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Optimized Cost of Energy by a Home Energy Management System
Employing Dynamic Power Import Limit Strategy: A Case study

Approach

V. D. Juyal ∗, S. Kakran

Electrical engineering department, National Institute of Technology Kurukshetra, India

Abstract— Nowadays, the centralized power system is changing to a distributed system, and various energy management systems are
being installed for efficient functioning. Load side management is a vital aspect of the energy management of the power network.
As residential demand is growing at a high rate, domestic customers play a crucial role in the successful implementation of demand
response (DR) programs. This paper considers a single customer having a home energy management system (HEMS) for thermostatic
and non-thermostatic characteristics-based appliances, photovoltaic panels, an electric vehicle, and a battery energy storage system. The
effect of various DR strategies has been discussed. A mixed-integer linear programming-based model of a HEMS is modulated and solved
to minimize the electricity consumption cost by employing a real-time price-based DR program using dynamic power import limits. An
incentive-based DR program is considered for reducing the energy demand and maintaining the energy balance during peak hours, and
peak pricing-based dynamic power import limiting DR programs are included for load shaping. The effect of load shaping on the peak to
average ratio is also discussed in different scenarios. Finally, the total electricity price is calculated and analyzed by considering other test
cases based on the inclusion/rejection of the mentioned DR programs.

Keywords—Demand response, Home energy management, Smart household, Electric vehicle, Battery-energy storage system, Dynamic
power import limit.

Time interval

NOMENCLATURE

Parameters
∆t
Ca The thermal capacity of air (KJ/Kg◦C)
fPV Factor to include the effect of dust
Ma Mass of air (Kg)
Req Equivalent thermal resistance (h.◦C/KJ)
ZAC Rated power of AC (kW)
β Coefficient of performance
θCW
h Inlet cold water temperature (◦C)
θHWmx./ θHWmn. The maximum/minimum value of hot water

temperature (◦C)
Spth The set-point of AC temperature (◦C)
ηchEV / ηdEV The EV’s charging and discharging efficiency
∂buy
h The price of electricity supplied by the grid

(cents/kWh)
Hf ch/ Hf dis Timeslot when the electric vehicle should be

completely charged/discharged
SEEV ini The initial state of energy of the EV (kWh)
SEEV mx/SEEV .mn. The EV’s Maximum/minimum permitted

state of energy (kWh)
ZMR

h Energy demand of must-run appliances (kW)
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zmx
h The consumer’s maximum load reduction at hour h
ZPV .gen

h Energy extracted from the PV (kW)
Variables
θHW
h The temperature of hot water (◦C)
θrh Room temperature (◦C)
ZEWH
h Energy consumed by EWH (kW)

Zex
h Extra grid energy purchased (kWh)

mEV
h If there is EV charging during period h, the binary

variable is 1; otherwise, it is 0.
mEWH

h If EWH is operational, the binary variable is 1;
otherwise, it is 0.

SEEV
h The EV’s State of energy (kWh)

ZEV ch
h The EV’s Charging power at slot h (kWh)

ZEV dis
h The EV’s Discharging power at slot h (kWh)

Zgr
h Grid-supplied energy (kWh)

N The total number of schedules that can be used
appliance ‘a’ of type-2

1. INTRODUCTION
Energy demand is increasing day by day due to the population

and vigorously rising living standards of consumers. Authors [1]
expected that energy demand would grow up to 30% more than the
current value by 2040, and residential energy demand will also rise
significantly in the future [2]. Due to the diminishing traditional
fuels, the world is moving toward renewable energy resources [3].
It has been determined that only solar photovoltaics will contribute
up to 20% in 2030 and up to 30% in 2050. According to the IEA
report 2020, renewable is contributing nearly 28% of the global
energy demand [4]. Many distributed energy resources (DERs)
of small and medium power generators are being installed in
the distribution sector. That’s why managing and scheduling the
available energy resources is imperative. The inclusion of DERs
and increased power demand cause many problems for the utility
as well as customers. Smart grid technology is proved to be a
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solution to many of these problems [5]. Energy scheduling at the
load end can save the power system from stress during the peak
demand hours [6]. Here, demand-side management (DSM) comes
into the role.

The demand response (DR) program is a part of DSM
and is the key to motivating consumers to participate in the
energy management system [7]. It is the most effective tool for
getting a smoother load curve, reducing cost, and enhancing the
power system reliability [8]. By enabling communication with the
customers, DR tries to match the demand and supply in a power
network. This power balancing reduces capital costs by minimizing
the need for extra generators and transmission lines [9]. In the
residential loads, appliances like air conditioners (AC) and electric
water heaters (EWH) are high-power appliances that also affect
consumers’ comfort levels. Scheduling of such appliances can
change the load curve significantly [10], and hence it is necessary
to include such appliances in the DR program at the residential
level. In this era of development, smart homes are in focus,
which are employed by loads like electric vehicles (EV) [11]
as well as distributed generators like solar photovoltaics (PV),
wind generators [12], and storage units like battery energy storage
systems (BESS). With these smart home energy management,
DR programs have the large potential to change the load curve
significantly [13].

