
Journal of Operation and Automation in Power Engineering

vol. 12, no. 3, Aug. 2024, Pages: 233-244

http://joape.uma.ac.ir

Short-Term Scheduling of Cryogenic Energy Storage Systems in
Microgrids Considering CHP-Thermal-Heat-Only Units and

Plug-in Electric Vehicles

S. Cheshme-Khavar1, A. Abdolahi2,*, F.S. Gazijahani2, N.T. Kalantari2, J.M. Guerrero3

1 Department of Electrical Engineering, Amirkabir University of Technology, Tehran, Iran
2 Departmant of Electrical Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran

3 Center for Research on Microgrids (CROM), AAU Energy, Aalborg University, 9220 Aalborg, Denmark

Abstract— With the exponential penetration of renewable energy sources (RES), the need for compatible scheduling of these has increased
from economic and environmental points of view. Due to the high-efficiency and fast-response features of combined heat and power
(CHP) generation units, these units can immunize the system against RES fluctuations. To address the operational challenges associated
with RES, this paper aims to schedule the arbitrage of cryogenic energy storage (CES) not only to maximize its owner but also to
minimize RES variability. On the other hand, plug-in electric vehicles (PEV) are applied in the proposed model as responsible loads to
smooth the system’s load profile by changing the consumers’ consumption patterns. The proposed problem is modeled as second-order
cone programming and solved by the dominated group search optimization algorithm. To verify the applicability and effectiveness of the
proposed approach, four different case studies have been executed.
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NOMENCLATURE

Acronyms
ASU Air separation unit
CES Cryogenic energy storage
CHP Combined heat and power
CRS Convex region surrogate
DGSO Dominated group search optimization
DRP Demand response program
ESS Energy storage systems
MG Microgrids
PDF Probability distribution function
PEV Plug-in electric vehicles
RES Renewable energy sources
SOCP Second-order cone programming
TOC Total organic carbon
Parameters
αi , βi , λi Fuel cost coefficients of thermal units
αj ,βj ,λj , δj ,θj ,εj Fuel cost coefficients of CHP units
αm ,∂m,θm Fuel cost coefficients of the heat-only

power unit
ρei ,σei,τei Emission coefficients of conventional units
ρej ,σej ,τej Emission coefficients of CHP units
ρem,σem,τem Emission coefficients of a heat-only unit
alin , blin Coefficient demand vs. price
Dmax The maximum number of switching

between charge & discharge state over
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the parked time
EXmax Maximum curtailable daily load
PEV−Cmax Maximum amount of power charged by

the EV
PEV−Dmax Maximum amount of power discharged by

the EV
PCHPmin,max Upper and lower production limits of CHP

units
PGridmin,max Maximum and minimum power transac-

tions with upstream grid
Phmin,max Upper and lower production limits of heat

only power units
P thmin,max Upper and lower production limits of

thermal units
SoCEVmax Maximum state of charge of EV
SoCEVmin Minimum state of charge of EV
TP−max Maximum duration of EV attendance in

the parking lot
UR ,DR Pickup/drop off rate of load
UT ,DT Minimum up/down time of load
Sets and indices
i Index for thermal units
j Index for CHP units
k Index for CES systems
m Index for heat only units
NCES Set of CES systems
NCHP Set of CHP units
Nh Set of heat only units
Nth Set of thermal units
Nt Set of time
t Index for time
Variables
∆Dt Amount of curtailed load at time t
Prt Virtual generation marginal cost at time t
BCESk,t Operational cost coefficient of kth CES
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system at time t
BGridt Operational cost coefficient of the

upstream grid at time t
Cthi,t Fuel cost of ith thermal unit at time t
CCHPj,t Fuel cost of jth CHP unit at time t
CCESk,t Operational cost of kth CES system at

time t
Chm,t Fuel cost of mth heat-only power unit at

time t
CDRt Operational cost of DRPs at time t
CGridt Fuel cost of power transaction with the

upstream grid at time t
D The number of switching between charge

and discharge state over the parked time
Dt Responsive load at time t
D0
t Initial power demand at time t

EGridt Emission of the upstream grid at time t
eGridt Grid emission coefficient at time t
EMCchp Emission cost of CHP units ($)
EMCh Emission cost of heat-only unit ($)
EMCth Emission cost of the thermal units ($)
EMP Emission price ($/TOC)
EMS(H(m, t)) Emission of mth heat-only power unit at

power P and time t
EMS(P (i, t)) Emission of ith thermal unit at power P

and time t
EMS(P (j, t)) Emission of jth CHP unit at power P and

time t
HCHP
j,t Heat generation of jth CHP unit at time t

Hh
m,t Heat generation of mth heat-only power

unit at time t
HD
t The required heat demand at time t

P1 Cost of microgrids objective function
P2 Pollution objective function
P thi,t Production of ith thermal unit at time t
PCHPj,t Production of jth CHP unit at time t
P chk,t Power charged value of kth CES system

