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Abstract— The purpose of this study is to present a practical approach in which the effect of performance degradation and instability
factors such as exogenous disturbances, parametric uncertainties, time-varying delay, and unstable modes can reduce to the minimum
possible amount in linear switched positive systems. To reduce the effect of the mentioned destructive factors and to strengthen the
robust design of switched positive systems, in this paper, instead of using the co-positive Lyapunov function along with the L1-gain, the
quadratic Lyapunov-Krasovskii function utilized along with the L2-gain, which leads to the design of H∞ performance. The latter method,
especially when there is a requirement to estimate the parameters with the support of the output feedback approach by minimizing the
interface parameters, provides the feasibility of designing a more convenient and efficient observer-based controller. The necessary and
sufficient conditions for solving the problem concerning the positivity of the system, disturbance attenuation, and parametric uncertainties
are expressed by two theories and implemented by the linear matrix inequality technique. The results of this technique’s solution include
the gains of the controller and observer. Considering that stable and unstable modes are in this system, it is necessary to guarantee the
exponential stability of the whole system by the controllers and designing the average dwell-time switching regime. Finally, illustrative
examples, including numerical, practical, and comparative, are presented to show the efficiency and performance of different aspects of the
proposed approach. The smallness of the mean square error values in the example compared with the output feedback method in linear
programming confirms the capabilities of the presented approach. For instance, the mean square error of the system output for the method
of this paper is 0.008 and for the compared approach is 0.081.

Keywords— H∞ observer-based controller, Interval uncertainty, Lyapunov-Krasovskii function, Switched positive system, Time-varying
delay.

1. INTRODUCTION

The contents of this section have been described in three
subsections due to the more complete and accurate explanation of
the contents. In addition, in this way, each subsection has more
coherence in representing the subject matter.

1.1. System description and its applications
Switched systems are a widely used class of hybrid systems,

including a finite number of modes (subsystems) or dynamics and a
switching signal to govern the switching rules. Significant research
attention was paid to these types of systems in the last few decades
for two main reasons: first, a notable quantity of components
cannot be described by only a single-mode system, and second,
a solitary controller may not work precisely for the numerous
control targets. Many practical systems are inherently multimodal
in the sense that to describe their behavior more accurately,
there is no other way than to use switching systems such as
electrical power systems [1], power electronics [2], robotics [3],
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cyber-physical systems [4], and biological systems [5]. The great
extent of switched systems and their engagement in many fields
has caused these systems to be analyzed and investigated from
various aspects. Among the essential and noteworthy reviews that
have been accomplished regarding such systems, one can mention
stabilization and stability analysis [6], robust control design [7],
observation-based design [8], filtering [9], positive method [10],
and so on.

A portion of the systems, which are studied and evaluated
in the category of switched systems, is positive compartmental
systems. Such practical systems are derived from mass and energy
balance relations; their state variables intrinsically take positive
(non-negative) values [11]. Positive compartmental systems are
necessarily positive in the sense that their state trajectories and
outputs are always non-negative whenever the initial conditions
are non-negative as well [12], while this category of systems
can have a switching or non-switching structure [13]. For both
switched or non-switched cases, the states instead of the whole
space are confined in a cone in the positive orthant. The presented
applications in the fields of medication [14], the concentration of
matter [15], population of groups [16], heat exchange [17], and
epidemiological systems [18], are the most accustomed examples
in connection with the positive compartmental systems. Although
a Switched Positive System (SPS) is considered a type of switched
system, the conditions governing their design differ in many ways.
A typical switched system differs from an SPS in these ways: the
initial values in a switched system can be positive or negative, but
in SPS it must be non-negative, the input disturbance in a switched
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system can assume negative values, but it is customary that the
disturbance in SPS is always non-negative, the input, output, delay
and disturbance matrices must have non-negative entries, and the
state matrix in SPS must be Metzler. The significance of the issue
is that when the design is based on the distinctions mentioned
above, the system is guaranteed to remain positive in every
regard. Among the crucial research regarding positive systems
and positive switching, the following can be mentioned: L1-gain
stability analysis based on co-positive Lyapunov function [19]
positive observer design [20], positive observer [21], robust H∞
positive design [22], etc.

