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Robust Self-Scheduling of PVs-Wind-Diesel Power Generation
Units in a Standalone Microgrid under Uncertain Electricity Prices
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Abstract— In the semi-autonomous regions and remote islands, the multiple diesel units are usually used for supplying demand and
exchanging power with other adjacent zones. In the risk-aware generation companies consisting of diesel engines, photovoltaic panels
(PVs), and wind turbines, the uncertain electricity market prices affect the optimum operating points of these units, the total revenue
gained from selling energy to neighbor microgrids, and the daily fuel cost of the diesel generators. Moreover, the output power of the
diesel engines is a nonlinear function of their specific fuel consumption at discrete loading intervals. Therefore, this paper aims to present
a risk-aware mixed integer nonlinear optimization problem for finding the best generation schedules of the diesel units involving the energy
price fluctuations. The total fuel costs of the diesel engines minus the total revenue achieved from procuring power for nearby regions is
minimized as a cost objective function satisfying the lower and upper generation bounds in each loading subinterval, the load-generation
balance criterion, and the nominal capacities of generating units. The cubic spline interpolation is used for accurately fitting the fuel-power
curves of the diesel generators at successive loading subintervals because of its zero norm of residual in comparison with 5th degree and
quadratic polynomials. A benchmark microgrid with six diesel generators, PVs and wind turbines is robustly scheduled using the budget of
uncertainty with no need to probability distribution and membership functions of energy prices. It is revealed that this strategy is practical
for each price-taker generation company, which desires the risk-aversion production patterns of the diesel power production units against
the energy market price uncertainty in a specific operating horizon.

Keywords—Diesel generators, robust non-linear programming (RNLP) problem, specific fuel consumption (SFC), uncertainty budget,
uncertain electricity prices.

NOMENCLATURE

Symbols
F tj Fuel consumption of the diesel generator j at time t
Fj The fuel requirement of the diesel generator j (g)
j in time t (g/kWh)
Nw The number of the wind turbines
P tj The power product of the diesel engine j in time t

(per unit)
P tw The generated power of the wind turbines farm (kW)
Pmaxj The power generation capacity of the diesel generator

j (kW)
P tPV s The power output of a photovoltaic panel (W)
Stj The SFC of the diesel engine
T at The ambient temperature at time t
NPV s The number of the photovoltaic panels
Pwr The wind turbine rated power (kW)
Aw Scale factor
kw Shape factor
sw The wind speed (m/s)
sin The wind turbine cut-in speed (m/s)
sout The wind turbine cut-out speed (m/s)
sr The wind turbine rated speed (m/s)
Indices
j Index of diesel generators
t Operating time interval (hour)
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Greek letters
α Typical uncertain variable
β Typical known variable
χt The solar irradiance (W/m2)
η The conversion coefficient of a photovoltaic panel
γ Typical objective function
Ψ The budget of uncertainty
λ
t
P The predicted electricity rate in operating period t

($/kWh)
λtP Electricity market price at hour t
λF The diesel fuel price ($/g)
αt The predicted decision value at hour t
δ, ξt The dual variables of the robust optimization method
λ̂tP Maximum deviation of the actual energy rate from

its predicted value in time t ($/kWh)
λtP,min, λtP,max The lower and upper bounds of the electricity

market price at hour t ($/kWh)

1. INTRODUCTION

In the remote regions such as Masirah Island in Oman,
a central power station with a number of diesel units is
used to generate electricity for local consumers or adjacent
zones [1, 2]. Uninterrupted fuel transportation for power production
in thes{Bukar, 2019 #21}e zones poses a great challenge in
economic dispatch of diesel engines and their integration with
renewable energies [3]. Meanwhile, optimal operation of multiple
diesel engines in semi-autonomous microgrids reduces their fuel
costs and emitted pollutants [4, 5]. The specific fuel consumption
(SFC) of the diesel producer is a non-linear function of its
power product in successive discrete operating intervals, which are
defined by minimum and maximum per unit loading capacity [6].
In other words, a non-linear problem is solved over a 1-day study
period to find how much fuel is utilized by each diesel unit to
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supply a given level of demand [7]. In the standalone networks,
the total fuel requirement of the diesel engines is minimized, while
the load-generation balance constraint and the power production
limit of these units are fulfilled [8]. But, if a price-taker generation
company desires to maximize its profit, the daily revenue obtained
from selling energy to near load centers minus the total fuel cost
of the diesel generation units should be maximized [9].