The authors [5] provided a detailed survey of DR programs,
their mathematical models, issues, approaches, and DR programs’
future extensions. Real-time pricing (RTP) is primarily regarded as
one of the most effective and efficient price-based DR programs,
according to a discussion of several incentive & price-based DR
solutions. Mathematical models based on utility and cost functions
have also been discussed. In [14], the authors provided a detailed
review of residential, commercial, and industrial DR programs.
Because of the importance of reliability management in industrial
operations, industrial loads may be more challenging to apply DR
than residential loads. The authors in [15] proposed a DR strategy
for residential thermal appliances. The main focus was on the
comfort level of the customer. The presented approach adjusted
the temperature set-point of AC thermostats to reduce average
discomfort among DR program participants while also meeting the
utility’s DR event requirements. In [16], the AC and air ventilation
systems are considered, and the problem is optimized for electricity
cost reduction. The study presented a decoupled DR technique and
an interdisciplinary mechanism that combines machine learning,
optimization, and data structure design to design and build the DR
and HEMS. In [17], the authors took the thermal zone-stratified
model of EWH based on the energy balance phenomenon. The
control strategy was based on dynamic programming and the
classification of power consumption profiles, and the modeling
was done to reduce energy demand and increase user satisfaction.
In [18], BESS has been included to get the optimum solution
for a home energy management system (HEMS) using adaptive
dynamic programming to control and coordinate several batteries.
The authors [19] considered both energy storage system and EV
with the EV to home (V2H) and EV to grid (V2G) modes in
the energy management system (EMS) with a peak power limiting
strategy.

The above-discussed papers contribute significantly to smart
grid applications and DR strategies. Still, many research papers
did not include the applications like the V2H/V2G operating mode
of EV and BESS. Some papers focused on a particular type of
appliance [17], [20] and didn’t include all kinds. The authors
in [15–18] concentrated on modeling a single appliance. However,
they neglected to consider loads like electric vehicles (EVs), which
might be employed as an energy storage system after charging
and result in a decrease in the amount of power used. Shiftable
and controllable appliances were not included in [19], which could
support the energy management of a smart home. For an islanded
microgrid, linear programming has been used to design and solve
the optimization issue for the most cost-effective utilization of

production and storage units [21]. It is recognized that diesel
generator units’ efficiency varies depending on the production
level. Plans for DSM have been offered in response to this issue,
including the issue of load uncertainty.

An IoT-based large energy management system has been
proposed by [22] for big data of 1 million residents employing
smart meters. The generated data from one million meters was
stored in a distributed format using a 4-node cluster, and parallel
processing was carried out across nodes acting as master and
slave nodes. The suggested solution has the ability to visualize
customer behaviour at each level and is scalable for a big area. The
authors of [23] developed a multiobjective model for reducing cost
and peak demand in a residential area by incorporating customer
satisfaction. The authors [24] proposed a realistic wind power
generation scheduling on the utility side. Still, they didn’t include
any uncertainty on the demand side, and the customer’s comfort
level was also not considered in the study. In [22] & [23], the
authors used the time of use (ToU) tariff for optimization, and [24]
presented two-stage programming for scheduling the DR options
in the real-time market & day-ahead market.

Different evolutionary computational tools like a genetic
algorithm (GA) [25], particle swarm optimization (PSO) [26],
whale optimization algorithm [27], and games theory [28] have
also been used by different authors in various research papers for
scheduling of HEMS. In the paper [29], various computational
tools have been discussed and compared regarding computation
time, complexity, and other factors. A fuzzy-based multiobjective
model is presented by [30] considering the uncertainty brought
on by energy generation from renewable sources and uncertain
consumption by customers. The size and location of DERs,
capacitors and interruptible loads have also been considered
simultaneously. Heuristic computational techniques have been
widely used in various recent research, which may take less
time to calculate but are more computationally complicated than
mathematical tools and tend to locate local minima rather than
global minima. In [31], the authors considered various constraints
for user satisfaction and power balance in the HEMS. The DERs
and loads have been scheduled using a mixed-integer linear
programming [MILP] approach to get the optimum solution. The
time horizon has been divided into 24 slots (1 hour each) which
could be reduced to compare with a more realistic scenario. A
comparative analysis of different strategies to reduce the peak to
average ratio (PAR) employed by a HEMS is presented in the
study [32]. Different scenarios have been considered based on the
rapid change in the tariffs during COVID-19 and modelling is
done using MILP and the problem is solved using CPLEX solver
of GAMS software.

The comfort level should be considered while scheduling the
appliances, especially for thermal appliances. Several studies have
neglected this constraint since it makes the problem very complex.
There are various ways to lower the cost of electricity; however,
peak rebound and PAR should both be considered as constraints
simultaneously. Otherwise, the power system will face other
challenges as a requirement of extra power reserves and extra
expenses on the infrastructure to maintain the reliability of the
existing network. Various papers discussed several strategies for
power transfer from the grid; still, the applied strategy to limit the
import of power from the grid and reduce PAR is not considered
in any of the research papers up to the best of the author’s
knowledge.

In this research paper, gaps found as discussed above have been
considered to give more realistic HEMS and contribute to the
novelty of this study.
• Nearly all kinds of general-purpose appliances of residential

loads are included in DR strategies.
• A renewable energy source is considered in the form of PV

which is used to charge BESS and EV. BESS and EV are
taken as special loads that can also supply electricity to the
home during peak pricing hours.
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• Incentive-based DR (IB-DR), with real-time pricing (RTP)
based tariff and dynamic peak power limiting strategies, are
used to schedule the household appliances to minimize the
total electricity cost for the consumer while keeping the
rebounding within limits.

