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Abstract— With the advent of advanced measurement and supervisory devices in power systems, wide area measurement systems and
real-time monitoring of power systems have become viable. Accordingly, modeling techniques should be updated as well. This paper
proposes a transformer asset management model based on real-time condition monitoring in the presence of distributed generation. The
model is tested under different case studies and compared with the previous models in which constant failure rate model was used for asset
management of transformers. The system cost includes operation, repair, and interruption costs. The objective is to determine the hourly
loading of the transformer so that the cost of system is minimized. The long-term objective is to determine the loading pattern of the
transformer which guaranties the most economical pattern among various options. Results showed that the proposed model is efficiently
capable of returning more accurate responses if real-time monitoring data is used. A set of sensitivity analysis studies are also performed
to highlight the impact of each factor separately. The contribution of distributed generators to supply the load is also investigated. Results
showed that the use of distributed generators reduces the overall cost of the system by diminishing the risk-based element of the system
cost.
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NOMENCLATURE

Abbreviations and Acronyms
CDF Customer Damage Function
DG Distributed Generation
ENS Energy Not Supplied
FOA Forced-Oil-Air
HST Hottest Spot Temperature
PD Partial Discharge
WAMS Wide Area Measurement Systems
Parameters
T0 Reference temperature
λ̄ Average failure rate for an indoor transformer
β Shape parameter of the Weibull distribution associated

with the failure probability of aging process
∆t Duration of each time step in loss of life studies
∆THR Increase in the temperature of winding hottest-spot

over top-oil temperature at nominal load
∆TOR Top-oil temperature rise at rated load
∆TWR Average increase in the winding temperature at

nominal load
λ Weather-dependent failure rate of an outdoor

transformer
Prh Hourly hybrid failure probability of transformer
ρh Hourly electricity price
CDGh Hourly cost function of DG
CDF Customer Damage Function
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loadh Hourly demand
N Expected duration of normal weather state
PDGmax Maximum capacity of DG
P submax Maximum capacity of transformer
S Expected duration of adverse weather state
TA Ambient temperature
v Weather condition; 0 for normal and 1 for adverse
F Proportion of failures occurring in adverse weather
a, b Proportional and constant coefficients for repair cost

of power transformer
B, C Empirical constants in calculation of HST-dependent

failure probability of the transformer
n, m Empirical constants depending on the winding sensors

cooling
R The loss ratio constant
Sets and Indices
h Index of time in reliability-cost optimization
t, T Index and set for time in loss of life studies, (t1, t2,

...ti, ..,tn)
Variables
∆TH Winding hottest spot temperature rise over top-oil

temperature
∆TO Top-oil rise over the ambient temperature
Cinth Hourly interruption cost
Coprh Hourly operation cost
Crh Hourly repair cost
ENSh Energy not supplied
Pf Hottest spot-dependent failure probability
PDGh Hourly generation of DG
P subh Hourly transformer loading
Pw Weather-related failure probability
Pr Hybrid failure probability
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1. INTRODUCTION

Asset management is defined as an essential link between asset
owners and the system operator in order to make a balance on cost,
risk, and efficiency of assets [1]. The main objective is to choose
spending strategies capable of returning the highest stakeholder
value from the available budget [2].

Due to the substantial investments in power transformers, a
significant attention is paid to transformers as one of the most
important equipment in power system asset management [3–
5]. Adverse operating and environmental conditions accelerate
the aging process of power transformers. These include
overloading, harmonic load currents, adverse weather, high
ambient temperatures, physical damages, etc. The Hottest
Spot Temperature (HST) increases due to overloading and
high ambient temperatures. As a result of exposure to such
conditions, the insulation performance is attenuated and different
electrical/chemical phenomena may occur in the insulation
including (but not limited to) dissolved gases in oil, Partial
Discharge (PD) in the insulation, dielectric deterioration, and
polymerization [6–9]. Accordingly, various testing methodologies
could be used to diagnose upcoming faults originated from
these phenomena in power transformers [10, 11]. Although testing
methods help predict the repair/replacement schedule of equipment,
they fail to give information on operational reliability of power
transformers. In addition, environmental and weather conditions
are not considered in testing methods for lifetime estimation and
operational reliability calculation.

The total failure probability of a transformer is a function
of different destroying phenomena. Therefore, the condition
monitoring of power transformers is a major factor in reliability
assessment of the overall system [6]. The majority of above-
mentioned phenomena are measured or monitored through medium
or long term periods in the present-day power systems. Therefore,
the constant failure rate of transformers has been widely employed
in the reliability assessment and planning of power systems
reflecting the average condition of reliability indices. This kind of
conventional reliability assessment is not capable of reflecting the
real-time operating conditions including loading pattern, ambient
temperature, aging, and weather status [6].

