1.0481p.u. and 36662.59$/h, 0.9367ton/h, 14.1833MW, 

1.0669p.u respectively. 

 
Fig.6. Case-6: IEEE 57-bus system Pareto optimal fronts 

 
Fig.7. Case-7: IEEE 57-bus system Pareto optimal fronts 

 
Fig.8. Case-8: IEEE 57-bus system Pareto optimal fronts 

 
Fig.9. Case-9: IEEE 57-bus system Pareto optimal fronts 

 
5.3. Modified IEEE 118-bus system 

To show the scalability of the proposed algorithm for a 

large-scale test system in solving the MOOPF problem, 

IEEE 118-bus system was considered. It contains 54 

thermal generators (# 69 generator as a slack generator), 

and 186 lines. In this paper, 9 off-nominal transformers 

and 12 shunt VAR compensators are considered. The 

sum of real and reactive power demand on the system is 

4242.00MW and 1439.00MVAR respectively [45]. The 

test system is modified by connecting Wind, PV, and 

PEV systems at buses 81, 64, and 117 respectively. 

5.3.1. Case-11: Minimize TC and APL 

simultaneously 
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In this case, TC and APL are the objectives that need to 

be minimized simultaneously. The optimal decision 

variables obtained by the suggested method are included 

in Table 8. The best compromise values using the 

suggested algorithm have a total cost of 129019.12$/h 

and APL of 36.7616MW, which is the lowest value 

compared with NSGA-II [40] and MOPSO [41] as 

reported in Table 8. The best-compromised values 

achieved using the above methods are 129582.23$/h, 

37.3464MW, and 130673.5$/h, 38.0368MW 

respectively. Fig. 10 depicts the PO fronts for each 

approach. 

Table 6. IEEE 57-bus system: best-compromised values achieved 

by the proposed method for Case-6 to 10 

S.No. 
Control 

variables 

Control 

variables 

at 

bus/line 

Limits 

Case-6 Case-7 Case-8 Case-9 Case-10 
Min Max 

1. 

Power 

(MW) 

2 0 100  95.7907 25.0904 84.1793 100.0000 57.9085 

2. 3 0  140  69.0738 49.7571 53.1935 75.5083 80.1009 

3. 6 0  100  97.6214 54.1223 95.7712 79.7732 57.4498 

4. 8 0  550  304.0230 369.2352 302.8312 314.7732 329.5786 

5. 9 0  100  82.3521 70.0209 98.7022 83.9870 64.9448 

6. 12 0  410  294.0245 384.9806 331.1684 282.9023 379.1110 

7. 45 0 80 79.8467 79.8727 79.7886 79.4149 78.2859 

8. 16 0 80 79.7469 79.9213 79.9465 79.8968 78.5326 

9. 49 0 20 19.3799 19.9008 19.8993 19.6642 14.6734 

10. 

Voltage 

(p.u) 

1 0.95  1.1  1.0385 1.0398 1.0340 1.0394 1.0226 

11. 2 0.95  1.1  1.0279 1.0305 1.0286 1.0267 1.0102 

12. 3 0.95  1.1  1.0313 1.0244 1.0252 1.0227 1.0144 

13. 6 0.95  1.1  1.0343 1.0185 1.0203 1.0228 1.0127 

14. 8 0.95  1.1  1.0394 1.0135 1.0201 1.0253 1.0224 

15. 9 0.95  1.1  1.0214 1.0013 1.0123 1.0102 1.0125 

16. 12 0.95  1.1  1.0341 1.0209 1.0353 1.0217 1.0421 

17. 