In [4], a multi-objective demand side management including
economic and environmental indices has been investigated for
a smart microgrid to improve load variations. The microgrid
consists of diesel generator, photovoltaic, wind turbine, micro
turbine, energy storage system, and fuel cell. Additionally, the
energy exchange with upstream network is also considered.
The ant lion optimization algorithm is proposed to solve the
optimization problem. In [6], multiple marine diesel generators
are economically dispatched by harmony search optimization
(HSO) algorithm [10] for powering a semi-submersible oil drilling
rig platform. Various electrical load levels, demand-generation
balance criterion and generation capacity constraint are considered
in optimal hour-ahead scheduling problem. Numerical results
achieved from optimal scheduling of diesel units with unequal
ratings are compared with those found by GA, PSO, MinCon,
and MinMax solvers to reveal its capability in discovering high
quality and more reliable scenarios. In [8], a wind turbine, diesel
engines, and compressed air energy storage (CAES) integrated
microgrid is optimally scheduled using a quantum particle swarm
optimization (QPSO) and sequential quadratic programming (SQP)
based bi-level optimization process. In the outer layer, the sum of
investment and operation costs is minimized, to find the optimum
size of each component, while the generation and emission costs of
the diesel units is minimized in the lower level to obtain the best
operating point of the system. The demand response program and
the uncertainties on load demand and wind power output are also
modeled. Several recently published works have focused on optimal
short-term scheduling of diesel generators in renewables assisted
energy systems [11, 12]. The optimal utilization and economic
management of diesel generators and energy storage systems in
islanded microgrids has been investigated in [11]. To this aim,
the optimization problem is formulated as a linear programming
(LP) problem and the maximum utilization of renewable energy
and the reduction of the fuel cost of diesel units are targeted as
much as possible. The demand side management programs are
also used as a solution to deal with the variation in efficiency
of diesel generators with production level. Liu et al. [13] solved
a multi-objective mixed-integer nonlinear programming problem
using a prediction optimization algorithm to minimize the total
fuel consumption of the diesel engines in the presence of a
battery. The state of charge (SoC), battery charge and discharge
power, as well as the fuel consumption and power product of the
diesel units are selected as the decision variables. The demand
uncertainty should be considered to guarantee the flexibility and
resiliency of the hybrid power generation system against the
unexpected load values. Authors of [14] presented a photovoltaic
(PV)-diesel-battery hybrid system to generate energy in a rural
district of Gobi Desert, China. A meta-heuristic algorithm called
Elephant Herding optimizer is introduced, which minimizes the
greenhouse gas emissions, annualized system cost, and the loss
of load probability. Numerical analysis demonstrates that PVs
has a prominent impact by 97% of costs and 1735 kg carbon
reduction in 1-year period. In all PV integrated power generation
facilities, the uncertainty associated with the solar irradiations
should be studied using all-sky images and irradiance forecasts in
less than 10-minute forecasting time intervals [15]. Moreover, a
dual-axis sun tracking system with four-quadrant photo detectors,
a pyrheliometer, small DC servo motors, and programmable
logic controller, which allowed the automatic measurement of
the direct solar radiations, can be linked with solar systems to
increase their power products and reliability [16]. Authors of [17]
evaluated a 5kW PV-battery-wind-diesel grid, which can be used

in residential sector of Turkey. It is found that the diesel fuel
consumption, energy procurement cost and the annual carbon
emissions are less than those of diesel only systems. Uncertainty
of wind power and PV product should be considered in robust
and risk-seeker modes of info-gap decision theory and robust
optimization models [18, 19]. Implementation of demand response
programs on electrical loads and machine learning techniques
based wind/solar power generation forecasting algorithms can also
overcome this issue [20].

In [21], a model is presented for a standalone hybrid system
consisting of photovoltaic, diesel generator, wind turbine, and
stationary (battery) and mobile (electric vehicles) energy storage
systems. The authors have proposed a multi-objective optimization
problem to minimize the total cost of investment, maintenance and
operation of the available resources as well as the emission level of
the system. In addition, the limitations of planning and operation
of resources and storage devices are also considered. The nonlinear
form of different uncertainties including load, renewable energy and
energy demand of electric vehicles are modeled. Rongjie in [22]
uses a fuzzy artificial bee colony optimization method to plan
a hybrid diesel energy system. Experimental results for different
configurations of photovoltaic, diesel, wind power, and energy
storage are presented and their pollution emissions are compared.
In. Some governing factors such as wind potential, capital
investment cost, oil price, and battery cost should be considered in
decision making process [23, 24]. Initial investment cost, annual
energy saving, efficiency and payback period of a solar dish
Stirling heat engine-battery-wind turbine based power generation
system should be compared with PV assisted one [25, 26]. In [27],
a crow search algorithm (CSA) is introduced which minimizes
the total fuel requirement of the diesel generation units and finds
the best charge/discharge pattern of the pumped hydro storage
(PHS) in PVs included systems. The CSA finds more economic
operating scenarios for PHS-PVs-diesel connected networks with
less fuel requirement and lower computational burden than GA
and PSO. Integration of diesel producers with renewable energy
resources based power generation infrastructure has more benefits
than single renewable grids [28]. In this context, the authors
of [19, 29, 30] combined PVs, battery and diesel generators for
electrification of rural or small communities geographically located
far away from power grids. In [31], economic and environmental
benefits of micro-hydro, solar and wave energy in off-grid small
villages, that are reliant on diesel power producers, is proved
defining two targets "allowable-cost" and "levelized cost of energy
(LCOE)". Remote community optimization model (RCOM) of
Canadian Hot Springs Cove results in LCOE of $0.76/kWh for
diesel only operating mode. By adding a 225 kW hydro turbine
to this project, $5.2 M is saved considering a 30-years lifetime.
According to "allowable-cost" analysis, wave energy is more
cost-effective and eco-friendly option if it is delivered in less
than $0.59/kWh resulting in 40% diesel fuel consumption and
returning $23,206/kW installed. Similarly, solar power causes 12%
fuel saving and a return of $6844/kW installed. In [32], the
main objective is the economic and environmental evaluation of
a PV/diesel /biogas/battery system to supply the load demand of
a village in China. The proposed system results in an annual
reduction of 1300 tons of carbon dioxide (CO2) compared to the
diesel generator. In addition, the results of the sensitivity analysis
show that the cost reductions of biogas generators and batteries
can effectively decrease the total costs of the system. Alzahrani,
et al. [33] review the most important optimization methods of
hybrid systems in order to reduce the operation costs and total
network losses. This review paper focuses on the hybrid energy
system consisting of photovoltaic, diesel generator and energy
storage and examines the proposed methods in the literature from
various aspects. In the developing countries such as Iran, the power
transmission from national grid to remote rural communities is not
an economically viable proposition. Hence, diesel engines with
significant fuel requirement are mainly utilized for electrification
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Table 1. The main characteristics of the previous works