Historical data of transformer palys a key role in recognition
of the transformer loss of life which is then employed to extract
the failure probability of the asset. An estimation is required in
order to complete the data history related to periods when no
measurements were done. Machine learning [12–16] and fuzzy-
base methods [17], [18] have been proposed in the literature to
estimate the heath index of power transformers in case of absence
or shortage of historical data. However, either underestimation or
overestimation may occur in the estimation procedure resulting
in inaccurate estimation of the transformer condition [6], [19].
Reference [15] presented a fuzzy failure rate model based on
condition monitoring information. The results of the proposed
model can be employed for reliability studies and maintenance
scheduling in power systems. Since the condition monitoring data is
expressed via a fuzzy normal distribution membership function, the
model accuracy is endangered by the method approximations and
expert knowledge interferences. Nonetheless, the lack of real-time
condition monitoring in power systems has led researchers to apply
constant failure rate models to investigate the transformer asset
management. Reference [20] investigated the failure risk originated
from the overloading in power transformers. The results indicate
that loss of life and dielectric failure risks increase as HST rises
under harmonics loads. Reference [21] analyzed the insulation
response as a useful means for transformer risk assessment. A
two-stage framework was suggested for power transformer asset
maintenance in order to coordinate and schedule long-term and
short-term maintenance actions [22], [23]. A delayed semi-Markov
process is introduced in [24] to calculate time-varying or condition-
based failure probabilities employing real-time data measured by
advanced sensors. However, the system operator cannot use the

results in a day-ahead scheduling of power system, since the time
frame is over some minutes or hours. Also, no methodology was
given to evaluate the historical aging and current health status of
the transformer. A mathematical model is given in [25] capable
of analyzing the characteristics of the dissolved gases in the
transformer oil. The main outcome of this model is the filtration
schedule for regulating the quality of transformer oil. Authors
in [26] presented a comprehensive review on asset management
methods extracted from industrial reports and academic studies.
Additionally, a health index formulation is given for lifecycle
prediction of power transformers. The procedures of various testing
methodologies are described including dissolved gas analysis,
oil-testing methods, partial discharge, dielectric dissipation factor,
turns ratio test, transformer winding resistance, etc. However, no
quantitative study is presented in [26]. A maintenance planning for
in-service power transformers is presented in [27] using the health
index approach. Weighting and scoring factors were assigned
for each test to determine the actual condition of the power
transformers relying on average historical data. Reference [6]
presented a condition-dependent reliability model of a transformer
and studied impacts of loading, HST-dependent aging, and weather
condition on the failure probability. Using historical data, the
long-term failure probability of a transformer was derived. Then,
operating condition of the asset in a day-ahead study was applied
to the model to extract the real-time failure probability. However,
the long-term probability is resulted from average mid-term
historical data. Unlike using real-time operating historical data,
this method cannot represent the real health status of the asset.
Reference [28] presents a methodology for estimating the health
index of power transformers based on simple data obtained from
oil sample analysis acquisition systems. The proposed method
employs the history of the average daily load of power transformer
to estimate the insulator degradation. Although using simple data
is an advantage of the method presented in [28], the use of
average data deviates the health index estimation from its real
value in practice. Reference [29] used recent historical data from
a two-year period of time to determine the insulation index of 10
power transformers. The historical data include average qualitative
oil measurements for parameters such as furan, dissolved gas
analysis, water content, breakdown voltage, interfacial tension, and
acidity. The results can easily estimate the useful remnant lifetime
of the transformer. Neglecting historical data prior to two years
ago and utilizing average data are the main drawbacks of the
proposed methodology in [29]. In another research [30], authors
used average historical data on operation time, the load rate,
and the pollution level to obtain helath index of the trandformer.
The researches in the literature paid much attention to lifetime
estimation of power transformers using historical data or testing
methodologies. However, the application of asset management
studies in transformer daily load scheduling has been disregarded.
The failure probability of a power transformer affects the daily
interruption and repair costs of the distribution system. Thus having
known the hybrid age and weather dependent failure probabilities
of power transfrmers, the daily load can be scheduled so as to
minimize the total cost of system including operation, interruption,
and repair costs.