• A utility function-based MILP model is formulated and solved
to minimize electricity cost and PAR by GAMS-CPLEX.

• A dynamic power import strategy is used for the transaction
between grid and household, which the authors do not find
in any other research paper to the best of their knowledge.

• All the discussed gaps are included simultaneously in the
study, which makes the study novel.

The IB-DR program assists the utility in reducing peak demand
for electricity by incentivizing consumers to reduce the promising
load. Under the RTP scheme, the reduced load is transferred to
the other off-peak time slots to meet the total consumption of the
consumer. The demand shifted to off-peak hours, which can cause
peak rebounding, will be limited to a predefined value using the
applied dynamic peak limiting DR strategy.

The remaining paper is organized as follows: Section 2 consists
of a detailed discussion of the HEMS model along with the
mathematical model of BESS, EV, solar PV, thermal, and non-
thermal characteristics-based appliances. The objective function’s
mathematical model and the solution to the proposed model are
covered in Section 3. The case study and quantitative analysis &
findings of various DR programs are addressed in Section 4, which
is the results section. Concluding remarks of the study are covered
in section 5.

2. HOME ENERGY MANAGEMENT SYSTEM

2.1. System Model
A single household prosumer is considered to have a small

solar PV as a DER, non- thermostatically and thermostatically
controllable loads. AC and EWH are taken as thermostatically
controllable loads. Some must-run appliances are also included
in the study. The ratings of different sources and storage, solar
irradiation, and incentives are assumed for this study only. They are
not guaranteed to meet the standards. A home energy management
unit (HEMU) is employed for scheduling purposes. Scheduling
interval is assumed, which is split into 60-minute time slots. Here
H is defined as the set of divided hourly time intervals, i.e., H
= {1,2, . . . , 24}. Different types of loads and appliances are
modeled and explained as follows:

2.2. Non - Thermostatically Controllable Appliances:
The energy consumption scheduling vector Qa is denoted as

Qa ,
[
Q1

a, Q
2
a, . . ., Q

24
a

]
(1)

where Qh
a shows the energy consumption of appliance a ∈ A at

time slot h, and ‘A’ denotes the set of appliances employed in
the household. Now, let us assume that Ea is the energy required
for the complete operation of the appliance’ a’. Hence, it can be
written as ∑

h∈H

Qh
a = Ea ∀a (2)

Any appliance a ∈ A may have a distinct requirement of energy
based on its specification and use by the consumer [33]. Various
appliances may differ in their operational characteristics.
• Interruptable loads: The appliances which can run at any

time interval preferred by the consumer are included in this
category. These appliances are switchable between ON and OFF
at any moment throughout the consumer’s chosen time slots. In
the ON state, fixed energy is consumed by the appliance, which is
shown as Y max

a and in the OFF state, the appliance will consume

minimum energy of Y min
a . Thus, the energy consumption of the

appliance can be formulated as:

Qh
a = yh,a ∗ Y max

a + (1− yh,a) ∗ Y min
a , ∀h (3)

where yh,a is a binary variable that represents the ON/OFF status
of the appliance a ∈ A (i.e., 1 for ON state and 0 for OFF state).
Any appliance must be turned on for a specific amount of time to
finish the assigned duty, which can be expressed by∑

h∈H

(yh,a∗Sa,h) = ka (4)

The binary variable Sa,h is used to choose the operating state
of a ∈ A according to the consumer’s selected preferences. ka
denotes the total duration required by the interruptable appliance
for the completion of the assigned task (ka ≤ entire ON duration
of the appliance a).
• Uninterruptable loads: After turning ON, these appliances will
turn OFF only if the assigned task is completed. This means
we can schedule the ON time only. The uninterruptable loads
can be of different load profiles according to their operational
characteristics. Another binary variable, x, is introduced for the
modeling of such appliances so that∑

n∈N

xn,a = 1 (5)

where n = 1, 2, . . . up to N. Here, N is the total number
of possible schedules for appliance ‘a’. Therefore, the energy
consumption of the uninterruptable appliances is given by,

Qh
a =

∑
n∈N

(xn,a∗En,h) ∀ h (6)

where En,h is the energy required in the hth slot of the schedule
n.

Thus, we can say that the total power per time slot, i.e., the
energy required by the non-thermostatically controllable appliances,
will be:

Zappl
h =

∑
a∈A

Qh
a ∀ h (7)

2.3. Thermostatically Controllable Appliances:
Generally, these appliances are the most power-consuming

appliances for a household, which also affect the comfort of a
residential consumer; therefore, scheduling such devices must be
proper to reduce the overall electricity bill. In this study, AC and
EWH are included as thermostatically controllable appliances and
modeled as follows:
• Air conditioner (AC) model: The temperature of the room

where the AC is installed affects how well it works. Many
factors, like the rate of heat exchange between a house & outside
environment, thermodynamic characteristics of the building, and
thermal characteristics, affect the inside temperature of the
portion [34]. These aspects are taken in mind, and the equations
represent a linear form of the model:

θrh =θrh−1 +

(
∆t

Ma∗Ca∗Req

)
∗ (θah−1 − θrh−1)

−mAC
h−1 ∗

(
β ∗ ZAC ∗∆θ

0.000277 ∗Ma∗Ca

)
∀ h > 1

(8)