Ref. System Architecture Off-grid/On-grid Methodology Performance Parameters

[1] Diesel, PV, WT, Natural gas generator Off-grid HOMER NPC, COE, pollutant emission
[3] Diesel, PV, PHS, FC Off-grid MOCSA NPC, LPSP
[5] Diesel, PV, PHS, Battery Off-grid HOMER NPC, COE, CO2 emission
[7] Diesel, PV Off-grid MATLAB LCOE, loading factor, total fuel consumption
[9] Diesel, PV, WT, FC, Battery Both NSGA-II configuration, size
[12] Diesel, PV, Battery Off-grid HOMER NPC, LCOE, operating cost
[15] Diesel, PV, Battery Off-grid MATLAB/ HOMER NPC, CO2 emission
[19] Diesel, PV, WT, Battery Both HOMER NPC, COE, pollutant emission, grid tariff
[21] Diesel, PV, WT, Battery Off-grid SCA, CSA cost of construction, maintenance, operation,

emission level
[22] Diesel, PV, WT, Battery Off-grid Fuzzy artificial bee colony cost, load shortages, pollutant emission
[24] Diesel, PV, WT, Battery Off-grid Monte Carlo total annual costs, reliability
[26] Diesel, PV, WT, Battery, Reverse osmosis On-grid DRL operating cost, cost of battery, pollution cost
[28] Diesel, PV, WT Off-grid HOMER CO2 emission, cost of energy
[30] Diesel, PV, Battery Off-grid PSO/ HOMER LPSP, CO2 emission, annualized cost
[32] Diesel, PV, Battery, Biogas Off-grid HOMER NPC, COE, CO2 emission
Present
research

Diesel, PVs, Wind turbine Off-grid Robust Optimization, elec-
tricity price uncertainty

Diesel fuel cost, Revenue, Net operation cost

of these microgrids. Capacity of diesel generators conventionally
prepared twice greater than maximum demand to avoid from
load spike. Aggregator of these units within a remote area, that
exchanges power with other adjacent zones, can solve an optimal
short-term self-scheduling problem for maximization of its profit
obtained from selling energy to geographically close off-grid
networks, which has not been studied in the reviewed works.
Moreover, the uncertainty of the electricity market prices is not
considered in the optimal energy trading of the wind-diesel-PVs
hybrid GenCo. The novelties of this paper are stated as follows:

• An aggregator of multiple diesel generators, PVs and wind
turbines in a remote area such as small rural communities,
which exchanges power with near off-grid zones, desires
higher revenue and lower fuel cost. A cost minimization
approach is mathematically presented for optimal self-
scheduling of diesel power production units. The SFC of
each diesel engine is modelled as a 3rd degree polynomial
function of its power output, which is limited by minimum and
maximum per unit loading capacities at discrete successive
intervals. The total fuel cost of the diesel generators minus
the daily revenue obtained from selling power to adjacent
microgrids is minimized as the main objective function under
the various budget of electricity market price uncertainty.

• The electricity price fluctuations affect the operating pattern
of the diesel generators and the aggregator’s profit obtained
from selling the power outputs of diesel engines, PVs,
and wind farms. A robust non-linear programing (RNLP)
problem is developed to minimize the total fuel cost of diesel
units minus the total revenue gained from selling electricity
production of diesel generators, PVs and wind turbines to
neighbor semi-autonomous regions against the variation of
uncertain energy rates. Firstly, the forecasted electricity prices
are involved in risk-neutral or deterministic decision making
process before modelling uncertainty. Then, the uncertainty
budget changes from 0 to 100% to determine the robust or
risk-aversion fuel utilization and energy production patterns
of the diesel generators in 1-day operating period.