Wide Area Measurement Systems (WAMS) provide time
synchronized measurements across a power system in the future
smart grid infrastructure. Thus, characterizing the power system
state in its various operating points will be viable with a high
resolution. This allows to enhance the information level necessary
for supporting the system operator in daily scheduling of the power
system. Real-time transformer condition monitoring is one practical
benefit of integration and utilization of WAMS [31–33]. Employing
WAMS data, many variables associated with transformers might be
monitored online such as hottest spot temperature, dissolved gases,
oil temperature, partial discharges, wall and winding vibration,
and winding movement/deformation. Moreover, the weather data
is available online. All data measured can then be collected and
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analyzed to provide accurate picture of the current situation and
thus helping the operator with scheduling decisions.

The majority of published works in the literature, as reviewed
above, paid attention to either testing methodologies or analytic
methods for condition monitoring with long-term constant failure
rates. In constant-rate condition monitoring, the HST-related
remained lifetime of the power transformer is neglected. In
addition, the correlation of weather data in total failure probability
of power transformer is not considered in most of researches.
Additionally, the impact of Distributed Generation (DG) units
on daily transformer loading and total failure probability is
still unknown. For instance, reference [34] proposed an asset
management model for power transformers to decrease operation
and maintenance costs relying on lifetime based failure probability
of the equipment. However, the contribution of DG units in
load scheduling is neglected. Thus, there is an undeniable need
to a comprehensive research which considers: i) WAMS data
employment to recognize the real-time health status or effective
lifetime of power transformers, ii) weather data use for calculating
total failure probability of power transformers, and iii) optimal
daily loading of the transformer considering the contribution of
DG units.

This paper proposes a transformer asset management using
real-time historical data of the power transformer. In the smart
grid concept, advanced meters and sensors play a significant role
in gathering data from different assets. Therefore, the aging status
of the transformer can be derived exactly. This will provide the
system operator with a real picture of the transformer which in
turn makes the scheduling results closer to real situation. The HST-
dependent and the weather-dependent probability failure functions
are calculated using the forecasted load, ambient temperature, and
weather condition data. Then, the total failure probability of the
transformer is derived. Using this function and electricity market
prices, the operator evaluates a reliability-cost objective function to
schedule the optimal 24-hour transformer loading in the presence
of DG units. Moreover, the hourly loading of DG units will be
determined.

The main contributions of this paper are listed as follows:
• Transformer asset management is viewed from a dynamic,

real-time dependent perspective rather than the conventional
static one,

• Unlike previous studies, this work applies a real-time
condition-based failure rate model for reliability assessment
of transformers using HST-dependent and the weather-
dependent failure probability functions,

• The presented model considers the contribution of DG units
in load supply and total failure probability in addition
to calculating the optimal 24-hour loading for substation
transformers and DG units.

The next sections are arranged as follows. In Section2, the model
concepts are defined and the general methodology is described.
In Section 3, the problem is formulated. Simulation results are
presented in Section 4. Finally, conclusive remarks are given.

2. PROBLEM DEFINITION

Asset manager is responsible for preparing the long-term
guideline for the system operator according to policies announced
by the asset owner. The main purpose is to operate the system in
a real-time operating period in a way that the long-term objectives
and policies of the asset owner are satisfied. In this work, it
is assumed that this task has been performed before and the
output instructions are used by the system operator to schedule the
day-ahead system operation. The main objective of the problem is
to formulate a risk-based cost objective function which determines
the hourly loading curves of the substation transformer and DGs.

Fig. 1 illustrates the framework of the proposed asset
management model. The asset owner determines the corporate
objectives and announces to the asset manager. These objectives
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Fig. 1. The framework of the proposed asset management model

originate from general policies set by policy makers considering
benefits of stakeholders. The asset manager is responsible for
making available a long-term asset plan for the system operator.
In our model, it is assumed that the asset manager uses historical
WAMS data to determine the real health status of the transformer.
Therefore, the system operator is aware of the newest aging
and failure probability of the transformer which reflects its real
health status. Forecasting the load and receiving the forecasted
ambient temperature data, the system operator is able to estimate
the hourly HST. The weather condition forecast is also available
for the day-ahead. The day-ahead market prices should be also
predicted. The state of DGs and their availability for servicing
is also checked. Finally, the system operator can calculate the
total failure probability of the transformer in each hour. Here, the
HST-dependent and weather-dependent failure probability functions
are considered. It is worth saying that other probability failure
functions such as that of dissolved gases or partial discharge
can be modeled. However, the most important failure origin of
a transformer is the HST aging. The weather-dependent failure
probability is also modeled, since it can be important in adverse
weather conditions. Finally, the problem is formulated as a
reliability-cost objective function and the hourly loading patterns
of transformer and DGs are derived.