θrh ≤ Spth +Du
h ∀ h (9)

θrh ≥ Spth −D
l
h ∀ h (10)

ZAC
h = ZAC ∗ mAC

h ∀ h (11)
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The temperature inside the room during the cooling operation of
AC is represented by (8). Du

h and Dl
h are the allowable deviation

limits in the room temperature from the set-point decided by the
consumer according to his comfort level. Equation (11) represents
the power consumed by the AC in which, ZAC is the rated power
of AC per time slot and mAC

h is a binary variable, the value of
which will be 1 when AC is operating.
• EWH model: The mathematical model of EWH is taken

from [34] with suitable modifications. It is assumed that used
hot water from the EWH is replaced with cold water. It is
also assumed that the EWH is installed where the ambient air
temperature has an immediate effect on the water temperature. The
following equations represent the EWH model:

θHW
h+1 = θah + q *R*mEWH

h

− (θah − θHW
h ) ∗ e−

∆t
R∗C ∀ h, uh = 0

(12)

θHW
h+1 =

θHW
h ∗ (V − uh) + θCW

h ∗uh

V
∀ h, uh > 0 (13)

θHW
h ≤ θHWmx ∀ h (14)

θHW
h ≥ θHWmn ∀ h (15)

ZEWH
h = q ∗ mEWH

h ∀h (16)

where (12) represents the temperature of hot water in the EWH
tank due to the heat produced by the resistance of EWH and by
the heat exchange from the environment. θah denotes the outdoor
air temperature (◦C), q denotes the capacity of EWH (kW), R
& C denotes the thermal resistance of EWH (◦C /kW), and
thermal capacitance of EWH (kWh/◦C). Equation (13) shows the
temperature of water in the tank of EWH after the use of hot
water from the tank, where V denotes the tank size of EWH
(gallons) and uh is used for hot water usage (gallons/min). The
maximum and minimum limits on the temperature of the tank of
EWH are determined by (14) and (15), respectively. Finally, the
electric energy consumption by the EWH is shown in (16).

2.4. Solar PV Model
In this paper, the customer is considered a prosumer with a

small solar PV as a DER. It is assumed that the prosumer has
installed the rooftop PV of 1kW in the house. Data from [35]
is used to calculate generated PV power. The solar PV-generated
power per time slot can be represented by (17).

ZPV gen
h dc =

(
fPV

0.8

)
∗ PV rated ∗

Gh

GSTC
∗
{

1+

αT ∗ (θh − θSTC)

} (17)

The manufacturers provide the datasheet of PV panels for
standard test conditions (STC) to indicate their performance. STC
has mainly three conditions; irradiance of 1000W/m2 ( GSTC ),
the temperature of cells of the panel at 25◦C (θSTC ), and
the air mass of 1.5. This means PV will provide the rated
power PV rated at STC but in the actual scenario, environmental
conditions change according to the place where PV is installed.
In equation (17), ZPV gen

h dc shows the actual PV generated energy
at hth hour, depending on fPV which is a factor to include the
effect of dust etc., Gh(W/m2) is the actual irradiance and θh is
the actual temperature (in ◦C) at hth hour. αT = -0.0048 ◦C is
the temperature coefficient of power. The effective generated solar
energy is used for a portion of residential load demand and shown
as:

ZPV home
h = ZPV gen

h ∀ h (18)

2.5. BESS Model
It is assumed in this study that the consumer has installed a

BESS unit to store energy. The BESS unit will consume energy in
the charging mode and act as an energy source in the discharging
mode. Hence the energy provided by the BESS unit for the
household will be

ZBESS home
h = ZBESS dis

h ∗ ηdBESS ∀ h (19)

where ZBESS dis
h is the discharging power and ηdBESS is the

discharging efficiency of the BESS. (20) and (21) show the BESS’s
charging and discharging power (kW).

ZBESS ch
h ≤ ChrBESS ∗ mBESS

h ∀ h (20)

ZBESS dis
h ≤ DisrBESS ∗ (1− mBESS

h ) ∀ h (21)

where ChrBESS/ DisrBESS are the charging / discharging rate
of the BESS respectively and mBESS

h is a binary variable value
of which will be ‘1’ in the charging mode of BESS during the
hour ‘h’ and ‘0’ otherwise. The state of energy (SE) at a hth hour
can be shown as

SEBESS
h =SEBESS

h−1 + ηchBESS ∗ ZBESS ch
h

− (ZBESS dis
h /ηdBESS) ∀ h ≥ 1

(22)

where ηchBESS is the charging efficiency of the BESS and
ZBESS ch

h is the BESS’s charging power (kW). The initial SE at
the beginning of the time horizon is represented by (23).

SEBESS
h = SEBESS ini if h = 1 (23)

Each battery storage unit has a limit on its maximum and minimum
energy state, as shown in (24) and (25).

SEBESS
h ≤ SEBESS mx ∀ h (24)

SEBESS
h ≥ SEBESS mn ∀ h (25)

where SEBESS mx / SEBESS mn are the BESS’s maximum and
minimum SE range (kWh).