at time t
PDISk,t Power discharged value of kth CES system

at time t
PEV−Ct Amount of power charged by the EV at

time t
PEV−Dt Amount of power discharged by the EV

at time t
PGridt Amount of power purchased/sold from the

upstream grid at time t
SoCEVt State of charge of EV at time t
ta The arrival time of EV to the parking lot
td The departure time of EV from the parking

lot
Tp Duration of EV attendance in the parking

lot
Vt Curtailed demand state
X
on/off
t Off/On time of load

1. INTRODUCTION

Over the past decades, the electric power industry affected
by considerable changes in response to the rising concerns of
global climate change and volatile fossil fuel prices. For more
reliable, impressive, and eco-friendly energy production, it is
essential to develop renewable energy sources (RES), particularly
solar energy, along with energy storage systems (ESS). This
procedure has derived into the meaning of a microgrid (MG),
which can be described as a cluster of RES, ESS, and local loads,
managed by an intelligent energy management system [1–3]. MG
is smaller, reliable distribution networks generally installed nearby
the consumers and often include hybrid energy resources, storage
such as batteries, fuel cells, cryogenic energy storage (CES),

and controllable loads. Conventional power systems are typically
large-scale systems in which power plants produce high-voltage
electricity delivered to low-voltage customers. A significant amount
of electrical energy is lost during power transmission due to the
vast distance between the producer and the end-users. In this
context, MGs have been widely adopted throughout the world as
a way of addressing RES’s significant effects and lowering CO2
emissions while aiming to handle supply-demand control at a more
local level [4], [5].

The author presented a multi-objective optimization and
stochastic programming method in [6] to solve the proposed
mixed-integer nonlinear programming in MG. By applying the
proposed method, the total operation cost of MG is reduced,
and the produced power by CHP and MT is reduced to lower
values. A day-ahead scheduling of multi-carrier CHP-based MGs
in the presence of renewable energy sources are presented in [7].
In order to handle the uncertainties of renewables, information
gap decision theory is utilized. Also, demand response model
are considered for both electrical and thermal loads. The gray
wolf optimization algorithm is applied to solve the economic-
environmental scheduling of integrated combined heat and power,
heat only, and traditional thermal units considering the effects
of temperature drop of the heat pipelines [8]. In [9], it was
suggested a demand response program (DRP) find the optimal
scheduling of combined heat and power (CHP)-based MGs. The
proposed model can cover the total electrical and thermal demands
concerning economic criteria. Two main categories of DRPs
containing incentive-based and time-based programs have been
discussed in [10] for the MGs operation. A short-term operation
scheduling of MGs among interdependent electricity and natural
gas networks considering the uncertainties and DRPs addressed
in [11]. The participation of DRP can reduce operating costs and
improve security margins in microgrids with electricity and natural
gas networks.

The authors in [12] investigated a multi-party energy
management formulation for CHP-MG with hybrid DRPs that
include electricity and heating demand. Short-term probabilistic
scheduling of thermal power generation and wind power integrated
with cryogenic energy storage systems and execution of a
time-based demand response program with the aim of profit
maximization and cost minimization is presented in [13]. A
stochastic multi-objective optimization algorithm is suggested
in [14] to minimize the energy cost and air pollution for
a typical residential MG in the presence of storage. This
mentioned optimization problem is modeled as a mixed-integer
linear programming problem that is executed in GAMS and
solved by CPLEX. This work also solved for residential MG
equipped with auxiliary boiler with considering thermal and battery
energy storages [15]. Optimal scheduling of heating, power, and
hydrogen-based microgrid incorporated with renewables and plug-
in electric vehicles are investigated in [16]. The fuel-cell-based
hydrogen is integrated into the multi-energy system to investigate
the power-to-hydrogen and hydrogen-to-power technologies in the
model. Optimal heat and power scheduling of grid connected-MG
by considering environmental issues in the presence of DRPs are
discussed in [17]. An intelligent energy management system was
investigated in [18] for scheduling an interconnected MG including
distributed energy resources, ESS, and CHP units; to supply the
electrical and thermal load demands.

According to the literature review, there are many works
have been done in the optimal scheduling of microgrids in the
presence of renewable energy sources field to provide electric
power shortage, prevent environmental emissions, and improve
some system technical specifications such as voltage profile and
power losses. In some references, plug-in electric vehicles and
various kind of energy storage systems have been considered for
the optimal scheduling of microgrids, which results in reducing
the microgrids operating costs, improving voltage profile, potential
shifting of charging to the off-peak period, and discharging during
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the on-peak period to minimize the system loading. Due to the
explanations, valuable works is done on the optimal scheduling
of microgrids, but there are still many problems and deficiencies
that need to be addressed properly. Briefly, the shortcomings of
previous references are as follows:

a) Simultaneous energy management of plug-in electric vehicles,
CHP-thermal-heat-only units, and cryogenic energy storages
in microgrids are not investigated.

b) Energy management of plug-in electric vehicles is performed
only from the owners’ viewpoints, But it is not operated from
the distribution system operator viewpoint.

c) Effects of integration of CHP, thermal and heat only units
on environmental emission and total cost reduction are not
considered.