3. PROBLEM FORMULATION

Transformer failures are divided in two categories: HST-
dependent and weather-dependent failure models. These models
are discussed in details in the following.

3.1. Hottest Spot Temperature Model
The majority of transformers used in power systems are insulated

with mineral oil. The hottest spot is a major failure origin which
is dependent on the ambient temperature and transformer loading.
The transformer hottest spot is typically formed in the upper
half of the windings [6]. The block diagram of the hottest-spot
calculation is presented in Fig. 2 which is based on the heat
transferring process [35]. The HST model in Fig. 2 is proposed
by ANSI/IEEE C57.91 which is derived from average ratings and
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Fig. 2. HST model of a transformer

design models of different types of transformers [6]. It is assumed
that there is no time constant for the temperature to go up or down.
Therefore, the transient behavior of the temperature changing is
neglected in the model, since the focus of the paper is not on
the temperature accurate model and the simplified model will be
adequately appropriate for our work.

According to Fig. 2, the HST model is composed of three main
parts including the ambient temperature, the top-oil temperature
rise over the ambient temperature, and the winding hottest spot
temperature rise over the top-oil temperature. In this regard, the
hottest spot temperature is calculated as:

TH = TA + ∆TO + ∆TH (1)

Where TAis the ambient temperature, ∆TO is the top-oil rise over
the ambient temperature, and ∆TH is the winding hottest spot
temperature rise over top-oil temperature. It is worth mentioning
that the given formulation in the following is based on simplifying
assumptions which are discussed in [35].

The top-oil temperature rise over the ambient temperature in
steady-state condition is proportional to the per-unit loading as:

∆TO = ∆TOR(
k2R+ 1

R+ 1
)n (2)

Where ∆TOR is the top-oil temperature rise at rated load, k is the
per-unit loading and R is the loss ratio.

The increase in the temperature of winding hottest-spot over the
top-oil temperature is given by:

∆TH = ∆THR(k2)m (3)

In which ∆THR is the increase in the temperature of winding
hottest-spot over top-oil temperature at nominal load,k2 is the
per-unit winding loss, n and m are empirical constants depending
on the winding sensors cooling system. The winding hottest-spot
temperature rise over top-oil temperature at rated load,∆THR, can
be calculated by adding a constant value over the average winding
rise as:


∆THR = Average increase of the winding temprature over top oil + 15

◦
c

∆THR = (∆TWR −∆TOR) + 15◦c


(4)

In which ∆TWR is the average increase in the winding temperature
at nominal load. In fact, ∆THR is obtained from the average
increase in the winding temperature over top-oil temperature plus
15 degrees Celsius corresponding to 65 degrees Celsius winding
rise respectively. The HST is then derived by adding the ambient
temperature to the top-oil rise and the hottest spot conductor rise
over top-oil (See (1)).

A) HST-Dependent Aging Failure Model
Transformer aging failures are mostly originated from the

insulation deterioration. The HST is the main reason of insulation
depreciation; hence, it is investigated in this work. The Weibull
distribution has been used in [6] to describe the aging failure
probability of transformers. It is noted that the aging failure
function is dependent on operating condition of the equipment.
Therefore, we use the operating condition dependent function to
model the failure probability of the transformer.
A transformer is under different operation conditions during a
period T. The period can be divided into short sub-periods
t1, t2, ..., tn , and the HST temperature, TH(ti) is considered
constant in each sub-period. This assumption is suggested for
simplicity. However, this assumption is close to the reality in our
work, since the historical real-time WAMS data is available. The
loss of insulation life tli in a sub-period ti can be calculated
as [36]:

tli = tie
( 15000
T0+273

− 15000
TH (ti)+273

) (5)

Thus, the overall loss of insulation life in period T is calculated
as:

Te =
n∑
i=1

tie
( 15000
T0+273

− 15000
TH (ti)+273

) (6)

As an equivalent expression, the total loss of insulation life Te can
be considered as the equivalent operation time under the reference
temperatureT0. Similarly, an equivalent operation time ∆tl may be
obtained for the sub-period duration∆t as well.
Provided that the transformer has survived for a period T, the
HST-dependent failure probability of a transformer in a sub-period
duration ∆t can be expressed as [37]:

Pf = 1− e

 Te

Ce

B
T0+273

β−
 Te+∆tl

Ce

B
T0+273

β
(7)

Where B, C are empirical constants and β is the shape parameter
of the Weibull distribution associated with the failure probability
of aging process.