2.6. Electric Vehicle Model
The EV will be included in the DR program between the time

of arrival (Har.) and time of departure (Hdp.) from home. The
mathematical model used in the study is presented in the following
equations:

ZEV home
h = ZEV dis

h ∗ ηdEV ∀ h ∈ [Har, Hdp] (26)

where ZEV home
h is the effective EV power per time slot used for

the household demand, and discharging efficiency of the EV is
denoted by ηdEV .

ZEV ch
h ≤ChrEV ∗ mEV

h ∀ h∈[Har, Hdp] (27)

ZEV dis
h ≤ DisrEV ∗ (1− mEV

h ) ∀ h ∈ [Har, Hdp] (28)

where, ZEV ch
h and ZEV dis

h are the EV’s charging and discharging
power per time slot, respectively, and, ChrEV and DisrEV are
the EV’s charging and discharging rate. mEV

h is a binary variable,
the value of which is ‘1’ if it is charging during the interval ‘h’;
otherwise, its value will be ‘0’. Equations (27) and (28) depict the
EV’s charging and discharging power limits. Like a BESS, the SE
of an EV at a particular time slot can be represented as in the (29).

SEEV
h = SEEV

h−1 + ηchEV ∗ ZEV ch
h

− (
ZEV dis

h

ηdEV
) ∀ h ∈ [Har, Hdp]

(29)
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where SEEV
h and SEEV

h−1are the SE of the EV at hth slot and
(h-1)th slot. At the time of arrival, the EV’s SE is shown in
equation (30). The maximum and minimum limits on the SE of
the EV are shown in (31) and (32).

SEEV
h = SEEV ini if h = Har (30)

SEEV
h ≤ SEEV mx ∀ h ∈ [Har, Hdp] (31)

SEEV
h ≥ SEEV mn ∀ h ∈ [Har, Hdp] (32)

It is assumed that there is no energy loss in the EV if it is not
used in scheduling, and hence SE will remain at the maximum
value after full charging until the vehicle’s departure, which is
modeled in the (33). It is also assumed that the EV is not reused
after complete charging; the energy remaining at the EV’s arrival is
used only. The EV will be at minimum SE if it is fully discharged
at a preselected time slot.

SEEV
h = SEEV mx ∀ h ≥ Hf.ch. ∈ [Har, Hdp] (33)

SEEV
h = SEEV mn ∀ h = Hf.dis. ∈ [Har, Hdp] (34)

All the variables considered in the modeling of the EV will be
functional only if the EV has arrived at the home; otherwise, the
value of all the variables will be zero, which is shown in (35).

ZEV home
h = ZEV so

h = ZEV dis
h

= ZEV ch
h = 0, ∀ h ∈ H/[Har, Hdp]

(35)

2.7. Incentive-Based Demand Response (IB-DR) Modelling
A residential community is considered in this study, and the

participation of a consumer is presented as:

cost(h) = ZDR
h ∗ ∂DR (36)

ZDR
h ≤ zmx

h (37)

where cost(h) is the total cost of consumer’s participation in the
DR program, ZDR

h is the planned saving in the must-run load
and ∂DRis the consumer incentive given at hour h, respectively.
The customer’s participation in the IB-DR program is optional,
but the study is done for the customers who willingly participate.
The incentive can be fixed or dynamic, depending on the price
sensitivity and load elasticity. For this case study, a flat rate of
3.5 cents is used as the incentive (∂DR). However, according to
the available load for participation in the DR, incentives may also
have different values, as mentioned in Table-2.

2.8. Power Import Limits
The maximum power limit per slot which can be imported from

the grid is shown by (38).

Zgr
h ≤ Amx(h)∀ h (38)

Here Amx (h) is a set of positive integers representing the power
import limit at each hour. In this study, dynamic power import
limit (DPIL) is used, which is different for each hour. The limit is
set according to the real-time price, demand of the consumer, and
the constraints which must be satisfied to get the feasible solution
of the objective function. For this, a higher power import limit
is used in this study during the hours at which the RTP is low
and/or the demand of the consumer is high. The limits considered
are shown in Fig. 1. However, a separate algorithm can also be
implemented to calculate the power limit at each slot. It would
be beneficial to build and use such algorithms if the scope of the
study has to be increased to a large number of consumers, which
is not a part of the current study.

3. PROBLEM FORMULATION AND PROPOSED
SOLUTION

3.1. Problem Formulation
The study’s primary goal is to reduce the cost of household

electricity consumption by utilizing local sources in conjunction
with the DR strategy. The proposed problem’s objective function
is written as follows:

Cost =
∑
h∈H

(
Zgr

h ∗ ∂
buy
h − ZDR

h ∗ ∂DR
)

(39)

Equation (39) shows the difference between the grid’s electricity
price and the cost for the customer’s participation in the DR at
hour ‘h’.

Now, the DPIL strategy is modified in such a way that if the
customer wants to use extra power per time slot (Zex

h ) besides
pre-specified limits, he can use it but at a higher price. That’s why
modified objective function and DPIL will be changed as:

Zgr
h ≤ (Amx + Zex

h ) ∀ h (40)

Cost =
∑
h∈H

(
(Zgr

h − Zex
h ) ∗ ∂buy

h + Zex
h ∗

(
x ∗ ∂buy

h

)
− ZDR

h ∗ ∂DR
)

(41)

Where ‘x’is a factor, the value of which is greater than
one and depends on the tariff for the extra power. In
this study, the value of ‘x’ is assumed to ’1.1’, yet it is
not a standard value referenced in any article. According
to the DR program strategy, the power utilized by the
home for must-run appliances, thermal and non-thermal
appliances, EV, and BESS charging will be supplied by the grid,
PV, EV, and BESS. The energy balance equation can be written as:

Zgr
h + ZPV home

h + ZBESS home
h + ZEV home

h = (ZMR
h − ZDR

h ) + Zappl
h + ZBESS ch

h + ZEV ch
h + ZAC

h + ZEWH
h + Zex

h ∀ h (42)

Fig. 1. Hourly power limits used in the study

Here in (42), parameters are the effective power, including
conversion efficiency. However, the conversion efficiency has not

been focused.