So, to address the shortcomings and drawbacks of previous
literature, this paper attempts to provide the following contributions.
The main novel contributions of the paper are as below:

1) Utilizing the CES system as a fast-response resource to
mitigate the sharp fluctuation of solar generations and
maximize renewable power harvesting.

2) Formulation of the problem as a computationally efficient
second-order cone programming model and utilizing DGSO
algorithm to minimize the MG operating cost considering
various spatial-temporal constraints.

3) Applying an interactive energy scheduling on the EVs, CHP
units, and CES not only to reach the minimum operating
cost, but also increase the profits of MG owners.

4) Optimal arbitrage of EVs as a price-responsive loads in
order to reduce the CO2 emission and renewable swings in
balancing market.

5) Developing an integrated CHP-thermal-heat-only system for
satisfying demands for heat and power, providing a spinning
reserve for power, and reducing CO2 emission.

The rest of this paper is organized as follows. Section 2 shows
the modeling of CES and solar cells; Section 3 presents problem
formulation and constraints of the proposed method; Section 4
describes an overview of the DGSO algorithm; simulation and
numerical results are discussed in section 5; and finally, in Section
6, concluding remarks are drawn.

2. MODELING OF CES AND SOLAR CELLS

The structure of MG in the presence of integrated CHP-thermal-
heat-only units considering PEV and solar cells is presented in
Fig. 1.

2.1. Modeling of solar cells

The two main factors that influence the output power of
solar panels, creating variations and potential behavior, are angle
and solar irradiation. These parameters’ probability distribution
function (PDF) can be created using a variety of PDFs [19]. Two
parameters, y and q, have used the Log-Normal PDF to predict the
output power produced by solar irradiation according to Eq (1).

PDF (x) =
1

qx
√

2π
exp

[
−1

2

(
ln(x)− y

q

)2
]
, x ≥ 0 (1)

Finally, Eq. (2) yields the quantity of electricity produced by solar
cells, which is dependent on the ambient temperature and sun
irradiation. The temperature of the cells was determined using
Eq. (3).

PPVt = PSTG +
GING
GSTG

× (1 +K (Tc − Tc,ref )) (2)

Tc=Ta+
NOT−20

0.8
×G (3)
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2.2. Modeling of CES

The CES plays an important function in MGs since it is
intended to moderate peak demand and store excess energy in the
condition of liquid air. Two Liquefaction and Expansion stages are
incorporated in the construction of CES [20]. Each segment has a
separate method that is discussed in the next section.

A) Liquefaction process
Already, the procedure of air liquefaction was monopolized by

the Linde Company and generated liquid from gases. At first,
atmospheric air is pressurized at 60-90 pounds per square inch
(PSIG). In the following, the pressurized air is refined from the
humidity, carbon dioxide, and hydrocarbons. Cold boxes are used
to freeze the purified compressed air in the next step. Distillation
pillars and heat converters are examples of cold boxes. The
liquefaction process produces three materials in general: liquid
argon (LAr), liquid nitrogen (LN2), and liquid oxygen (LO2) [21].

B) Expansion process
The liquefied air is pushed first to pressurize the cryogenic

liquid air. The ambient heat from the frozen compressed liquid
air is absorbed via heat converters. After that, the turbine and
generator create high-pressure gaseous air. Because of the energy
loss, the round-trip efficiency is roughly 40%. On the other hand,
using industrial waste heat as auxiliary heat may achieve a round
trip efficiency of up to 70%. Liquid gas is forced to create
high-pressure liquid. A low-grade heat source is subsequently used
to evaporate the created liquid. To produce power, a high-pressure
cold gas turbine will be employed [22]. The advantages of using
CES as a new technology and for energy storage are discussed in
this section. The modeling of an air separation unit (ASU) is quite
intricate, and the method is extremely difficult. As a consequence,
the ASU technique is separated into several styles with convex
regions in which the ASU has a linear connection between power
consumption and ASU production. The three modes of the ASU
system are "off," "start-up," and "production." To mimic the
various forms of ASU, the Convex Region Surrogate (CRS) model
is employed. A collection of convex sub-regions is employed to
produce the potential region in the CRS model [23]. The ASU
model is represented in the following fashion, according to the
CRS:

PASUt =
∑
m

∑
q∈Rm

(
δmq ȳmqt +

∑
i

γmqrPAmqrt

)
(4)

PArt =
∑
m

∑
q∈Rm

PAmqrt, r ∈ {LN2, LO2, LAr} (5)

PAmqrt =
∑
j∈Jmq

λmqjtvmqjr (6)

∑
j∈Jmq

λmqjt = ȳmqt (7)

ymt =
∑
q∈Rm

ȳmqt (8)

∑
m

ymt = 1 (9)

Based on liquid production, Eq. (4) predicts the value of
ASU-consumed power. Eqs. (5) to (9) also indicate the limits of
ASU modeling.