3.2. Weather-Dependent random failure model
Inherently stochastic events such as heavy lightning, heavy

storms, typhoons, snow, ice, etc., can also lead to a transformer
failure. The aforementioned events considerably increase the failure
rate of an exposed transformer. For the sake of simplicity, a two-
state model was proposed [38] to calculate the weather-dependent
failure rate of an outdoor transformer:

λ(v) =

{
λ̄N+S

N
(1− F ), v = 0

λ̄N+S
N

F, v = 1

}
(8)

Where N is the expected normal weather duration, S is the
expected adverse weather duration, F is the proportion of failures
occuring in adverse weather, v is the current weather condition
(v is equal to 0 in normal weather and equals to 1 in adverse
weather).

If the failure during ∆t under the given weather condition v is
constant, then the probability density function is mathematically
an exponential function. The weather-related failure probability
during ∆t is:

Pw = 1− e−λ(v)∆t (9)

3.3. Total Failure Probability Model
The structure of the two failure types is different and

consequently the failure events are completely independent. Thus,
the failure probability of a transformer in a sub-period duration ∆t
is calculated as follows provided that it has survived for a period
T [37]:

Pr
t

= 1− (1− Pf (T, TH ,∆t)) (1− Pw(v,∆t)) (10)
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Fig. 3. The single-node model of the system under study

3.4. Reliability-Cost Operation Formulation
Fig. 3 illustrates the system under study. As shown, the

substation transformer supplies the power for the distribution
network from the upstream grid. To survey the impact of DGs
on the hourly transformer loading and the asset management
problem, DGs with typical supply functions are considered. For
the simplicity, distribution network topology is neglected and the
whole generation and demand are assumed to be at the same bus
which is a common practice in asset management studies. The
reliability-cost objective function is written as follows:

Min

24∑
h=1

Coprh + Cinth + Crh (11)

Where Coprh is the hourly operation cost, Cinth is the hourly
interruption cost, and Crh is the hourly repair cost imposed to
the system. The operation cost is composed of two parts; cost of
providing energy from the upstream and the generation cost of
DGs:

Coprh = P subh × ρh + PDGh × CDGh , ∀h (12)

Where P subh is the hourly transformer loading, ρh is the hourly
electricity price, PDGh shows the hourly power generation, and
CDGh is the hourly cost function of DG. The interruption cost
is calculated by multiplying the Energy Not Supplied (ENS) by
Customer Damage Function (CDF) as shown in (13). The CDF is
determined according to energy policies and customer type.

Cinth = ENSh × CDF, ∀h (13)

In which:

ENSh = Pr
h
×P subh (14)

The hourly repair cost of the transformer is expressed in (15). In
fact, it calculates the cost of repair for a damage caused during
hour h:

Crh = Pr
h
×(a× P submax + b) (15)

A power balance constraint insures the generation and load match
as:

P subh + PDGh = loadh (16)

Finally, power transformer and DG unit are restricted by their
nominal capacities:

P subh ≤ P submax (17)

PDGh ≤ PDGmax (18)

The aforementioned problem in (1)–(18) is solved by General
Algebraic Modeling System (GAMS) software using a PC with
Intel Core i7 CPU @3.20 GHz and 4 GB RAM.

Table 1. Parameters of the HST model

Parameter Value

R (Degrees Celsius) 36
m 1
n 1

Table 2. Parameters of the failure models

Parameter Value

HST-dependent aging failure model
β 5.9
B 15000
C 1.903*10−12

Weather-dependent failure model

N (hour) 200
S (hour) 2
F 0.6
λ̄ (year−1) 0.02

4. RESULTS AND DISCUSSIONS

The proposed model is verified through numerical simulations
in this section. The test transformer is a Forced-Oil-Air (FOA)
cooled, 12 MVA substation transformer with 65 degrees Celsius
average winding rise. The parameters of the HST model are shown
in Table 1 [6]. The parameters of the transformer are listed in
Table 2. The expected transformer life is considered 180000 hours
by recommendations in [36]. It is worth noticing that historical
data from the practical operation of a transformer can be used to
achieve these parameters. The cost of DG supply is set to be 80
$/MWh.