In actual conditions, plants often encounter phenomena that
change their efficiency and performance. Parametric uncertainty,
time delay, and disturbance are the main types of these phenomena.
In this study, an attempt is made to propose a design that effectively
minimizes the effect of the noted factors on reducing the efficiency
and instability of the system at the same time. If the uncertainty
falls within a wide range, it should be managed by adaptive
control methods, while the limited cases can be handled by other
robust methods such as our design. Parametric uncertainty for
SPS is classified into two principal types: polytopic and interval.
Both cited parametric uncertainties with state feedback controllers
and co-positive Lyapunov function have been discussed in [23].
In switching systems, the time-delay is either a constant value
or a time-varying function that can be single or multiple. There
can also be a distributed time delay. In addition, there can be
a combination of these delays [24]. In [25], the stabilization
of an SPS with disturbance and the distributed time delay is
discussed. Disturbance signal is another source of error (such as
parameter uncertainty) in the system, and its attenuating has a
crucial influence on improving the system’s performance. For the
robust design of positive systems against disturbances, L1-gain
performance is used much more than L2-gain. The reason is
that some researchers believe that using the L1-gain approach is
better because it leads to a positive controller and observer design.
But using this method is not beneficial for every design, which
we will discuss further. In this study, the quadratic Lyapunov
function and the L2-gain performance are consciously utilized to
obtain valid and feasible answers and to calculate the controller
and observer gains more accurately. Lyapunov-like function for
L2-gain stability analysis has been used in [26], and co-positive
type Lyaponuv-Krasovskii function for L1-gain performance as
another has been studied in [27]. According to [28], regarding
the relationship between L2-gain and H∞ performance, it can be
stated that: the L2-gain method utilizes Lyaponuv-like function
because for linear systems L2-gain can be found exactly and is
equivalent to the infinity norm, H∞, of the transfer function from
disturbance to penalty vector.

Switching regimes in constrained switching systems play a
decisive role in system stability analysis. An improper switching
regime destabilizes the system even if all the subsystems are stable,
and under some appropriate circumstances, the switching behavior
can stabilize the system with all subsystems unstable [29]. State-
dependent and time-dependent two types of constrained switching
regimes have been considered in [30]. In this paper, in addition to
proving the stability of the design made by the Lyapunov method,
it is necessary to prove the stability for the switching regime as
well. The switching regime in this work is time-dependent, and
its stability is proven by the Average Dwell Time (ADT) method.
The design method is such that, as noted in [29], if unstable
modes apply in the design conditions, the system will remain
stable despite the unstable modes. According to the ADT method
number of switches in a finite interval is bounded, and the average
time between consecutive switching should not be less than the
definite time [31].

The design proposed in this study can be utilized for robust
control of all types of linear positive compartmental switched
systems in which one or some state variables cannot be measured
and should be estimated. Such as pest population groups [32], heat

in different parts of the rocket engine, and so many medical affairs
like control of the anesthetic drug in the body [33]. With the
aid of the presented design, all the non-measurable state variables
are estimated with the output feedback method and are employed
in the control process. Also, the effect of external disturbances
on the system performance will be decreased to the lowest level.
The SPS challenges are solved, with the following techniques
in brief. The problem of interval parameter uncertainty utilizes
an analytical method and Linear Matrix Inequality (LMI). For
time-varying delay issue, Lyapunov-Krasovskii function is used.
The adverse effect of external disturbance is attenuated by the
robust H∞ design. For the proper operation of the switching
regime in stability analysis ADT approach is utilized.

1.2. Relevant works and contributions
In this subsection, the closest works to this research are briefly

discussed, and their similarities and differences are expressed.
Also, the innovations and contributions presented in this paper are
better clarified. To the best of our knowledge, the problem of the
H∞ observer-based control for SPS has not yet been investigated,
especially when the factors that generally affect the performance of
a control system are considered, such as parametric uncertainties,
exogenous disturbance, and time-varying delay. Moreover, in this
paper, there is a great emphasis on the feasibility of answers. That
is, the answers of the MATLAB solvers are re-checked based on
the assumptions of the problem to get definitive correct answers
instead of the closest answers. In other terms, by changing design
parameters, exact solutions are obtained instead of probably proper
solutions.