3. PROBLEM FORMULATION

3.1. Objective function
In this paper, the objective function (10) is presented as a

single-objective form to minimize the microgrid operating cost and
the environment emission cost, where the first term (P1) includes
the costs of thermal units, cryogenic energy storage operation, PV
power generation, power trade-off with the upstream grid, and
plug-in electric vehicle arbitrage. The second term (P2) includes
the cost of environmental emission generated by thermal, CHP,
and heat-only units. In order to sum these to terms, the second
term (P2) is multiplied by the penalty cost and converted to the
cost function.

min F = (P1+P 2) (10)

3.2. Operating cost function of MG
The purpose of Eq. (11) is to minimize the total operating cost

of MG, including CES systems, responsive loads, and various kinds
of thermal power systems like conventional systems, cogeneration
systems, and heat-only systems. All of the functions mentioned
earlier cumulated in Eq. (11).

P1 =

24∑
t=1

{Nth∑
i=1

Cthi,t +

NCHP∑
j=1

CCHPj,t +

Nh∑
m=1

Chm,t

+

NCES∑
k=1

CCESk,t + CPVt + CGridt

}
(11)

where, Cth, CCHP , Ch, CCES , and CGrid demonstrates the
cost function of thermal units, CHP units, heat-only systems, CES,
and power transaction with the upstream grid, respectively. The
traditional thermal unit total nonlinear cost modeled as Eq. (12):

Cthi,t = αi + βi
(
P thi,t

)
+ λ i

(
P thi,t

)2
(12)

The CHP system total cost presented as Eq. (13):

CCHPj,t = αj + βjP
CHP
j,t + λ j

(
PCHPj,t

)2
+ δjH

CHP
j,t

+ θj
(
HCHP
j,t

)2
+ ξjH

CHP
j,t PCHPj,t

(13)

The heat-only system cost function can be formulated as Eq. (14):

C h
m,t = αm + ∂mH

h
m.t + θm

(
Hh
m.t

)2
(14)

The operation cost of solar cells presented as Eq. (15) [24]:

CPVt =

24∑
t=1

(
PPVt ×Ψt

)
(15)

The CES cost function described as Eq. (??):

CCESk,t =

NCES∑
k=1

BCESk,t ×
(
PDisk,t − PChk,t

)
(16)

Finally, the network cost function [24] derived as Eq. (17):

CGridt = PGridt × Ω t (17)

where, PGridshows the amount of electric power, which is
transacted with the upstream grid at time t and Ωtrepresents the
utility bid at time t. Effective charging/discharging scheduling of
PEVs decreases power losses and minimizes microgrid operating
costs. The charging/discharging cost of PEVs is presented as
(18) [25].

CPEV =

24∑
t=1

NPEV∑
n=1

[
b× PCh/Disn,t + PChn,t × CCh − PDisn,t × CDis

]
(18)
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3.3. Environmental emission cost function
The second objective function focused on minimizing the

amount of CO2 emission generated by thermal, CHP, and heat-
only units. Environmental emission-associated costs are given as
follows [26].

P2=CEm (19)

CEm = EMCthi,t + EMCCHPj,t + EMChm,t (20)

EMCthi,t = EMP th ×
24∑
t=1

Nth∑
i=1

EMS(P thi,t ) (21)

EMCCHPj,t = EMPCHP ×
24∑
t=1

NCHP∑
j=1

EMS(PCHPj,t ) (22)

EMChm,t = EMPh ×
24∑
t=1

Nh∑
m=1

EMS(Hh
m,t) (23)

Eqs. (19) and (20) show the total CO2 emission costs
function. According to equations (21-23), EMCthi,t,EMCCHPj,t

and EMChm,t illustrate the CO2 emission costs of thermal units,
CHP units, and heat-only units, respectively. The operation of
an integrated CHP-thermal-heat only unit is always accompanied
by the release of several environmental pollutants and, the CO2
emissions by units at hour t [26].

EMS(P thi,t ) =

Nth∑
i=1

(
ρei + σeiP

th
i,t + τei

(
P thi,t

)2)
(24)

EMS(PCHPj,t ) =

NCHP∑
j=1

(
ρej + σejP

CHP
j,t + τej

(
PCHPj,t

)2)
(25)

EMS(Hh
m,t) =

Nh∑
m=1

(
ρem + σemH

h
m,t + τem

(
Hh
m,t

)2)
(26)

Equations (24-26) indicate the amount of CO2 emission released
by thermal units, CHP units, and heat-only units, respectively.

3.4. Constraints
The suggested optimization problem is surrounded by several

limitations, classified as below.
a) Power balance
Concerning the first aim, the following constraint assures that

the total demand is met across the planning horizon by the power
provided by all thermal units, CESs, and grid-supplied sources.

Nth∑
i=1

P thi,t +

NCHP∑
j=1

P CHP
j,t +

NCES∑
k=1

PDisk,t +

NEV∑
e=1

PEV,Dist

+ PGridt + PPVt = Dt +

NCES∑
k=1

PChk,t +

NEV∑
e=1

PEV,Cht (27)

b) Power limits
To reach stable operation, the transacted power with upstream

grid, generating power by CHP units, thermal units, and heat-only
power systems must be operated in their minimum and maximum
limitation.