Tap ratio 

19 0.9  1.1  1.0362 1.0148 1.0016 1.0159 1.0101 

18. 20 0.9  1.1  1.0250 0.9987 0.9939 1.0109 0.9964 

19. 31 0.9  1.1  1.0036 0.9842 0.9826 0.9953 1.0142 

20. 35 0.9 1.1 1.0307 0.9945 1.0275 0.9830 0.9855 

21. 36 0.9 1.1 0.9769 0.9873 0.9881 1.0323 0.9927 

22. 37 0.9  1.1  1.0448 1.0182 1.0359 0.9926 1.0270 

23. 41 0.9  1.1  1.0065 1.0187 0.9990 1.0269 1.0064 

24. 46 0.9  1.1  0.9927 0.9800 0.9800 0.9426 0.9956 

25. 54 0.9  1.1  1.0014 0.9573 0.9536 0.9030 0.9065 

26. 58 0.9  1.1  0.9821 0.9654 0.9724 0.9762 0.9780 

27. 59 0.9  1.1  0.9530 0.9667 0.9719 0.9575 0.9732 

28. 65 0.9  1.1  0.9719 0.9724 0.9847 0.9902 0.9799 

29. 66 0.9  1.1  0.9873 0.9397 0.9485 0.9260 0.9536 

30. 71 0.9  1.1  0.9720 0.9465 0.9750 0.9538 0.9620 

31. 73 0.9  1.1  0.9815 0.9910 1.0087 1.0263 1.0091 

32. 76 0.9  1.1  0.9844 0.9750 0.9706 0.9188 0.9641 

33. 80 0.9  1.1  1.0118 0.9906 0.9973 1.0165 1.0106 

34. Shunt VAR 

compensator  

(MVAR) 

18 0  20  11.6868 10.7152 8.9393 7.2739 11.0809 

35. 25 0  20  10.5195 11.2397 10.2799 13.0381 11.1002 

36. 53 0  20  10.8182 8.9104 6.1637 10.1057 8.4158 

1. TC($/h)  - -  -  35815.04 35169.27 35558.26 35888.04 35980.02 

2. TE(ton/h) - - - 0.8950 - 0.9673 0.9012 1.1696 

3. APL(MW) - -  -  - 9.8050 10.0796 - 10.5229 

4. VMD(p.u.) - - - - - - 0.7043 0.8308 

Table 7. IEEE 57-bus system: Comparison of the suggested 

method with NSGA-II [40] and MOPSO [41] for Case-6 to 10 

Case Name Objective 
Functions 

Proposed 
Method 

NSGA-II 
[40] 

MOPSO [41] 

Case-6 
TC($/h) 35815.04 35850.00 35910.00 

TE(ton/h) 0.8950 0.9928 1.0120 

Case-7 
TC($/h) 35169.27 35344.00 35404.00 

APL(MW) 9.8050 9.9855 11.2682 

Case-8 

TC($/h) 35558.26 36336.00 36402.69 

TE(ton/h) 0.9673 1.2498 1.0450 

APL(MW) 10.0796 11.0813 12.5591 

Case-9 

TC($/h) 35888.04 36224.00 36989.00 

TE(ton/h) 0.9012 0.9074 1.0916 

VMD(p.u.) 0.7043 0.8284 0.8060 

Case-10 

TC($/h) 35980.02 36250.00 36662.59 

TE(ton/h) 1.1696 1.4175 0.9367 

APL(MW) 10.5229 12.3871 14.1833 

VMD(p.u.) 0.8308 1.0481 1.0669 

 
Fig.10. Case-11: IEEE 118-bus system Pareto optimal fronts 

 
Fig.11. Case-12: IEEE 118-bus system Pareto optimal fronts 

 

Table 8. IEEE 118-bus system: best-compromised values for Case-

11 and Case-12 

S. No. 
Control 

variables 
Bus  / 
line 

Limits Case-11 Case-12 

Min Max 
Proposed 

Method 

NSGA-II 

[40] 

MOPSO 

[41] 

Proposed 

Method 

NSGA-II 

[40] 

MOPSO 

[41] 

1. 