The formulated problem is comprised of various constraints,
shown by (1)–(42) except (39) and (41). The constraints are of
binary or integer values. The objective functions of the study are
shown in (39) and (41). The objective function is linear; hence,
it does not create complexity and is solvable using mixed integer
programming (MIP) techniques. The CPLEX solver of GAMS
software can be used for solving MIP and MILP problems [36].
Hence the problem is solved using the CPLEX solver of GAMS
on a 64-bit, intel core i5-1035G1 CPU @1.00GHz laptop.
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Table 1. Specifications for non-thermostatically controlled appliances

Appliance Type Avg. power (kW) Time of operation (hours) Energy consumed per day (kWh)

Water Pump 1 0.75 3 2.25
Vacuum cleaner 1 0.74 2 1.48
Dryer 2 5.5 1 5.5
Coffee maker 2 0.35 1 0.35
Range Top (S) 2 1.6 1 1.6
Microwave oven 2 0.8 1 0.8
Iron box 2 1.1 1 1.1
Toaster 2 1.1 0.5 0.55
Toaster Oven 2 1.5 0.5 0.75
Oven cleaner 2 3.5 0.5 1.75
Washing machine 2 0.665 1.5 0.9975
Dish washer 2 1.2 1.5 1.8
Oven 2 3.5 1.5 5.25

Fig. 2. The average power demand of household must run appliances

Fig. 3. Solar power generated by PV panels

4. CASE STUDY AND RESULT ANALYSIS

The commonly used appliances used by any household customer
are taken in this study. The data on the daily demand for must-run
appliances (refrigerator, TV, telephone, etc.) [37] is done by
averaging the monthly consumption of the appliances, shown in
Fig. 2.
The data for non-thermally controlled appliances are shown in
Table 1, which is taken from [33], and the PV power generated
from the solar panels is shown in Fig. 3.
For the customer’s comfort, his preferences are required for the use
of thermal appliances. In this study, AC and EWH are considered
as thermally controlled appliances. It is assumed that he needs the
room temperature between 23◦C to 27◦C from 10 AM (11th-time
slot) to 5 PM (18th-time slot). Other parameters for the function
of AC are as follows. The mass of air is 1778.369 Kg, the
thermal capacity of air is 1.01 KJ/Kg 0C, the equivalent thermal
resistance is 3.1965*10−3 h.◦C/KJ, coefficient of performance is
2, thermostat set point is at 25◦C, allowed deviation in temperature
around the set-point is set to 2 ◦C, and the power rating of the AC
is taken 2 kW.

4.1. Proposed Solution
The thermal properties of the EWH are derived from [23], with

a rated power of 2kW and a water capacity of 50 gallons assumed.
For the scheduling of the EWH, it is assumed that the customer
will be needed hot water at 6 AM and 6 PM, which are the 7th &

Fig. 4. Real-time price tariff

19th slots of the time horizon. The temperature range of hot water
is assumed to be 30◦C to 45◦C and 30◦C to 50◦C, respectively,
for selected slots. The showerhead is assumed to have a flow of
2.5 gallons/min and supplies water for 10 minutes after getting
ON.

It is also assumed that the customer has the BESS capacity of 1
kWh with an initial SE of 0.5 kWh. The charging/discharging rate
is taken as 0.2 kWh, and the efficiency is assumed to be 0.95. The
permissible limit on the discharge of the BESS is up to 0.25 kWh.

In this study, EV can work in the home to vehicle (H2V) and
V2H mode for better utilization of EV. In V2H mode, the remnant
energy of EV can be utilized for the demand for home appliances.
The battery capacity of the EV is assumed to be 16 kWh, with
a charging/discharging rate of 3.3 kWh [38] and an efficiency of
0.95. The minimum SE level of the EV’s battery is believed to be
4.8 kWh in order to prevent deep discharge of the battery [39].

In this study, an RTP tariff is used for purchasing power from
the grid. The data for RTP tariff is taken from [40] and shown
in Fig. 4 in which the price is varied in each hour of the day.
In this study, energy from PV and other local sources is used in
the home itself; therefore, the transfer of energy to the grid is not
taken into account. The utility offers several options for consumer
participation in an IB-DR program. Based on experience, the
utility informs customers about the DR program’s implementation
time and incentive rates prior to scheduling. The reward rates can
be different for different DR values. In this study, the reward rates
are taken as shown in Table 2, although these are not standard
rates but only from the analysis point of view.

In this study, the customer is bound with 40% of the must-run
load dedicated to the DR program during peak hours. The time
horizon is divided into 24 hourly slots. The time between 1 PM
to 7 PM is taken as peak hours. The consumer has opted for the
option in which 33% of the committed load is selected for the DR
program.