• The sensitivity of the decision variables (such as the SFC
and power products of the diesel generators as well as the
aggregator’s fuel cost and revenue) to the uncertainty budget
is analyzed. For instance, when the uncertainty budget is
set out as 0.25, the actual electricity prices in 25% of
the whole study horizon (hours 19 to 24) differ from the
predicted values. At other hours, it is known or determined
without uncertainty. The diesel generation company (GenCo)
maximizes its revenue achieved from selling electricity
produced by the diesel generators, PVs and wind turbines

and minimizes the total diesel fuel cost under various budgets
of uncertainty.

The mathematical models of the wind, PVs, and diesel engines
power generations are presented in Section 2. The robust
optimization based self-scheduling of the diesel power production
units is provided in Section 3. Numerical results and discussions
is presented in Section 4. Finally, concluding remarks and future
trends are stated in Section 5.

2. MATHEMATICAL POWER GENERATION MODELS OF
WIND TURBINE, DIESEL ENGINES AND PHOTOVOLTAIC

PANELS

It is supposed that a generation company (GenCo) with a
number of solar photovoltaic (PVs) panels, wind turbines, and
multiple diesel engines aims to supply the total electricity demand
of a microgrid while selling energy to other adjacent areas. Hence,
the daily diesel fuel cost minus the total revenue obtained from
selling electricity generation of PVs, wind turbines, and diesel
engines to these microgrids should be minimized as the net-cost
objective function presented in Eq. (1). where, P tj and F tj are
the output electrical power and fuel consumption of the diesel
generator j at time t, respectively. Moreover, Pmaxj refers the
maximum power product or generation capacity of the diesel
engine j. The electricity market rate at hour t and the diesel fuel
price are indicated by λtP and λF , respectively. The PVs and wind
products are indicated by P tPV s and P tw, respectively.

Minimize
P t
j ,F

t
j

T=24∑
t=1

N∑
j=1

λF × F tj

−
{
λtP ×

(
P tj × Pmaxj + P tPV s + P tw

)}
(1)

The value of the wind speed (sw) is modeled using the Weibull
probability density function as formulated by Eq. (2). Moreover,
the value of the wind farm power product (P tw) is approximated
as Eq. (3). The scale factor and the shape factor are two constant
parameters related to the wind turbine structure, which are denoted
by Aw and kw, respectively. Moreover, sin, sout, and sr refer the
wind turbine cut-in, cut-out, and rated speeds, respectively. The
rated power of each wind turbine is given by Pwr [34].

f (sw) =
kw
Aw

(
sw
Aw

)kw−1

exp

(
−
(
sw
Aw

)kw)
(2)
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Table 2. The SFC of Wärtsilä 16V26A diesel generator [37].

Loading power (p.u.) Fuel requirement (g/kWh)

0.25 233.12
0.5 201
0.75 192.98
0.85 195.2
0.9 195.51
1 196.55
1.1 199.11

P tw =


0 sw < sin; sout ≤ sw

NwP
w
r
sw−sin
sr−sin

sin ≤ sw < sr
NwP

w
r sr ≤ sw < sout

(3)

Eq. (4) formulates the power output of a photovoltaic panel [35].
where, NPV s is the number of the photovoltaic panels; P tPV s
refers the power output of photovoltaic panels. The conversion
coefficient of the photovoltaic panels is shown with η. A is the
array area of the photovoltaic module. Finally, χt and T at show the
solar irradiation and the ambient air temperature, respectively.

P tPV s = NPV sηAχt {1− 0.005× (T at − 25)} (4)

According to Eq. (5), the fuel consumption of the diesel power
production unit j at hour t is calculated using its power generation
and specific fuel consumption (SFC). According to Table 2, the
SFC of the diesel generators is calculated based on exponential
and polynomial functions. Table 3 demonstrates that a cubic
spline interpolation function is more accurate than higher-order
polynomial models. Obviously, there is no data at starting these
units. Therefore, the 2nd and 5th order polynomial functions
and the cubic spline model are used for finding the initial fuel
consumption at starting point of the diesel engines. Using the 5th

polynomial function, the extrapolated amount is equal to 233.12
g/kWh, which is not accepted because it should be higher than
that at 0.25 per unit loading condition. This is resulted from this
fact that maximum SFC of a diesel unit corresponds to its starting
point. Hence, the cubic spline model is used for estimating the
initial SFC at starting stage as 289 g/kWh [36].