P thmin ≤ P thi,t ≤ P thmax (28)

PCHPmin ≤ PCHPj,t ≤ PCHPmax (29)

PGridmin ≤ PGridt ≤ PGridmax (30)

c) Heat balance
The CHP and heat-only units accountable for providing heat

supply must provide heat output, at least, to coverage heat demand.

HD
t =

NCHP∑
j=1

HCHP
j,t +

Nh∑
m=1

Hh
m,t (31)

d) Heat limits
Output heat of CHP and heat only units must be operating in

their lower and upper bounds as constraints (32), (33).

HCHP
min ≤ HCHP

j,t ≤ HCHP
max (32)

Hh
min ≤ Hh

m,t ≤ Hh
max (33)

e) Minimum up/down time
The minimum up/down time constraints related to the traditional

thermal units are presented as constraints (34), (35).

TONi,t ≥MUT i (34)

TOFFi,t ≥MUT i (35)

f) CES constraints
Some constraints on charge and discharge rate of CES systems

are listed as follows:

WCES
t = WCES

t−1 + ∆t
(
ηChPCht − PDist /ηDis

)
(36)

WCES
min ≤WCES

t ≤WCES
max (37)

PCht ≤ PChmax (38)

PDist ≤ PDismax (39)

WCES
0 = WCES

24 (40)

g) EV constraints
The vehicles park in the parking lot for specific hours, and

the vehicles owner charge and discharge them during this period.
Therefore, vehicles play the role of variable programmable loads.
Limitation of PEV,Cht andPEV,Dist can be considered as:

PEV,Cht ≤ PEV,Chmax (41)

PEV,Dist ≤ PEV,Dismax (42)

So that, PEV,Chmax and PEV,Dismax are the maximum power of
electric vehicles charging and discharging. These limits determine
the maximum amount of charge and discharge that the charger can
offer. The electric vehicles state of charge constraints [27]:

SoCEVmin ≤ SoCEVt ≤ SoCEVmax (43)

where SoCEVmax and SoCEVmin are the maximum and minimum
amount of the electric vehicle state of charge, respectively. This
limitation allows the SoC to vary between the minimum and
maximum SoCs’ predefined. The parking time duration is defined
as:

TP ≤ TP−max (44)

TP = td − ta (45)
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where ta, td are the arrival and departure times of EV from
parking lot. Tpis the duration of EV attendance in the parking
lot. This limitation allowed the parking owners to schedule charge
and discharge of each EV when they are in parking. The number
of switching between charge and discharge is determined by the
maximum number of switching between charge and discharge
based on the time-lapse battery life of the EV.

D ≤ Dmax (46)

So that D is the number of switching between charge and
discharge state over the parked time and Dmaxis the maximum
number of switching between charge and discharge state over the
parked time.

4. PROVIDING AN OVERVIEW OF DGSO ALGORITHM

The DGSO algorithm is an upgraded version of the GSO
algorithm and is used to solve the suggested hard SOCP
problem [28]. Therefore in portion of the study, the essential ideas
of classic GSO and its improved form are explored. The GSO
method is a widely used meta-heuristic optimization solution that
has three different kinds of participants: producers, scavengers,
and rangers. In every cycle, the creator is the participant with
the greatest level of fitness. This member examines various
adjacent sites in try to come up with much more suitable options.
The monitoring protocol may be used by scroungers to conduct
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Table 1. The relationship between battery lifetime and number of allowable charging and discharging

Life time of CES AOB < 4 4 ≤ AOB < 6 6 ≤ AOB < 8 8 ≤ AOB

Nmax 8 6 4 2

Table 2. Thermal, CHP and Heat-only units emission coefficients data

Unit αe (TOC) βe (TOC/kWh) γe (TOC/(kWh)2)

THE1 10.33908 -0.24444 0.00312
THE2 10.33908 -0.24444 0.00312
THE3 30.03910 -0.40695 0.00509
THE4 30.03910 -0.40695 0.00509
THE5 32.00006 -0.38132 0.00344
CHP1 10.33908 -0.40659 0.00312
CHP2 10.33908 -0.40659 0.00312
HTO1 33.00056 -0.39023 0.00465

Table 3. Thermal units cost coefficients data

Unit PMin (kW) PMax (kW) a ($/(kWh)2) b ($/kWh) c ($) MUT (hr.) MDT (hr.)