Power 

(MW) 

1 0 100 40.0447 48.3405 63.6501 63.4515 33.3504 63.3967 

2. 4 0 100 49.9982 48.9338 53.5327 35.6629 33.2645 49.8530 

3. 6 0 100 59.1167 59.3328 47.0428 35.0138 42.7372 55.9243 

4. 8 0 100 45.0837 44.6111 33.9415 47.8259 37.5502 42.1967 

5. 10 0 550 193.3528 198.6711 225.9731 164.2240 212.8393 188.3711 

6. 12 0 185 66.1489 65.9076 77.3970 76.0734 88.2417 86.2172 

7. 15 0 100 48.9935 49.1643 56.4980 56.2799 43.1842 47.2287 

8. 18 0 100 43.7256 43.0544 38.1805 39.0496 58.9581 51.8238 

9. 19 0 100 28.7879 28.7425 56.6487 70.2897 41.3202 60.0969 

10. 24 0 100 33.8075 37.6122 41.0475 48.7321 55.7882 41.0988 

11. 25 0 320 120.0409 119.1804 91.3385 60.8414 105.1466 106.7849 

12. 26 0 414 120.6440 125.8632 139.7833 169.9155 133.5220 138.8390 

13. 27 0 100 46.2456 46.4613 42.2751 61.7409 59.3025 41.7592 

14. 31 0 107 22.3999 23.2030 14.1244 22.4692 15.4927 26.9107 

15. 32 0 100 55.1251 55.1034 43.5945 27.1559 29.6347 53.5314 

16. 34 0 100 51.6765 49.7872 30.0776 56.3221 50.3974 43.8198 

17. 36 0 100 55.7278 55.8064 46.3354 26.4301 47.3615 38.8550 

18. 40 0 100 58.4597 53.2461 59.4651 54.2550 45.0434 49.0854 

19. 42 0 100 61.1690 55.9346 49.2207 78.9208 58.3905 43.4171 

20. 46 0 119 42.4237 41.7433 32.4406 36.1427 54.2950 48.1913 

21. 49 0 304 178.0395 148.7433 183.1493 177.0897 131.1200 184.0774 

22. 54 0 148 68.7727 61.9638 69.9576 93.0152 84.6901 54.0201 

23. 55 0 100 41.4856 40.9559 43.8303 64.4180 44.6150 60.1522 

24. 56 0 100 56.0731 52.8332 56.7499 39.1371 53.4836 51.1180 

25. 59 0 255 141.0298 123.3472 152.7499 133.8940 165.7378 117.9661 

26. 61 0 260 106.4001 105.3442 125.3087 112.9721 60.7726 106.7391 

27. 62 0 100 60.9986 61.0078 33.7938 56.6838 57.5269 49.1312 

28. 65 0 491 220.8742 220.5479 226.5447 232.4857 200.8274 228.0551 

29. 66 0 492 204.3118 208.6433 171.8156 137.5718 207.0259 192.0830 

30. 70 0 100 57.4597 59.8371 20.1797 45.9800 59.0853 58.5005 

31. 72 0 100 40.2247 39.6023 45.6147 35.5260 32.2217 52.1747 

32. 73 0 100 33.4507 33.2678 44.7217 40.8232 50.1046 43.8125 

33. 74 0 100 62.6285 49.9213 63.6268 52.5801 54.5198 44.4446 