F tj = Stj × P tj × Pmaxj (5)

The SFC of the diesel power production unit j in time t is denoted
by Stj and can be obtained from Eqs. (6)–(12) [36].
For 0 ≤ P tj < 0.25:

Stj = 2.951
(
P tj
)3

+ 187.8
(
P tj
)2

+ 270.67P tj + 289 (6)

For 0.25 ≤ P tj < 0.5:

Stj =2.9512
(
P tj − 0.25

)3
+ 190.08

(
P tj − 0.25

)2
− 176.184

(
P tj − 0.25

)
+ 233.12

(7)

For 0.5 ≤ P tj < 0.75:

Stj =7.0041
(
P tj − 0.5

)3
+ 192.293

(
P tj − 0.5

)2
− 80.591

(
P tj − 0.5

)
+ 201

(8)

For 0.75 ≤ P tj < 0.85:

Stj =− 1442.4
(
P tj − 0.75

)3
+ 197.546

(
P tj − 0.75

)2
+ 16.869

(
P tj − 0.75

)
+ 192.98

(9)

For 0.85 ≤ P tj < 0.9:

Stj =1940.1
(
P tj − 0.85

)3
+ 235.158

(
P tj − 0.85

)2
+ 13.1

(
P tj − 0.85

)
+ 195.2

(10)

Table 3. Residuals in 5th-degree and quadratic polynomial models and
cubic spline curve fitting approach [37]

Curve fitting method Norms of residuals

Cubic spline interpolation 0
5th degree polynomial 0.316
Quadratic polynomial 6.011

For 0.9 ≤ P tj < 1:

Stj =67.134
(
P tj − 0.9

)3
+ 55.8598

(
P tj − 0.9

)2
+ 4.1427

(
P tj − 0.9

)
+ 195.51

(11)

For P tj = 1:

Stj =67.134
(
P tj − 1

)3
+ 76

(
P tj − 1

)2
+ 17.328

(
P tj − 1

)
+ 196.55

(12)

As restricted by inequality constraint (13), the per unit loading
power changes between 0 and 1 [36].

0 ≤ P tj ≤ 1; ∀t = 1, . . . , T and j = 1, . . . , N (13)

3. ROBUST SELF-SCHEDULING PROBLEM

In the robust optimization technique, which was introduced by
Soyster in 1973 [38], the uncertainty is handled with no need for
any information about the uncertain variable. The flowchart of the
proposed robust optimization algorithm is shown in Fig. 1. As
stated in Eq. (14), it is supposed that γ = f(α, β) is a linear
function of the uncertain vasriable α and changes nonlinearly
by the known variable β. In Eq. (15), any positive or negative
deviation of the uncertain variable (α) from the predicted value
(α) is limited by α̂.

min
β

γ = f(α, β) (14)

|α− α| ≤ α̂ (15)

As mentioned, the objective function γ varies linearly by the
uncertain variable α. Hence, the nonlinear optimization problem
should be modeled as Eqs. (15)–(17). where, the matrix A (β)
with components at (β) indicates the coefficients of the uncertain
variable α. Similarly, the matrix B(β) consists of the known
variables β. It is obvious from Eqs. (16) and (17) that the total
cost γ can be minimized by reducing the linear function f(α, β)
as much as possible.

γ ≥ f(α, β) (16)

f (α, β) = A (β)× α+B(β) (17)

In the risk-aware optimization problem, a robust optimal solution
should be find that ensures the global optimality of the objective
function γ allowing a specific prediction error. Considering the
forecast error in estimating α, the global optimal scenario will
be found with great probability by involving the robust counter
term ωi in Eq. (14). In other words, Eqs. (18)–(20) are used
for minimizing the cost objective function γ using the auxiliary
function f (α, β) under the uncertain operating condition.

f (α, β) =min
ωt

∑
t

at(β)× α̂× ωt

−A (β)× α−B (β)

(18)

∑
t

ωt ≥ Ψ (19)
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Table 4. The technical characteristics of the wind turbines [34] and photovoltaic panels [35]

Parameter Value Parameter Value

Shape factor 5 Rated power of each wind turbine (kW) 100
Scale factor 25 Number of wind turbines 10
Cut-in speed (m/s) 5 Conversion coefficient of a photovoltaic panel 0.187
Cut-out speed (m/s) 70 Array area of a photovoltaic module 2.5
Rated speed (m/s) 35 Number of PV panels 1000

Fig. 1. The flowchart of the proposed robust self-scheduling algorithm

0 ≤ ωt ≤ 1 (20)

Hence, the cost objective function (14) with quality and inequality
constraints (18)–(20) can be rewritten as Eq. (21) and inequality
constraint (22). It should be mentioned that αt is the predicted
decision value at hour t. As obvious, the matrix form of the 3rd

term of Eq. (18), which is defined as minωt

∑
t at(β)× α̂× ωt ,

is presented in relation (21). Moreover, constraints (19) and (20)
are merged as inequality constraint (22).

min
ωt

[
a1(β)× α̂1, a2(β)× α̂2, . . . an(β)× α̂n

] 
ω1

ω2

...
ωn


(21)


1 1 . . . 1
1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1




ω1

ω2

...
ωn

 ≥


Ψ
1
...
1

 (22)

Therefore, the dual maximization problem (18)–(20) can be given
by Eqs. (23) and (24):

max
ξi,δ

Ψδ +
∑
t

ξt (23)

δ + ξt ≤ at(β)× α̂t (24)

By adding Eq. (23) to optimization approach, minimization of γ is
carried out so that maximum value of auxiliary function f(α, β)
equals to γ. According to Eqs. (20), (23) and (24), the maximum
cost value of the function f(α, β) is found by maximizing the
robustness cost Ψδ +