In [34], for a non-switched delayed positive system with
interval uncertainty, a controller and an observer were designed.
In that work, since the mentioned system is not switching, the
topics related to the stabilization of a switching regime (such as
dwell-time switching) have not been expressed. Therefore, it is not
possible to adjust the dwell-time to stabilize the system despite the
stable and unstable modes [29]. Moreover, the disturbance is not
considered for the system [34], and subsequently, H∞ controller
design has no use for it. In our study, the method of the recent
paper was inspired, for examining the conditions of positivity
of the system with parametric uncertainty, although according
to the requirements of the problem, a different solution method
and Lyapunov function were employed. Delay-dependent observer-
based finite-time control for a non-positive switched system has
been discussed in [35]. The method of Lyapunov-like function and
ADT switching signal design in the mentioned paper promoted
our research. Despite these similarities, our design is primarily
different from this article due to the positivity of the system
and presence of parameter uncertainty. The nearest study to this
paper is the one presented in [36], where the observer-based
controller for a non-linear SPS is designed with a sliding mode
approach. This research is one of the rare works in SPSs that
utilized an observer-based control design. In the recent article,
output feedback is employed in the sliding mode structure, and
there is no uncertainty. The problem with this design is that
due to the usage of the L1-gain performance and the co-positive
Lyapunov function in the disturbance attenuation, a large number
of design variables and interface variables have been created,
which limits the feasibility of the solution to a great extent. It
should be noted that the L1-gain method is most often unable
to obtain feasible solutions for positive switched output feedback
systems, due to generating the BMI (Bilinear Matrix Inequality)
terms and using more parameters and vectors compared to the
L2-gain method [37]. In [38], a controller was designed based
on the co-positive Lyapunov function for both state feedback and
output feedback systems and both for discrete time and continuous
time cases without the presence of the observer. The weakness
of the approach presented in this article is the use of non-linear
relations and BMIs, which no solver can solve them. Also, no
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 Fig. 1. Closed-loop system operation

example is provided for the output feedback design method.
In [39], a robust observer based on the co-positive Lyapunov
function was designed for an SPS with time-varying delay, and
without parameter uncertainty, disturbance, and controller. In this
article, because there is no controller, despite using the co-positive
Lyapunov function, the number of parameters (vectors) of the
positive interface is not very much. The study presented in [40]
includes state-dependent switching law, L1-gain performance, and
tracking control design which, because of its switching regime, is
separate from our introduced works. Another paper [41] introduced
output feedback for finite-time L1-gain control, while none of the
states converged in its numerical example.

In this study, the aim is to construct H∞ observer-based
controllers for an SPS to guarantee the positive stability of
the closed-loop system and overcome uncertainty, disturbance,
time-varying delay, and the destructive effect of unstable states.
Observer-based control design for SPSs, which requires the use
of output feedback, is rarely seen. For the first time, in our
approach the Lyapunov-Krasovskii quadratic function and L2-gain
performance are employed. Utilizing this methodology removes
unnecessary interface parameters and leads to feasible answers.

The main contributions of this paper are given as follows:
1) Observer-based stabilization of switched system with interval

uncertain system and time-varying delay by means of LMIs.
2) Providing sufficient conditions for positive observer-based

stabilization and H∞ stabilization.
3) H∞ observer-based control design considering exponential

stability.
4) Employing the Lyapunov-Krasovskii quadratic function and

L2-gain performance for an SPS in output feedback H∞
observer-based controller design.

5) Designing a switching regime based on the ADT approach
and guaranteeing its stability after the stabilization of unstable
subsystems.

1.3. Open problems
Applying the design presented in this paper for the systems with

a purely nonlinear model or linear model with a nonlinear term can
have various applications. Also, since in the method of this study
we need measurement and estimation, in many cases we are met
with measurement and process noise. Including noise in the system
model and using a suitable Kalman filter for switching systems
such as IMM-KF can greatly increase the accuracy of the design.
In cases like the proposed problem in [33], an adaptive controller
has been used, which can achieve effective responses by using the
observer-based control method and employing the reference value,
and transferring the equilibrium point of the system. It will be
very beneficial to design this model of the system in such a way

that it has extended stability with all the modes unstable without
the controllers.

1.4. Paper structure

The rest of this paper is organized as follows: In Section 2, the
system model and some basic lemmas and definitions are given.
Section 3 is devoted to deriving the results on H∞ stabilization,
designing the robust observer-based controller, and comparing it to
another approach. Three types of example are given in Section 4
to verify the theoretical results. Finally, The L2-gain stability
method for developing an observer-based controller, along with
other advantages of this design, is briefly explained in Section 5.

Nomenclature:

• Rn denotes the n-dimensional real Euclidean space.
• Rn+ is the set of n-dimension vectors whose elements are all

positive.
• Rn×k is the set of all real matrices of dimension (n× k).
• X < 0(4 0) means that all entries of the matrix X are

non-negative (non-positive).
• X < Y means that X − Y < 0.
• λ(X) means all eigenvalues of the matrix X .
• maxm λ (Xm) means maximum eigenvalues of matrices
X1X2 . . . Xs.