THE1 150 700 20 0.15 0 3 3
THE2 100 450 40 0.25 0 2 2
THE3 50 300 90 0.45 0 1 1
THE4 50 1000 10 0.0133 0.002 1 1
THE5 100 1000 45 0.375 0 1 1

Table 4. CHP units cost coefficients data

Unit α β λ δ θ ξ

CHP1 2650 14.5 0.0345 4.2 0.030 0.031
CHP2 1250 36.0 0.0435 0.6 0.027 0.011

 

Fig. 9. Convergence curve of DGSO compared to other algorithms
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Fig. 10. Optimal energy management of PEV in the microgrid operation
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joining maneuvers in the orientation of the producer, making the
optimization process simpler. Rangers are the third type of GSO,
and they go on random hikes throughout the quest [29]. The GSO
method allows any ranger to make random motions throughout the
scanning space:

Rk+1
i = Rki + liD

k
i (ϕk+1), li = a ∗ r1 ∗ lmax (47)

This algorithm’s primary goal is to help scavengers be more
productive. This program selects the scavengers who chase the
producer at random. Because of this, a scavenger may follow
the producer as long as the rangers are nearby. A better solution
is more likely to be found in the vicinity of the producers,
which might impair the correct tracking procedure. In order to
determine how many present scavengers will chase the producer or
the rangers’ producer, the DGSO algorithm is recommended. The
current scavengers are categorized depending on their proximity to
the producers. Fig. 2 depicts the DGSO members’ progress across
the search region.
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Table 5. Heat-only unit cost coefficients data

Unit Hmin (kW) Hmax (kW) σ ($) µ($/kWh) ρ($/(kWh)2)

HTO1 0 2695.2 950 2.0109 0.038

{
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5. SIMULATION RESULTS AND DISCUSSION

5.1. Assumptions and require data
In this paper, a case study is considered by using the following

assumptions to be considered for the arrival and departure of
electric vehicles to the parking lot.
• The total number of EVs is 20.
• The maximum charging and discharging power are 6.5 kW.
• The limitation of SoC is between 10% and 90%.
• The maximum capacity of EVs is assumed 16.5 kWh.
• The arrival and departure times of EVs is randomly between

6 and 18.
• The initial charge rate of EVs when arriving to the parking

lots is between 10% and 70%.
• The ESS lifetime is assumed between 2 and 9 years.
• The amount of vehicle charge at the end (when leaving the

parking lot) must be full.
Moreover, the results are presented based on the following

scenarios:
Scenario I: MG scheduling cost with and without considering
CHP units
Scenario II: MG scheduling cost with and without considering
both participating CHP and responsible loads
Scenario III: MG scheduling cost with and without considering
the impact of CO2 emission price
Scenario IV: Impact of real-time market price variations on MG
scheduling total cost.

5.2. Simulation results and discussion
The exchange of power has taken place between the parking

lot owner and the MG owner, so the construction cost of parking
is not considered. The relationship between battery lifetime and
number of allowable charging and discharging is shown as Table 1.

The electrical and heat demand of system has been depicted in
Fig. 3 for 24 hours [30]. The real time market price alteration
for the mentioned day is considering as Fig. 4 [31]. Fig. 5 shows
the PV output power curve, which is depends on the angle and
intensity of sunlight. Fig 6(a) and 6(b) shows the power-heat
feasible region for CHP 1 and CHP 2, respectively, which the
horizontal axis represents the heat output and the vertical axis
indicates the CHP power production in kW.

Table 2 displays the thermal, CHP and Heat-only units’ emission
coefficient data. Table 3 gives the specifications of thermal units
include fuel cost function coefficients, the minimum and maximum
production capacity of units, minimum up and down time [32]. The
cost coefficient data related to thermal, CHP, and heat-only units
are depicted in Table 3– 5, respectively [33], [34]. The data related
to CES systems includes initial and minimum/maximum state
of charge, maximum power production, and charging/discharging
efficiency has been given in Table 6 [35].

To supply electrical energy, solar panels, CESs, and thermal
units, as well as heat generation units for the provision of thermal
energy, are presumptively included in the MG. Notably, the
outcomes are predicated on a solar power situation with 0% error.
The simultaneous scheduling of solar panels, CES, and the power
trade-off with the upstream grid, CHP, and thermal units in the

MG is shown in Table 7. To ensure that the total generation power
and total MG consumption demand are equal over the course of
24 hours, this scheduling strategy is taken into account. As can
be seen, the power balance constraint is fully observed in this
MG scheduling. In addition, the scheduling of the units mentioned
depends on the cost of the electricity purchased from the upstream
grid, the best CES arbitrage, the best solar panel production, and
both CHP and thermal units. In this section, unit commitment of
GENCOs has been implemented to the high price generation units
considered as spinning reserve by independent system operator.
Table 8 illustrates the scheduling of heat-only and CHP units,
which the total generation heat by the CHP and heat-only units is
equal to the total heat demand of MG per hour.

The voltage profile is shown in Fig. 7 with and without taking
the suggested method into account. As can be observed, the voltage
profile in the initial case is not within the authorized range, but
with the application of cryogenic energy storage, CHP-thermal-
heat-only units, it is constrained within the permissible range. The
allowable range for voltage magnitudes in all buses is set to be
between 0.95 and 1.05 p.u. Implementing the suggested technique
had a considerable effect on the voltage profile improvement as
a result. The system power losses are displayed in Fig. 8. As
can be observed, the power loss of lines in the presence of CES,
CHP-thermal-heat-only units is significantly decreased.