∑
t ξt and minimizing the revenue term

A (β)×α+B (β), to minimize the net cost γ under the worst case
with maximum cost function Ψδ +

∑
t ξt and minimum revenue

term A (β) × α + B (β). Meanwhile, the expected profit should
be greater than the threshold value δ + ξt.

min
β,ξt,δ

γ (25)

γ ≥ f(α, β) (26)

f (α, β) = Ψδ +
∑
t

ξt −A (β)× α−B (β) (27)

δ + ξt ≤ A(βt)× α̂t (28)

As stated in the objective function (1), the price-taker producer
desires the minimum cost and maximum revenue attained from
selling the diesel generators, PVs, and wind turbines power
products to other semi-autonomous regions. Supposing that λtP
is the uncertain electricity price in time t and the energy
market rates are unknown at Ψ% of the whole operating period,
the risk-constrained robust optimal self-scheduling of the diesel
generators can be modeled as Eqs. (29)–(31). The total power
generation of the diesel generators, PVs, and wind turbines should
be larger than the total electrical demand, as formulated by Eq.
(32). where, P tD represents the total electricity consumption of the
main and adjacent microgrids. In other words, the main objective
of the GenCo is to minimize the fuel cost and maximize the total
revenue from selling power to all microgrids.

min
ξt, δ, P

t
j

F tj , S
t
j

γ (29)

Subject to: Constraints (2)–(13)

γ ≥
∑
t∈T

N∑
j=1

(
λF × F tj

)
+Ψδ +

∑
t∈T

ξt

−
∑
t∈T

λ
t
P ×

{
P tPV s + P tw +

N∑
j=1

(
P tj × Pmaxj

)} (30)

δ + ξt ≤
N∑
j=1

(
P tj × Pmaxj + P tPV s + P tw

)
× λ̂tP (31)

N∑
j=1

(
P tj × Pmaxj + P tPV s + P tw

)
≥ P tD (32)
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Fig. 2. The forecasted electricity prices

Fig. 3. The ambient air temperature and the solar irradiance over the
sample day

4. CASE STUDIES, NUMERICAL RESULTS, AND
DISCUSSIONS

As stated in Sections 2 and 3, it is supposed that there are
a number of semi-autonomous communities, which isolated from
the national power system. In one of them, an aggregator of
diesel generators desires to minimize the total diesel fuel cost
and maximize the daily revenue by selling energy to others. A
benchmark microgrid composed of 6.25, 5, 4, 3.75, 2.5, and
1.5 MW diesel engines, PVs and wind farms with characteristics
reported in Table 4, is studied over a 24-h time period to
demonstrate the robust performance of the proposed model in
finding the best generation schedules under the uncertain electricity
prices. The SFC-power characteristic of the diesel engines is
considered as Eqs. (3)–(9) [37]. It should be mentioned that
the proposed robust self-scheduling strategy can be applied to
each rural or small network geographically located far away
from the regional electricity grid that only exchanges power with
other adjacent zones. The robust nonlinear optimization problem
modeled as Eqs. (26)–(28) and (2)–(10) is developed under the
general algebraic modeling system (GAMS) [39] and solved using
the branch-and-reduce optimization navigator (BARON [40].The
forecasted electricity market prices [41] are shown in Fig. 2. These
values are obtained from the price forecasting approaches [42].
The diesel fuel rate is considered as 1.5 $/g [43]. The ambient
air temperature and the solar irradiance over the sample day are
considered as Fig. 3. Figure 4 illustrates the hourly variations
of the electrical demand. Different cases have been studied to
prove the robustness and effectiveness of the proposed algorithm
in finding the optimum operating point of the power generation
units. In case 1, it is supposed that there are only diesel engines

Fig. 4. The hourly changes of the electricity demand

for supplying the electricity loads without considering the energy
price uncertainty. In the second scenario, PVs and wind farms are
also contributed to load procurement process under deterministic
energy rates (without considering uncertainty of electricity prices).
To model the budget of energy price uncertainty described in
Fig. 1, it is supposed that the minimum and maximum values of
the electricity prices are respectively equal to 0.9 and 1.2 times
of the deterministic electricity rates shown in Fig. 2. Then, four
robust optimization scenario are applied to diesel-PVs-wind hybrid
power generation strategy with the uncertainty budget weight (zk)
equal to 0.25, 0.5, 0.75, and 1, respectively. At each robust
optimization iteration, the value of uncertain electricity price (λ

t
P )

involved in Eq. (30), is obtained using zk, λtP,min and λtP,max as
shown in Fig. 1. Moreover, the maximum deviation of the hourly
electricity prices from the forecasted values (λ̂tP ) is calculated as
the difference between the values shown in Fig. 2 and the uncertain
electricity price λ

t
P . The budget of uncertainty is interpreted as

follows: For the last Γ% of the whole study period, the actual
electricity rates may be different from the predicted ones. It is
obvious that Γ changes from 0 to 1. Zero value of Γ represents
a deterministic optimal day-ahead scheduling strategy for the
multiple diesel engines without considering uncertainty. When it
equals to 1, the energy market prices at each hour from t = 1
to t = 24 are uncertain or unknown within a predefined limited
interval, which is modeled by maximum allowed deviation, λ̂tP .