34. 76 0 100 58.4179 58.0876 49.2420 60.1585 56.9626 46.9866 

35. 77 0 100 58.7759 59.6641 45.42557 47.9148 68.9018 54.1347 

36. 80 0 577 277.4328 275.5281 251.2416 307.3935 213.9730 262.9793 

37. 85 0 100 45.6938 45.1100 25.9303 50.9420 41.9730 44.7471 

38. 87 0 104 8.7870 8.4396 5.1801 9.0718 22.7264 15.9175 

39. 89 0 707 265.9201 266.5600 323.5939 217.2268 253.6893 234.4638 

40. 90 0 100 37.1972 37.4954 48.6774 40.2967 42.9491 47.3719 

41. 91 0 100 38.8539 38.8713 44.3201 31.8664 40.5407 43.0382 

42. 92 0 100 48.4612 53.1343 25.9523 49.3316 51.6978 44.1538 

43. 99 0 100 37.8606 38.6321 13.4615 30.9745 50.4100 54.8767 

44. 100 0 352 97.0986 96.8499 125.8402 130.9657 138.1789 123.3379 

45. 103 0 140 71.3612 71.9647 55.1600 50.4524 63.5971 50.3507 

46. 104 0 100 54.0455 53.9685 47.1531 51.1611 43.8495 52.8388 

47. 105 0 100 37.9765 36.6977 31.9361 43.3539 31.4387 47.6009 

48. 107 0 100 46.0688 47.0195 37.6778 38.7497 40.0955 37.4718 

49. 110 0 100 41.2868 40.7633 27.3572 31.8345 37.3201 36.9108 

50. 111 0 136 30.3153 40.2204 42.3744 42.3214 52.6251 53.6456 

51. 112 0 100 38.6270 38.9172 37.9132 34.9093 43.7788 33.6974 

52. 113 0 100 51.6430 51.4637 36.8854 44.9313 61.3156 47.0229 

53. 116 0 100 43.0444 43.1406 31.9503 42.0291 46.2930 45.0701 

54. 81 0 150 95.3791 97.9346 146.8197 128.3143 87.0087 91.1115 

55. 64 0 150 134.1229 147.8063 95.3558 142.1814 97.1495 99.4261 

56. 117 0 40 15.9465 16.0712 17.8543 19.7354 19.5185 20.5103 

57. 

Voltage 

(p.u.) 

1 0.95 1.1 1.0263 1.0285 1.0389 1.0471 1.0250 1.0111 

58. 4 0.95 1.1 1.0310 1.0321 1.0014 1.0050 1.0286 1.0148 

59. 6 0.95 1.1 1.0355 1.0349 1.0346 1.0291 1.0207 1.0179 

60. 8 0.95 1.1 1.0093 1.0057 1.0157 1.0193 1.0126 1.0203 

61. 10 0.95 1.1 1.0374 1.0377 1.0172 1.0024 1.0057 1.0107 

62. 12 0.95 1.1 1.0158 1.0146 1.0379 1.0224 1.0187 1.0214 

63. 15 0.95 1.1 1.0206 1.0213 1.0179 1.0179 1.0016 1.0111 

64. 18 0.95 1.1 1.0285 1.0294 1.0222 1.0259 1.0172 1.0135 

65. 19 0.95 1.1 1.0193 1.0191 1.0255 1.0269 1.0224 1.0180 
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66. 24 0.95 1.1 1.0230 1.0226 1.0228 1.0235 1.0154 1.0256 