Different scenarios have been considered in the study for the
scheduling of appliances and the local sources according to the
preferences of the customer. The impact of scheduling on the
electricity cost and PAR is considered for each scenario. All the
scenarios (except I) are modelled as MILP and analyzed using
CPLEX solver GAMS software. Different scenarios are described
as:
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Table 2. Rates of incentive for various DR levels

DR level 33% of the committed load for DR 66% of the committed load for DR 100% of the committed load for DR

Incentive rate (cents/kWh) 3.5 4 4.5

Fig. 5. Typical scheduling of household appliances without any DR
program.

Fig. 6. Scheduling with RTP-based DR having DPIL and without IB-DR

Fig. 7. Contribution of different power sources towards the household
demand for scenario- II.

Fig. 8. Contribution of different power sources towards the household
demand for scenario- III.

Fig. 9. Scheduling with RTP-based DR having DPIL and with IB-DR.

Fig. 10. Scheduling with RTP-based DR having peak pricing-based dynamic
power import limiting DR during extra demand hours and without IB-DR.

I. Typical scheduling of household appliances without RTP-
based and IB-DR.

II. Scheduling with RTP-based DR having DPIL and without
IB-DR.

III. Scheduling with RTP-based DR having DPIL and with
IB-DR.

IV. Scheduling with RTP-based DR having peak pricing-based
dynamic power import limiting DR during extra demand
hours and without incentive-based DR.

V. Scheduling with RTP-based DR having peak pricing-based
dynamic power import limiting DR during extra demand
hours and with incentive-based DR.

In scenario-I., the consumer has no DR program, and typical
scheduling according to the consumer’s preference is shown in
Fig. 5. In this study, EV can work in the home to vehicle (H2V)
and V2H mode for the better utilization of EV.
It is clearly be seen in Fig. 5 that peak demand is 15.1 kW at the
14th time slot and several other peaks during the high-cost slots.
The average demand is found to be 6.18 kW, and therefore, PAR
is calculated to be 2.448889. According to the RTP tariff, the total
cost of this typical scheduling is calculated to be 404.3678296
cents. Higher PAR also causes more stress in the system and
increases the losses, which is why it should be as low as possible
(≥ 1). Hence DPIL is used in other scenarios to limit the powers
in each slot.

In scenario-II., an RTP-based DR strategy is implemented to
schedule the home appliances, EV, BESS, and must-run appliances,
as shown in Fig. 6. Different limits are used to limit the power
imported from the grid. The limits are varied from 5 kW to 12 kW.
Some slots needed high powers in the high price slots due to the
customer’s preference; that’s why limits are higher in those slots to
make the scheduling feasible. It can be seen from the results that
EV, EWH, and non-thermal loads are shifted towards low price
slots, which has an impact on the overall price of electricity. The
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Fig. 11. Contribution of different power sources towards the household
demand for scenario- IV.

Fig. 12. Scheduling with RTP-based DR having peak pricing-based dynamic
power import limiting DR during extra demand hours and with IB-DR.

energy consumption cost in this scenario is 305.23 cents.
The results shown in Fig. 6 show that scheduling causes the

reduced peak concerning scenario- I. While the 1st case’s load
curve has a peak of 15.1 kW, the peak demand is 11.5 kW, and the
average load is 5.303887061 kW. Thus, we can calculate the PAR
of the load curve equal to 2.16822113, which is lower than the
previous case. The RTP-based DR program with the DPIL strategy
has reduced the overall cost and reduced PAR. The contribution of
PV generation, BESS, and EV storage power utilization, and the
grid imported power is shown in Fig. 7.

In scenario-III., an IB-DR is also implemented with the
RTP-based DR program. The IB-DR is implemented for the
12th slot up to the 19th slot. The customer has to reduce 33%
of its committed load in these slots, and he will be rewarded
with the incentive of 3.5 cents/kWh. The reduced load can be
shifted towards other slots. The contribution of different power
sources toward the overall power consumption of the residents is
represented in Fig. 8.

It can be noticed in Fig. 9 that there is a power reduction in
the slots from 12th up to 19th, and the reduced load is shifted
towards other slots having low prices. Due to the IB-DR program,
the total cost of energy consumption is reduced to 286.95 cents.
The IB-DR program also reduces the peak power demand, which
is also shown in Fig. 9. The 12th to 19th slots’ positive toppings
show the planned reduction, and the negative increment in other
slots shows the load shift in these slots. As a result, the peak
demand has been reduced to 11.236 kW, the average demand has
remained constant, and the PAR has been changed to 2.118446315.

In scenario-IV., it is assumed that the customer demands extra
power in some of the peak hours (13th to 19th slots). For this
extra power, the customer has to pay 10 % higher than the
predecided tariff. The DPIL limits are modified according to the
extra demand in these slots, and scheduling is done with RTP
based DR program without IB-DR. The resulted scheduling is
shown in Fig. 10. The peak pricing-based dynamic power import
limiting strategy causes an increase in the electricity cost due to
extra power demand. In this scenario, the electricity cost is 365.66
cents. The PAR of the load curve is calculated as 1.728823621.
The contribution of different power sources toward the household’s
total power demand is represented in Fig. 11. It can be seen that,
EV is not utilized as a source after complete charging.