The convergence curve related to the proposed method obtained
from different algorithms is shown in Fig. 9. According to this
figure, the convergence rate and speed obtained from the DGSO
algorithm are higher compared to other metaheuristic algorithms
such as PSO, GA, GWO, and ABC algorithms. Also, the minimum
cost of MG scheduling was obtained at iteration 175.

To show the performance and privileges of the proposed model
in comparison with previous works, different analysis have been
executed. In order to apply your valuable suggestion, a comparative
study is performed based on Table 9.
Scenario I: MG scheduling total cost with and without
considering CHP units

The results of first case demonstrates in Table 10, which
indicates that the total cost of MG scheduling after adding the
CHP units has improved by 2.01 percent. This is because the CHP
units with lower cost will shut down low-efficiency thermal units.
Scenario II: MG scheduling cost with and without considering
both participating CHP and responsible loads

In this case, in addition to the thermal units, CHP, CES, and PV;
EVs parking has been utilized as responsible loads. EV owners
gain profit by paying less cost to the parking owners and MG
gained profit from receiving the EVs charging cost and planning
of their charging/discharging.

a) Without considering the main grid
In this case, it is assumed that the MG does not have access
to the upstream grid and provides its demand independently. The
total scheduling cost of MG is compared in two cases in Table 11.
It is seen from the figure that the total scheduling cost reduces
by 0.16% by adding responsible loads to the system compared
with the initial case (without responsible loads). By utilizing both
responsible loads and CHP units, the cost of generation increased
(because of an increase in consumption demand), but the total cost
was reduced due to the revenue from the sale of electric power
to the EVs. Fig. 10 shows the optimal power of PEV parking.
The goal is that, at first, the PEVs are fully charged, and then the
operating cost is minimized. As can be seen, the PEVs are charged
during high-cost hours and discharged during low-cost periods.
Due to the randomness of the arrival and departure hours of the
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Table 6. Data of CES

Unit SoC0 (kWh) SoCmin (kWh) SoCmax (kWh) PCES max(kW)

CES 1500 500 2500 500

Table 7. Scheduling of different units and upstream grid in terms of electrical

Hour Electrical demand
Generation power

Thermal units CHP Upstream grid PV CES
1 2 3 4 5 1 2

1 1050 0 135 0 0 0 215 110 331 0 259
2 1000 0 0 73 0 158 215 110 414 0 30
3 1000 0 0 85 0 73 215 110 374 0 143
4 1020 0 0 88 103 134 215 110 280 0 90
5 1120 0 0 103 77 136 215 110 369 0 110
6 1260 0 0 114 60 113 215 110 648 0 0
7 1400 0 0 0 81 132 215 110 862 0 0
8 1500 0 0 0 133 0 215 110 1002 40 0
9 1520 0 0 0 0 0 215 110 1152 140 0
10 1600 0 0 0 0 0 215 110 1398 160 0
11 1560 150 157 0 0 0 215 110 998 200 0
12 1480 150 135 0 0 0 215 110 850 320 0
13 1440 150 168 0 0 0 215 110 571 240 0
14 1440 182 135 0 90 105 215 110 506 320 0
15 1500 173 137 0 66 90 215 110 522 200 0
16 1600 203 135 0 60 115 215 110 622 140 0
17 1720 150 135 94 97 79 215 110 690 60 90
18 1760 150 151 87 100 73 215 110 718 20 136
19 1800 0 0 126 0 99 215 110 1218 0 32
20 1700 0 0 126 0 0 215 110 1238 0 11
21 1560 0 0 86 0 0 215 110 1405 0 0
22 1410 0 0 0 0 0 215 110 1045 0 40
23 1250 0 0 0 0 0 215 110 780 0 145
24 1110 0 0 0 0 0 215 110 685 0 100

Table 8. Scheduling of CHP and heat-only units in terms of thermal

Hour Heat demand
Generation heat

CHP Heat-only
1 2

1 401 180 135.6 85.4
2 407 180 135.6 91.4
3 417 180 135.6 101.4
4 431 180 135.6 115.4
5 438 180 135.6 122.4
6 450 180 135.6 134.4
7 455 180 135.6 139.4
8 462 180 135.6 146.4
9 472 180 135.6 156.4
10 474 180 135.6 158.4
11 478 180 135.6 162.4
12 483 180 135.6 167.4
13 474 180 135.6 158.4
14 470 180 135.6 154.4
15 462 180 135.6 146.4
16 443 180 135.6 127.4
17 438 180 135.6 122.4
18 450 180 135.6 134.4
19 462 180 135.6 146.4
20 474 180 135.6 158.4
21 468 180 135.6 152.4
22 449 180 135.6 133.4
23 430 180 135.6 114.4
24 414 180 135.6 98.4
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Table 9. Comparison study on different methods in the proposed field

Ref. Proposed method Total operating cost
reduction (%)