67. 25 0.95 1.1 1.0278 1.0279 1.0227 0.9998 1.0166 1.0223 

68. 26 0.95 1.1 1.0157 1.0143 1.0175 1.0212 1.0346 1.0258 

69. 27 0.95 1.1 1.0335 1.0338 1.0151 1.0080 1.0004 1.0126 

70. 31 0.95 1.1 1.0378 1.0379 1.0283 1.0260 1.0117 1.0245 

71. 32 0.95 1.1 1.0211 1.0218 1.0302 1.0335 1.0150 1.0035 

72. 34 0.95 1.1 1.0259 1.0243 1.0269 1.0250 0.9999 1.0059 

73. 36 0.95 1.1 1.0379 1.0375 1.0300 1.0142 1.0044 1.0051 

74. 40 0.95 1.1 1.0346 1.0340 1.0288 1.0075 1.0088 1.0236 

75. 42 0.95 1.1 1.0239 1.0232 1.0269 1.0040 1.0034 1.0187 

76. 46 0.95 1.1 1.0123 1.0124 1.0189 1.0215 1.0216 1.0224 

77. 49 0.95 1.1 1.0274 1.0285 1.0157 0.9947 1.0179 1.0163 

78. 54 0.95 1.1 1.0252 1.0259 1.0211 1.0138 1.0034 1.0197 

79. 55 0.95 1.1 1.0079 1.0078 1.0370 1.0267 1.0203 1.0203 

80. 56 0.95 1.1 1.0059 1.0040 1.0313 1.0278 1.0147 1.0172 

81. 59 0.95 1.1 1.0022 1.0021 1.0328 1.0261 1.0193 1.0278 

82. 61 0.95 1.1 1.0346 1.0342 1.0202 1.0459 1.0223 1.0327 

83. 62 0.95 1.1 1.0200 1.0201 1.0132 1.0243 1.0121 1.0174 

84. 65 0.95 1.1 1.0282 1.0288 1.0433 1.0170 1.0304 1.0022 

85. 66 0.95 1.1 1.0376 1.0301 1.0247 1.0277 0.9996 1.0391 

86. 69 0.95 1.1 1.0270 1.0266 1.0247 1.0202 1.0051 0.9985 

87. 70 0.95 1.1 1.0283 1.0231 1.0293 1.0337 1.0106 1.0107 

88. 72 0.95 1.1 1.0330 1.0334 1.0173 1.0119 1.0223 1.0256 

89. 73 0.95 1.1 1.0417 1.0415 1.0185 1.0283 1.0146 1.0270 

90. 74 0.95 1.1 1.0268 1.0314 0.9992 1.0272 1.0090 1.0156 

91. 76 0.95 1.1 1.0088 1.0051 1.0253 1.0119 1.0085 1.0071 

92. 77 0.95 1.1 1.0187 1.0192 1.0427 1.0314 1.0021 1.0065 

93. 80 0.95 1.1 1.0252 1.0254 1.0217 1.0404 1.0176 1.0109 

94. 85 0.95 1.1 1.0134 1.0140 1.0065 1.0240 1.0061 1.0142 

95. 87 0.95 1.1 1.0207 1.0182 1.0373 1.0161 1.0299 1.0236 

96. 89 0.95 1.1 1.0214 1.0210 1.0293 1.0363 1.0298 1.0384 

97. 90 0.95 1.1 1.0218 1.0209 1.0132 1.0280 1.0272 1.0248 

98. 91 0.95 1.1 1.0264 1.0243 1.0225 1.0480 1.0097 1.0340 

99. 92 0.95 1.1 1.0262 1.0276 1.0243 1.0312 1.0201 1.0213 

100. 99 0.95 1.1 1.0083 1.0065 1.0235 1.0415 1.0471 1.0092 

101. 100 0.95 1.1 1.0155 1.0091 1.0263 1.0291 1.0145 1.0414 

102. 103 0.95 1.1 1.0270 1.0280 1.0238 1.0226 1.0348 1.0165 

103. 104 0.95 1.1 1.0178 1.0168 1.0251 1.0103 1.0264 1.0018 

104. 105 0.95 1.1 1.0316 1.0352 1.0296 1.0118 1.0302 1.0263 

105. 107 0.95 1.1 1.0132 1.0127 1.0197 1.0042 1.0110 1.0340 

106. 110 0.95 1.1 1.0212 1.0226 1.0144 1.0117 1.0140 1.0164 

107. 111 0.95 1.1 1.0209 1.0203 1.0166 0.9956 1.0218 1.0386 

108. 112 0.95 1.1 1.0184 1.0181 1.0249 1.0163 1.0233 1.0227 

109. 113 0.95 1.1 1.0333 1.0331 1.0292 1.0343 1.0289 1.0223 

110. 116 0.95 1.1 1.0418 1.0409 1.0044 1.0108 1.0042 1.0088 

111. 

Tap ratio 

8 0.9 1.1 1.0165 1.0157 1.0369 0.9994 1.0045 0.9733 

112. 32 0.9 1.1 1.0025 1.0020 0.9801 0.9958 0.9807 1.0123 

113. 36 0.9 1.1 0.9948 0.9871 1.0081 0.9237 0.9941 0.9875 

114. 51 0.9 1.1 1.0136 1.0109 1.0080 0.9826 0.9739 0.9739 

115. 93 0.9 1.1 0.9876 0.9848 0.9975 0.9304 0.9834 0.9874 

116 95 0.9 1.1 0.9931 0.9944 0.9947 0.9980 1.0004 0.9681 

117. 102 0.9 1.1 1.0057 1.0068 0.9798 0.9999 0.9913 1.0148 

118. 107 0.9 1.1 0.9818 0.9817 0.9925 0.9784 0.9780 0.9813 

119. 127 0.9 1.1 0.9806 0.9842 0.9931 0.9861 1.0129 1.0087 

120. 