In scenario-V., the IB-DR is also applied with RTP-based DR
having peak pricing-based dynamic power import limiting DR

Fig. 13. Contribution of different power sources towards the household
demand for scenario-V.

Fig. 14. Variation of peak demand in different scenarios.

during extra demand hours. All the implementation is the same as
in scenario-III except that the IB-DR is implemented for the 13th

slot up to the 19th slot. Modified DPILs are used as constraints to
limit the power in peak hours. The scheduling of the appliances is
shown in Fig. 12. The positive increment in the load curve shows
the reduction in the demand for must-run appliances, and the
negative increment shows an increase in the demand for must-run
appliances. These increments show the shift of demand related
to must-run appliances. After implementing the DR program, the
electricity consumption cost is 348.73 cents in this scenario, which
is reduced compared to the last scenario due to the incentive paid
to the customer for participating in the DR program. The load
curve’s peak demand is found to be 9.656, and the average of the
effective demand is 5.928887061. Thus, PAR can be calculated as
1.628636184. The contribution of different power sources toward
the household demand for scenario-V. is shown in Fig. 13.

Finally, Table 3 summarises the findings to present a
comprehensive analysis of all scenarios. It can be observed
from Table 3 that without any scheduling strategy, the customer
has to pay 404.36 cents for the electricity for the same RTP
tariff with PAR equal to 2.45 (2.448889 is written as 2.45). PAR
is not a significant concern for the customer but for the utility;
it plays a primary role. Higher peaks will cause stress in the
network and also increase the requirement of reserves to supply
these peak demands. The reserves are more costly than the base
power generation, so the tariff also changes accordingly. Any DR
program can be practically successful if it benefits the customer
and the utility.

For the reduction of PAR and cost, dynamic limits are imposed
on the power imported from the grid, resulting in a cost reduction
from 404.36 to 305.23 cents, which is a significant margin. PAR
is also improved from 2.45 to 2.17. The implemented IB-DR
program was opted by the customer for reducing 33% of its
accepted load (40% of must-run appliance demand). The customer
received the incentive in accordance with Table 2, and when the
IB-DR is implemented, the cost is even further lowered by 29.04
% to 286.95 cents, and the PAR is decreased by 13.52 % to 2.11.
If the consumer can further lower his load, he will receive a more
significant incentive from the utility.

In scenarios-IV. & V., the customer demanded extra power
during peak hours, for which the customer had to pay 10%
more than the normal tariff. This extra power affected the
cost, increasing to 365.66 cents in scenario-IV. However, these
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Table 3. Comparative analysis of different case studies

Scenario No. Description The energy consumption
cost (in cents)

Incentive given
(in cents)

PAR value

I Typical scheduling of household appliances without
RTP based and incentive-based DR.

404.3678296 - 2.448889

II Scheduling with RTP-based DR having DPIL and
without IB-DR.

305.2264 - 2.16822113

III Scheduling with RTP-based DR having DPIL and
with IB-DR.

286.9472 12.705 2.118446315.

IV Scheduling with RTP-based DR having peak pricing-
based dynamic power import limiting DR during
extra demand hours and without incentive-based
DR.

365.6581 - 1.728823621

V Scheduling with RTP-based DR having peak pricing-
based dynamic power import limiting DR during
extra demand hours and with incentive-based DR.

348.7336 11.781 1.628636184

additional demands also enhanced the average demand, which
caused a further reduction in PAR up to 1.73. Scenario-V shows
the participation of the customer in the IB-DR program, due to
which the electricity cost is reduced from 365.66 to 348.73 cents.
PAR, in this scenario, is found to be 1.63. Fig. 14 makes it
simple to see how peak demand and PAR vary. Peak demand is
calculated to be reduced by 36.05 %, while PAR is reduced by
33.48 %, when comparing scenario-V to scenario-I. Charging of
EV and BESS can also be seen in the graphs shown as scheduling,
and discharging can be observed in the figures named as the
contribution of power sources.

5. CONCLUSION

This paper includes a HEMS for scheduling extensively
used household appliances. Mathematical modelling of thermal
appliances, PV, BESS, and EV with their operational constraints are
explained in detail. Scheduling considers the consumer’s comfort
level, and all the appliances are scheduled in the consumer’s
preferred slots only. The objective function is formulated as a
MILP problem to reduce the cost of electricity consumption, which
is successfully solved using GAMS’ CPLEX solver. Electricity
cost is the main focus for any customer, but from the utility point
of view, PAR must be improved, which is beneficial for the utility.
For the cost reduction and improvement of the PAR, appliances are
scheduled using the DPIL strategy. Peak rebounding is also limited
by applying the DPIL strategy, which also contributes to the grid’s
reliability and stability. Different scenarios are discussed with the
implementation of IB-DR with DPIL strategy, which caused further
decrement in electricity cost. The used thermostatically controlled
devices are scheduled according to the customer’s preference to
maintain the comfort of the customer. Based on the results, it
is noteworthy that total energy costs are reduced by 29.03 %
with a PAR reduction of 13.49%, comparing scenario-III with the
considered base case (scenario-I), which shows the effectiveness
of the applied strategies simultaneously for HEMS.

This study considers that the EV will not be utilized for home
appliances after complete charging. However, if the price in V2H
mode is less than the utility tariff and the vehicle has enough time
to get charged again, it can be utilized for household usage. This
can also be an extension of this study.
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