The power generation of wind, PVs and diesel units in cases 1
and 2 without considering the uncertainty of electricity prices are
obtained as Fig. 5. The total fuel cost of the diesel engines, the
daily revenue obtained from selling the power products of the PVs,
wind farm and diesel generators, and the cost objective function
are compared in Table 5. Although the daily revenue achieved
from selling electricity to other microgrids reduces (almost 491$
reduction in revenue), the total fuel cost of the diesel engines also
reduces significantly (6780$), which results in 6289$ cost saving
due to the penetration of wind turbines and solar PV panels.

To demonstrate the cost-effectiveness of the proposed algorithm
against the electricity market price uncertainty, five scenarios are
studied with various budgets of uncertainty from 0 to 1. In
other words, the value of uncertainty budget is considered to be
0, 0.25, 0.5, 0.75 and 1 with the steps of 0.25. The net-cost
objective function is depicted as Fig. 6. It is obvious from this
figure that if the uncertainty budget is considered to be 0.5, the
risk-constrained optimal economic dispatch problem is solved for
finding the robust generation patterns of the diesel units against
the known electricity rates from t = 1 to t = 12 and the uncertain
price quantities from t = 13 to t = 24. The aggregator’s daily
operation cost is minimized in risk-neutral (Γ = 0) and risk-seeker
(0 < Γ ≤ 1) decision making process (29)–(32) subject to equality
and inequality constraints (2)–(13). As illustrated in Fig. 6, the
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Table 5. The fuel cost, revenue and net-cost function of the PVs-wind-diesel hybrid power generation strategy in cases 1 and 2 without considering
uncertainty of electricity prices

Case study Power generation units Diesel fuel cost ($) Revenue ($) Net cost ($)

1 Diesel engines 474,414 9,412 465,002
2 PVs-wind-diesel 467,634 8,921 458,713

(a) PVs and wind power products

(b) Diesel engines outputs

Fig. 5. The power generation of PVs, wind farm and diesel engines in cases 1 (blue) and 2 (red)
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Fig. 6. The net-cost objective function values in five scenarios under the
various degrees of conservatism

degree of conservatism, Γ , affects the total revenue achieved from
selling energy to adjacent rural grids and the daily diesel fuel
cost. It is wrong to expect each diesel unit operates with its
maximum capacity to minimize the total fuel cost and maximize
the daily revenue attained from trading energy with nearby
customer networks. Because of two reasons as follows: First, their
fuel costs are also considered in optimization problem as (30),
and (5)–(12). Secondly, uncertain energy prices, which is added
to robust decision making strategy as Ψδ +

∑
t∈T ξt in (30) and

constraint (31), changes the best generation patterns of the diesel
units to immune from the lower or under-estimated electricity rates.
Figure 7 enables the aggregator of the diesel engines-PVs-wind
farms to decide how co-operate these units and guarantee a specific
value of revenue against uncertainty in risk-neutral or deterministic
and risk-seeker or robust power trading scenarios. As expected
from (5)–(12) and (30), the total revenue achieved from selling
electricity and the daily diesel fuel cost changes nonlinearly with
uncertain electricity prices or budget of uncertainty. The electricity
market prices affect the power outputs of the diesel engines,
that nonlinearly affect their fuel consumptions as expected from
(5)–(12) and Table 1. In the 1st optimization approach, it is
supposed that the energy price is known for each 1-hour time
interval and Γ is zero. The deterministic or risk-neutral economic
dispatching of the diesel generators results in $448415 cost under
the forecasted energy prices. The budget of uncertainty is then
increased with steps of 0.25 in robust or risk-seeker decisions. The
total fuel cost minus the daily revenue gained from selling power
to other load zones, increases while the degree of conservatism,
Γ , increases and vice versa. Because, the GenCo’s owner wants to
be immune against the risk of lower energy prices by imposing
the robust cost

(
Ψδ +

∑
t∈T ξt

)
, which increases its operation

cost as fulfilled by (30). In other words, when the aggregator of
the diesel power production units desires lower costs, the degree
of robustness or conservatism will reduce. There is a tradeoff
between the optimality of solutions (expected cost) and the budget
of uncertainty (degree of conservatism). Hence, the distance of the
best solution of the risk-taker robust scheduling strategy from the
optimal operating points of the diesel engines in base optimization
approach (lower cost in Γ = 0) will increase, as proved in Fig. 7.
In different sections of this figure, the optimum power generation
curves of the diesel engines are compared for five values of Γ . For
example, if Γ is 0.75, the actual electricity rates may be different
from the predicted ones in the last 75% of the whole operating
time interval. In the first 25% of this period, the prediction error
is zero and the actual energy prices are as same as the forecasted
values. Therefore, the operation cost increases from $448415 in the
risk-free optimization scheme to $593271 in robust technique with