Shunt VAR 

compensator  

(MVAR) 

34 0 25 11.3179 11.3041 11.8443 14.5351 15.6509 11.2427 

121. 44 0 25 10.0859 10.2002 13.0331 14.2184 10.0191 8.9692 

122. 45 0 25 14.7235 14.7171 12.0710 9.0981 10.7855 14.2602 

123. 46 0 25 13.0587 13.5962 12.6628 6.1809 9.0046 8.7527 

124. 48 0 25 11.7728 11.7501 12.2913 14.5904 10.2403 12.7883 

125. 74 0 25 12.4274 12.8144 13.8217 14.0292 11.4761 12.4056 

126. 79 0 25 12.0556 11.9471 10.6996 6.2538 11.0239 15.1773 

127. 82 0 25 16.3087 16.5841 13.5684 16.4578 12.8005 12.9986 

128. 83 0 25 11.7913 11.7448 8.8350 11.4913 9.8887 14.9399 

129. 105 0 25 12.6136 12.5949 12.5140 10.6581 12.8361 14.2250 

130. 107 0 25 8.8002 9.3753 15.4349 12.8524 10.2346 11.5393 

131. 110 0 25 11.7193 11.8521 16.3327 15.2300 12.9425 12.0121 

1. TC($/h) - - - 129019.12 129582.23 130673.5 130796.33 134395.5 133574.6 

2. APL(MW) - - - 36.7616 37.3464 38.0368 32.5358 40.0724 41.3020 

3. VMD (p.u) - - - - - - 0.5165 0.6876 0.9706 

5.3.2. Case-12: Minimize TC, APL and VMD 

simultaneously 

In this case, TC, APL, and VMD are the objectives that 

need to be minimized simultaneously. The optimal 

decision variables obtained by the suggested method are 

included in Table 8. The best-compromised values using 

the proposed algorithm have a total cost of 

130796.33$/h, APL of 32.5358MW, and VMD of 

0.5165p.u., which is the lowest value compared with 

NSGA-II [40] and MOPSO [41] as reported in Table 8. 

The best compromised values achieved using the above 

methods are 134395.5$/h, 40.0724MW, 0.6876p.u. and 

133574.6$/h, 41.3020MW, 0.9706p.u.respectively. 

Fig.11 depicts the PO fronts for each approach. 

5.4. Statistical Analysis  

The statistical inference including best value, worst 

value, and percentage of errors for Case-6 and Case-11 

of IEEE 57 and 118-bus power systems are tabulated in 

Tables 9a-9b. From Tables 9a-9b, it is evident that the 

proposed algorithm shows better performance compared 

to NSGA-II and MOPSO methods. 

 

Table 9a. IEEE 57-bus system: Statistical inferences for Case-6 

Algorithms Objectives 
Case-6 

Best value Worst value % Error 

Proposed Method TC($/h) 3.557E+4 3.645E+4 2.42 

TE(ton/h) 0.833 0.9545 12.72 

NSGA-II [40] TC($/h) 3.536E+4 3.742E+4 5.49 

TE(ton/h) 0.8097 1.138 28.81 

MOPSO [41] TC($/h) 3.534E+4 3.686E+4 4.10 

TE(ton/h) 0.9391 1.203 21.91 

Table 9b. IEEE 118-bus system: Statistical inferences for Case-11 

Algorithms Objectives 
Case-11 

Best value Worst value % Error 

Proposed 

Method 

TC($/h) 1.283E+5 1.296E+5 0.95 

APL(MW) 36.38 39.19 7.17 

NSGA-II [40] TC($/h) 1.291E+5 1.309E+5 1.37 

APL(MW) 35.04 40.38 13.22 

MOPSO [41] TC($/h) 1.302E+5 1.333E+5 2.36 

APL(MW) 36.09 45.04 19.87 

 

Table 10a. Case-1: TC ($/h) 

Variation SS df MS F P-value 

Between-

group 

326734 2 163367 140.37 1.2215E-43 

Within-group 345656.4 297 1163.8 - - 

Total 672390.4 299 - - - 

Table 10b. Case-1: TE (ton/h) 