The transformer aging failure rate under the reference HST (110
degrees Celsius) gives useful information on the health condition
of the transformer. The aging failure rate of the transformer,
which shows the normal operation and the wear-out stages on
the transformer life span curve, has been taken from [6]. The
hourly load, hourly ambient temperature, and hourly electricity
price curves are also shown in Figs. 4-6.

The hourly failure probability model is examined under case
studies shown in Table 3. In addition to average data, a set
of recorded HST data by WAMS will be applied to show how
real-time data can affect the results.

4.1. Applying estimated averaged historical data
In this subsection, it is assumed that averaged data from

historical background of the transformer is applied. Thus, the
average failure probabilities are calculated.

The failure probabilities for each case are shown in
Figs. 7, 8, 9, 10, 11. As shown, for cases 1 and 3 (Fig. 7 and 9),
HST-dependent failure probabilities are dominant and weather-
dependent failure probabilities are small due to normal weather
condition. As expected, the HST-dependent failure probabilities in
Fig. 7 are greater than that of Fig. 10. Nonetheless, in cases 2
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Table 3. Description of case studies for numerical simulations

Case Transformer aging condition Weather condition

1 Survived for 5 years with equivalent reference HST (110) Normal weather for 24 hours
2 Survived for 5 years with equivalent reference HST (110) Adverse weather for 24 hours
3 Survived for 30 years with equivalent reference HST (110) Normal weather for 24 hours
4 Survived for 30 years with equivalent reference HST (110) Adverse weather for 24 hours
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and 4 (Fig. 8 and 10), weather-dependent failure probabilities are
dominant due to adverse weather condition. Also, HST-dependent
probability values in case 4 are greater. It is mainly due to longer
operation time of transformer in this case.

The hourly per-unit loading of the transformer is shown
in Fig. 11 with supply cost of 80 $/MWh for DG. The
transformer loading is dependent on failure probabilities illustrated
in Figs. 7, 8, 9, 10,. As shown in Fig. 11, the transformer loading
in case 1 is higher than other cases since the failure probability
in this case is lower than others. In other words, lower failure
probability indicates smaller interruption & repair cost of the
transformer in the same level of loading.
The related hottest spot temperature profile is also shown in
Fig. 12. As shown, the behavior of HST is like per-unit loading

 

0.00E+00

2.00E-07

4.00E-07

6.00E-07

8.00E-07

1.00E-06

1.20E-06

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Total HST Weather

Hour 

Fig. 7. Hourly failure probabilities for case 1

 

0

0.00002

0.00004

0.00006

0.00008

0.0001

0.00012

0.00014

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Total & Weather HST

Hour

Fig. 8. Hourly failure probabilities for case 2

 

0

0.00002

0.00004

0.00006

0.00008

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Total HST Weather

Hour 

Fig. 9. Hourly failure probabilities for case 3

of the transformer, since it is dependent on transformer loading as
discussed in section 3.1.
Hourly DG generation profile is shown in Fig. 13. Case 4 has
the most participation of DG generation due to higher failure
probabilities and higher risk of transformer overloading. DG
generation profile is also shown for the case where the cost of DG
supply is considered 115 $/MWh (See Fig. 14). As expected, the
contribution of DG in supplying the load decreases for all cases as
the cost of DG generation is enhanced. Due to the high price of
DG generation, the output of DG is small or zero in many hours
as shown in Fig. 14. However, it helps the system operator with
supplying part of load during peak hours. A conclusive discussion
is presented here to survey the trade-off between interruption &
repair and DG generation costs. As failure probability of the
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Fig. 11. Hourly per-unit loading of transformer with supply cost of 80
$/MWh for DG
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Fig. 12. Hottest spot temperature of the transformer with supply cost of 80
$/MWh for DG

transformer increases, the interruption & repair cost will become
greater in the same loading pattern. Therefore, it will be more
economical to decrease the transformer output and increase the
DG generation to supply the load. The latter implication is valid
as long as DG generation is affordable. However, as the supply
cost of DG is enhanced from 80 $/MWh in Fig. 13 to 115 $/MWh
in Fig. 14, DG generation becomes less affordable for all cases.

A cost summary is given in Table 4 with supply cost of 80
$/MWh for DG. As shown, results are close for cases 1 and 3 and
also cases 2 and 4 pairwise. It shows that the weather condition
is dominant and determines the major part of the risk imposed to
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Fig. 13. Hourly DG generation with supply cost of 80 $/MWh

 

0

1

2

3

4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Case 1 Case 2 Case 3 Case 4

Hour 

D
G

 g
en

er
at

io
n

 (
M

W
) 

Fig. 14. Hourly DG generation with supply cost of 115 $/MWh

Table 4. Cost summary for case studies using average data with supply
cost of 80 $/MWh for DG

Case study Total cost, $ Operation cost, $ Interruption & re-
pair cost, $

1 17921.80 17894.75 27.05
2 21570.03 18247.95 3322.08
3 17921.58 17894.17 27.41
4 21570.03 18247.95 3322.08
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Fig. 15. Failure probabilities for case study 1 using WAMS data.

system.