Γ = 0.75. Similar analysis can be considered for Γ = 1 or 100%
robustness against the uncertain electricity market prices with the
predefined maximum deviations of the actual energy rates from the
predicted values. In the worst operating condition with Γ = 1, the
cost increases to $612152. Obviously, if the aggregator desires to
be conserved from the risk of the under-estimated electricity rates,
higher budget should be allocated for uncertainty. The numerical
results obtained from the presented approach with the existing
ones are summarized in Table 6. All simulations are carried out
using a Lenovo with 2.10 GHz CPU, 4 GB RAM. As obvious
from Table 6, the calculation time of the existing algorithms
have not been reported. Meanwhile, the maximum calculation
time for running a risk-constrained self-scheduling of the multiple
diesel units-PVs-wind farms is almost 20 minutes. Moreover, it
is revealed that the total fuel cost of the diesel engines in the
risk-aware optimization techniques presented in [44] and [45]
are greater than that found by the interval robust optimization
algorithm of the current research. In addition, the daily revenue
obtained from selling electricity to adjacent microgrids in [44]
and [45] are less than that achieved from solving the worst-case
scenario (with 100% degree of conservatism) using the proposed
robust optimization method.

5. CONCLUSIONS AND FUTURE TRENDS

Electrification of remote areas such as islands and isolated
villages is usually based on diesel generators, photovoltaic panels,
and wind turbines. Hence, this paper presented a robust model
for optimal short-term self-scheduling of these units. A generation
company composed of diesel engines, PVs and wind farms aims to
obtain higher revenue from selling energy to small communities,
and pay lower diesel fuel cost in daily operating period. Meanwhile,
the electricity market price uncertainty affects the total revenue
gained from selling electricity production of diesel engines, PVs
and wind farms and the optimal fuel consumption and power
generation pattern of the diesel units. Because of the nonlinear
relation of the specific fuel consumption and power outputs of the
diesel generators, daily fuel cost of these producers will change
as a result of changing their power productions. Meanwhile, the
electricity price uncertainty affects the total revenue results from
selling power products of the diesel engines, PVs and wind
farms to neighbor microgrids, the specific fuel consumption of
diesel units, and their daily fuel cost. Hence, a robust nonlinear
programming problem was solved to find a good scenario for
operating six diesel generators and minimize the net operation
cost over a 24-hour time horizon. The net operation cost is
defined as the total fuel cost of the diesel generators minus
the daily revenue obtained from selling energy procured by the
diesel generating units, PVs, and wind turbines to adjacent zones.
Both deterministic or risk-free and probabilistic or risk-seeker
optimization approaches were implemented on test system by
increasing the budget of uncertainty (Γ ). The key findings of the
present work are summarized as follows: If the uncertainty budget
of the electricity price increases, the generation company will pay
more to be immune from the risk of the lower energy rates and
attain less profit. When the aggregator of the diesel generators,
PVs and wind turbines desires higher profits and lower costs, it is
recommended to reduce the degree of conservatism or robustness
against the under-estimated electricity rates. The presented method
enables the GenCos to find the best fuel consumption and power
production schedules of the diesel generators with minimum
fuel cost and maximum revenue under the various budgets of
electricity price uncertainty. As the future trends, the uncertainties
associated with the wind speed and solar irradiations will be
applied to robust scheduling problem using info-gap decision
theory method to make both risk-averse and risk-seeker decisions
in under-estimated (shortfall) and over-estimated (surplus) power
products, respectively. Moreover, the emission footprints of the
diesel generators should be minimized as the taxes on greenhouse
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Fig. 7. The risk-neutral and risk-aware generation schedules of the diesel engines under the uncertain electrical power prices
Table 6. The comparison between the proposed algorithm and the existing methods

Refs. Risk-constrained Risk-neutral Fuel cost ($) Revenue ($) Net operation cost ($) Calculation time

[46] - 3 456886 8715 448171 Not reported
[37] - 3 442705 8620 434085 Not reported
[36, 47] - 3 450362 8590 441772 Not reported
[45] 3 - 635087 10890 624197 Not reported
[44] 3 - 630428 11076 619352 Not reported
Proposed approach 3 - 623806 11835 611971 20 min.

gases emitted from the internal combustion engines such as diesel
units. It should be mentioned that there are some limitations in
the proposed model. As an instance, although diesel generators,
wind turbines, and photovoltaic units are modeled in this paper
with the aim of maximizing the total revenue and minimizing
the diesel fuel cost, still there are other alternatives, such as
storage devices that could have effective roles in the scheduling
of these resources, but are not considered in the proposed model.
As another example, the load uncertainties are not focused here.
However, it should be noted that taking into account the main
aims and novelties of the paper, such assumptions would not affect
the main findings of the paper and for the sake of simplicity such
considerations are not modeled. Hence, to continue this study for
the future applications, stochastic load models could be developed.
Also, other novel technologies, such as the hydrogen-fueled gas
turbines, could be modeled as the new generation of turbines to
explore the importance of these types of resources in the future
power systems.
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