Variation SS df MS F P-value 

Between-group 0.00515 2 0.00257 29.81 1.5912E-12 

Within-group 0.02564 297 0.00009 - - 

Total 0.03079 299 - - - 

 
Fig.12. Case-1: IEEE 30-bus system: Box plots of best-

compromised values 

To further instigate the efficiency and robustness of 

the proposed algorithm on the MOOPF problem, one-

way analysis of variance (ANOVA) [8] test was 

conducted to analyze the statistical significance of each 

of the tested algorithms over other algorithms. ANOVA 

is a statistical test that is used to determine the mean of 

many strategies generated for each trial that exhibits a 

significant difference. Within-group variation quantifies 

the degree to which individuals deviate from the group 

mean. The term "residual" refers to the difference 

between an individual's value and the group mean. The 

squares of these residuals are joined together to obtain 

the sum of squares (SSwithin). Between-group variation 
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quantifies the degree to which group means deviate 

from the mean for the entire population (SSbetween). This 

is done by conducting a hypothesis test to ensure the 

techniques' robustness. Here, the degree of significance 

is set to 0.05 to account for the variability in all of the 

procedures used in the hypothesis test. The F-ratio is 

calculated as the ratio of two mean square (MS) values. 

The P-values are calculated using the F-ratio, and the 

two degrees of freedom (df) are listed in Tables10a-10b. 

If the P-value for the one-way ANOVA test is less than 

0.05, there is adequate evidence that one or more 

approaches are statistically different from one another. 

The statistical studies were also performed using box 

plots. A box plot is a graphical tool that summarizes 

numerous critical parameters in a distribution visually. 

A box plot ranges from the lower hinge (25th percentile) 

to the top hinge (75th percentile) and contains the 

distribution's middle half of scores. The median is 

denoted by a line that passes through the centre of the 

box. Thus, one-fourth of the distribution resides 

between this line and the box's top, and one-fourth lies 

between this line and the box's bottom. The box plots 

for the best-compromised values of Case-1 are shown in 

Fig.12. It shows that the proposed method achieves the 

best variance of distribution and mean value over other 

algorithms, which means that the proposed algorithm is 

more robust than other algorithms. From box plots, it is 

clear that the proposed algorithm gives better results. 

From all the ANOVA results, it is concluded that the 

proposed algorithm gives the best optimal results over 

other algorithms on the MOOPF problem. 

6. CONCLUSIONS 

This paper presents a solution to the MOOPF problem 

by combining Wind, PV, and PEV systems. The 

approach is based on MOEA-based decomposition and 

summing up of normalized objective functions with an 

improved diverse selection mechanism. It also deals 

with tackling various constraints in the MOOPF 

problem using the superiority of the feasible solution 

(SF) technique. The cost of thermal energy and the cost 

uncertainty associated with Wind, PV, and PEV energy 

systems are minimized along with the minimization of 

carbon emission, active power losses, and voltage 

magnitude deviation. Monte-Carlo simulations were 

used to assess the uncertainty of Wind, PV, and PEV 

power. Apart from conventional cost minimization, this 

paper chose factors that account for uncertain prices of 

available Wind, PV, and PEV power. It showed the OPF 

formulation along with factors affecting Wind, PV, and 

PEV power's intermittency. To show the efficacy of the 

proposed method, simulations were done on the same 

test systems as with NSGA-II and MOPSO algorithms. 

The results show the superiority of the suggested 

method compared to other methods. The statistical 

analysis using the ANOVA test validates the proposed 

method by demonstrating that its mean is significantly 

superior from NSGA-II and MOPSO approaches. 

Further research can consider innovative OPF problems, 

such as varying time instances to model real-time 

changes in load demand including RESs and PEVs. The 

limitations of the proposed method are that the 

performance of this method depends on parameter 

settings and computing time grows as the number of 

objectives increases. Hence, the suggested method can 

be effectively used in operation when Wind, PV, and 

PEV power generations are included in the power 

system. 
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