4.2. Applying real-time historical WAMS data
In this scenario, the impact of using recorded data by WAMS will
be investigated. Due to lack of recorded data, a set of HST data
equal to 0.9 of average data was applied to the model as real-time
data instead of average data in previous section.
Figs. 15, 16, 17, 18 show failure probabilities in case of using
WAMS data. Comparing these curves with those of Figs. 7, 8,
9, and 10 verifies that the total failure probabilities are not as
sensitive to real-time WAMS historical data as expected. However,
HST-dependent failure probabilities have changed (decreased) as
expected. Since the weather-dependent failure model was included
in total failure probability, the overall result is not sensitive enough.

Table 5 shows the cost summary results with supply cost of
80 $/MWh for DG. Hourly loading of the transformer is also
illustrated in Fig. 19. Comparing results of Table 5 with that of
Table 4 and also Fig. 19 with Fig. 11 shows the close similarity of
results with those of average data. This experience also confirms
that the effect of weather is highly dominant in asset management
studies of power transformers since the real-time WAMS data of
HST does not significantly change the results.

4.3. Comparative study
In order to assess the proposed methodology, the main results

are compared with the method proposed in [28]. The method
adopted in [28] for extracting HST-dependent failure probability
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Fig. 16. Failure probabilities for case study 2 using WAMS data
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Fig. 17. Failure probabilities for case study 3 using WAMS data
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Fig. 18. Failure probabilities for case study 4 using WAMS data

function is similar to the approach taken in this work. However,
the effect of weather condition in total failure probability function
is not considered in [28]. The method presented in this work
makes benefit of WAMS for HST data and [28] uses average data.
In addition, this work presents a reliability-cost optimization to
determine the daily scheduling of power transformer and DG unit
while power transformers are proportionally loaded based on their
nominal capacities in [28].

For the sake of brevity, the comparative results are only given
for case 4 and the DG supply cost is set to 80 $/MWh. Fig. 20
illustrates the comparative hourly loading of the transformer in the
proposed method and the approach adopted in [28]. As shown in
this figure, the transformer is overloaded during hours 11-23 in
the method presented in [28]. This is due to the fact that there
is no contribution of DG in the method of [28] which forces the

Table 5. Cost summary for each case study using WAMS data with supply
cost of 80 $/MWh for DG

Case Total cost, $ Operation cost, $ Interruption & repair
cost, $

1 17916.11 17890.75 25.36
2 21563.03 18242.95 3320.08
3 17916.91 17889.50 27.41
4 21561.23 18239.15 3322.08
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Fig. 19. Hourly per-unit loading of transformer using WAMS data

Table 6. Comparative cost summary

Method Total cost, $ Operation cost, $ Interruption
& repair
cost, $

Ref. [28] 22943.76 18956.25 3987.51
Proposed method 21563.03 18242.95 3320.08

‘

Table 7. Cost summary comparison for case study 4 neglecting weather
effect

Total cost, $ Operation cost, $ Interruption & repair
cost, $

Average data 18053.12 17962.72 90.40
WAMS data 17896.81 17894.75 2.05

transformer to supply the entire load. In contrast, the transformer
loading is moderated by the contribution of DG in the proposed
method of this paper. Table 6 compares the cost summary results
of the proposed method with that presented in [28]. Since the
transformer is enviably overloaded, the interruption and repair cost
is higher in the method of [28]. The operation cost is also greater
in the method of [28] which is due to the fact that there is no
contribution of DG to supply the load in peak hours when the grid
electricity price is extremely high. Consequently, the total cost of
system operation in the proposed method is lower than that of the
method presented in [28].
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Fig. 20. Comparative hourly per-unit loading of transformer