[36] Optimal energy management of smart renewable-based microgrid considering PEV 6.71
[37] Optimal scheduling of microgrid with storage considering load and renewable uncertainty 6.96
[38] Stochastic optimal scheduling of CHP-FC, WT, PV and hydrogen storage in microgrids 5.24
[39] Day-ahead economic scheduling of microgrids equipped with PEVs 6.77
[40] Stochastic optimal scheduling of demand response-enabled microgrids with renewables 6.10
[41] Optimal scheduling of combined cooling, heating, and power microgrid 2.27
[42] Optimal scheduling of reconfigurable microgrids incorporating the PEVs and uncertainties 5.70
[43] Optimal scheduling of renewable-based microgrid with photovoltaic system and storage 2.24

This paper Short-Term Scheduling of Cryogenic Energy Storage Systems in Microgrids Considering
CHP-Thermal-Heat-Only Units and Plug-in Electric Vehicles

7.17

Table 10. MG scheduling total cost with and without considering CHP units

Case Cost ($) Improvement (%)

With CHP units 53.709 -
Without CHP units 52.631 2.01

Table 11. MG scheduling cost with and without considering both participating CHP and responsible loads

Case Parking income ($) Generation cost ($) Total cost ($) Improvement (%)

With responsible loads 0 52.631 52.631 -
Without responsible loads 153 52.700 52.547 0.16

Table 12. MG scheduling cost with and without considering the impact of CO2 emission price

Case Total cost ($) Pollution (kg) Improvement (%)

Without CO2 emission price 52.547 1421 -
With CO2 emission price 52.580 1350 5.00

PEVs and the limitation of these hours, charging may also take
place at low prices. The initial and final SoC of all PEVs is shown
in Fig. 11. According to this graph, the final SoC of all PEVs is
fully charged, and their initial SoC is changing between 10 and
70%.

b) With considering the main grid

In this case, due to the lower price of the upstream network than
CHP and thermal units, the use of electric car parking is not
profitable.
Scenario III: MG scheduling cost with and without considering
the impact of CO2 emission price

The penalty factor of CO2 emission has been considered for MG
scheduling total cost, which the penalty factor of CO2 emission is
assumed 0.0266 $/kg. If the cost of pollution is taken into account,
the total cost will be increased, but the amount of produced
pollution will be reduced by 71 kg compared to regardless of
the pollution cost. Every 5 kg of pollution that is reduced, the
MG scheduling total cost will increase to the amount of 33 $.
This increase in MG scheduling total costs to reduce this level of
pollution is negligible and can be compensated.
Scenario IV: Impact of real-time market price variations on
MG scheduling cost

In this case, the real-time market price investigates. Table 12
compares the results in four modes (present electricity price,
*electricity price, 2*electricity price, and 4*electricity price). With
a drop in electricity prices, the proportion of electricity sales to
EVs parking is significantly lower than the charging cost of EVs,
and the use of DRP will not be cost-effective. With increasing
the electricity price, revenue from power sales to EVs increases,
and the total cost of the system is reduced. However, electricity
purchases from the upstream grid are not profitable and thermal
units must provide all system requirements demand, therefore, the

total cost of the system increases. By quadrupling the electricity
price, the revenue from power sales to EVs obtained more than
the power production cost, so the total cost will be reduced.

6. CONCLUSION

In this paper, an energy storage system was used to provide
an arbitrage opportunity for the system operator to reduce its
operational expenditures. In this model, various instruments such
as CHP-thermal-heat-only units and EV fleets are employed to
aid the system operator to achieve the targets in an economic-
environmental manner. The EVs are modeled as responsible loads
to smooth the load profile of the system and hedge the operator
against the risk of unforeseen conditions. The features of the
proposed model are non-linear, non-convex, and non-smooth. This
is why we use the DGSO algorithm to solve this complicated
SOCP problem. The DGSO finds the best optimal solutions at the
minimum operating cost of the system. The best solution includes
optimal arbitrage of CESs and EVs as well as optimal production
of RES. By applying the proposed approach, the operating cost
of MGs has considerably reduced while minimum air pollution is
released. Based on the results, the following findings are achieved:
• The use of CHP-thermal-heat only unit reduces the operational

cost of MGs. This issue will be associated with a slight
increase in air pollution.

• Despite increasing production costs by using CES, it reduces
the total cost of MG. The storage device by applying energy
arbitrage between low-load and high-load hours reduces the
distance between low-load and high-load demand, and as a
result, reduces the cost of supplying consumers by reducing
locational marginal prices.

• The amount of air pollution alleviates by penalty factor of
CO2 emission, and the network operator, by determining the
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Table 13. Impact of real-time market price variations on MG scheduling total cost

Case Parking income ($) Generation cost ($) Total cost ($)

Present electricity price 153 52.700 52.547
* electricity price 0 52.631 52.631

2 * electricity price 306 52.900 52.594
4 * electricity price 612 52.900 52.288

amount of the penalty coefficient according to his risk seeker
or risk aversion strategies, achieves a fair state between
economic costs and air pollution.

• The EVs operation that can act as a demand flexibility
option is strongly dependents on the price of electricity and
operation conditions of the system.
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