4.4. Sensitivity analysis

A) Neglecting weather-dependent failure probability
In this scenario, the total failure probability function is calculated

using only the HST-dependent failure probability function. For
simplicity, the worst case in terms of risk (case 4) is studied.
Table 7 gives a comparison between results of study when average
and WAMS data are used. As seen, the total cost decreases if
WAMS data is used. This observation implies that using average
data imposes further costs leading to loss of optimal scheme for
power transformer asset management. In other words, it confirms
that the economic saving is meaningful as WAMS-based failure
probabilities are employed. In the previous scenarios where both
weather and HST dependent failure functions were considered,
the dominant function was the weather-dependent function. Thus,
the HST-dependent function did not play its role apparently (See
Tables 4 and 5). Fig. 21 illustrates hourly per-unit loading of
transformer for case 4. The system operator has overloaded the
transformer during some hours in case of using WAMS data.
It is mainly due to the fact that WAMS-based data for HST
was considered 10% lower than average HST data. Lower HST
data results in smaller failure probabilities of the transformer.
Thus, the transformer overloading can occur with lower repair
and interruption costs in case of using WAMS data. Accordingly,
the DG contribution is lower during transformer overloading for
WAMS data as shown in Fig. 22.
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Fig. 21. Comparison of hourly per-unit loading of transformer for case
study 4 neglecting the weather effect
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Fig. 22. Comparison of hourly DG generation for case study 4 neglecting
the weather effect

B) Neglecting HST-dependent failure probability
In this scenario, the total failure probability function is calculated

using only the weather-dependent failure probability function. For
simplicity, the worst case in terms of risk (case 4) is studied. The
weather-dependent failure probability function applies the 24-hour
forecast data of weather condition. Results are compared with
that of the hybrid function where both HST and weather failure
probabilities were considered. Comparative results are presented
using WAMS data.

As seen in Table 8, results are close to those of hybrid function.
It is mainly due to the fact that the failure probability values
are large for the weather-dependent failure function. Therefore,
neglecting HST-dependent failure probability function will not
affect the hybrid failure function. Fig. 23 confirms the latter claim
as well. The per-unit loading of the transformer is fairy the same
for both scenarios, except in peak load hours, i.e., 17-21, where a
small difference can be observed.

C) Neglecting DG contribution
In order to investigate the impact of DG contribution on

transformer asset management, the model was examined in the
absence of DG units. In practical cases when no DG is available,
distribution companies perform transformer asset management via
planned maintenance measures. Moreover, load shedding during
peak hours and demand response programs can help the system
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Fig. 23. Impact of HST on per-unit loading of the transformer in case
study 4
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Fig. 24. Comparison of per-unit loading of the transformer for case study
4 with/without DG contribution using WAMS data

operator improve the transformer asset management. Like two
previous sensitivity cases, the new study has been performed for
case 4.

Table 9 and Fig. 24 present the results of model with and
without DG contribution in case of using WAMS data. The total
cost of the system decreases when there is a contribution by DG.
The higher total cost in the lack of DG contribution refers to
greater interruption and repair costs due to overloading of the
transformer. In this comparison, the cost of DG generation was
assumed to be 80$/MWh. It is expected that the cheaper the DG
technology, the more beneficiary the DG contribution. As shown
in Fig. 24, the transformer is overloaded during some hours of
operation when DG is not used.

5. CONCLUSION

In this paper, a transformer asset management model based on
real-time condition monitoring was presented. With the supervisory
equipment in power systems, real-time monitoring of power
systems has been viable. Accordingly, modeling techniques should
be updated to use real-time data for condition monitoring and asset
management of power system equipment.

Different aging phenomena occurring in a transformer were
introduced and among them hottest spot temperature was modeled
due to its dominant impact on the aging of transformer. Weather
condition was also modeled as an important factor for calculating
the failure probability of a transformer.

Features, advantages and disadvantages of the given model were
discussed over the constant failure models used previously in the
literature. The objective of the proposed model is to determine
the hourly loading of the transformer with the contribution
of distributed generators such that the total cost of system is
minimized. Total cost of the system includes the operation cost
and risk-based cost. Interruption and repair costs represent the
risk-based cost in our model.

Results showed no significant sensitivity to real-time hottest
spot temperature data provided by the wide area measurement
system. The values of hottest spot temperature failure probability
function are rather small while the weather-dependent one has
greater values. Since the weather-dependent function is dominant
in total failure probability function, neglecting the hottest spot
temperature in total failure probability function did not change the
results significantly.

A sensitivity analysis was also done to investigate the impact
of DG contribution on the model output. Numerical simulations
showed that the absence of DG imposes a high risk to the
system due to transformer overloading resulting in an increase in
the overall cost of the system. Surveys showed that if low and
medium price technologies are used as distributed generators, the
contribution of distributed technologies will be more beneficiary.
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