• ‖X‖ denotes the norm XTX =
(
x21, x

2
2, . . . , x

2
n

)
, where

xi is the ith element of vector X ∈ Rn.
• [X]ij denotes the element located at the ith row and jth

column.
• For the matrix X, X ∈

[
X,X

]
specifies that X 4 X 4 X .

• trace (X) =
∑n
i=1 xii =

∑n
i=1 λi, is defined to be the sum

of elements on the main diagonal and also is the sum of the
eigenvalues.

• ‖.‖L2
is the L2 norm of a signal defined as ‖x(t)‖L2

=

(
∫∞
0
‖x(s)‖2ds)1/2.

• The symbol ‘*’ is used widely in linear matrix inequalities
which represents the symmetric element of the matrix; the
superscript ‘T’ stands for matrix transpositions.

• ϑ (X) for any matrix XεRn×n ϑ (X) = maxi{Re (λi)}
indicates its spectral abscissa where λ1 . . . λn are eigenvalues
of X .

• σ (t) is the switching signal.
• Vσ (t) Lyapunov-Krasovskii function.
• J indicates cost function based on L2-gain stability that

should be optimized.
• τarepresents average dwell-time.
• MSE represents Mean Square Error.
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2. PRELIMINARIES AND PROBLEM FORMULATION

In this section, an observer and controller design is given for
the following interval switched positive system with a time-varying
delay. 

ẋ (t) = Aσ(t)x (t) +A1,σ(t)x (t− h(t))
+Bσ(t)u (t) +D1,σ(t)ω(t)

y (t) = Cσ(t)x (t)
x (t) = ϕ (t) ≥ 0 t ∈

[
−h, 0

]
z (t) = C2,σ(t)x (t) +A2,σ(t)x (t− h(t))

(1)

where x (t) ∈ Rn is state vector, u(t) ∈ Rm is control input,
y(t) ∈ Rs is the measured output, z(t) ∈ Rq is the controlled
output or penalty vector. ω(t) ∈ Rs is exogenous disturbance
input that satisfies Assumption 1 stated below. ϕ (t) is the
continuous vector-valued function specifying the initial state of
the system, σ (t) : [0,∞)→ M = {1, 2, . . . , N} is the switching
signal, with N is the number of subsystems, and the switching
sequence is {x0; (m0, t0) , (m1, t1) , . . . , (mk, tk) , . . . , | mk ∈
M, k = 0, 1, . . . } which means the mkth subsystem is activated
when t ∈ [tk, tk+1). h(t) denotes the time-varying delay satisfying
Assumption 2 stated below. (Am, A1,m, Bm, Cm, C2,m, A2,m) are
system matrices. (D1,m) is disturbance matrix. For any m ∈ M ,
the matrices Am ∈ [Am, Am], Bm ∈

[
Bm, Bm

]
, A1,m ∈

[A1,m, A1,m] and Cm ∈
[
Cm, Cm

]
are unknown constant

matrices with known bounds, which means that these system
matrices include uncertainties.
Assumption 1. The disturbance signal ω(t) is time-varying and
satisfies: ∫ ∞

0

ω(t)Tω (t) dt < l , l ≥ 0. (2)

Assumption 2. The time-varying delay h(t) satisfies:

0 ≤ h (t) < h , ḣ(t) ≤ d < 1. (3)

In the following, some definitions and basic results for switched
positive systems are presented.
Definition 1. System (1) is said to be positive if and only if its
states and output are nonnegative for every nonnegative initial
state.
Definition 2. ([12]) A is a Metzler matrix if the off-diagonal
entries of this matrix are non-negative.
Lemma 1. System (1) is positive if and only if for every m ∈M ,
Am are Metzler matrices, and A1,m < 0, Bm < 0, Cm <
0, C2,m < 0, A2,m < 0.
Definition 3. ([35]) For any T ≥ t ≥ 0, let Nσ(t, T ) be the
switching number of σ(t) over (t, T ). If the following inequality

holds for τa ≥ 0 and integer N0 ≥ 0, then τa is called average
dwell time.

Nσ (t, T ) ≤ N0 +
T − t
τa

(4)

Lemma 2. ([42]) For matrices X, Y ε Rn×n, if X is Metzler and
Y < X , then ϑ (Y ) ≥ ϑ (X) .
The following state observer is considered to estimate the states of
system (1):

˙̂x(t) = Gσ(t)x̂(t) +A1,σ(t)x̂ (t− h (t)) + Lσ(t)y(t) (5)

where A1,σ ∈ Rn×n is known and Gσ ∈ Rn×n and Lσ ∈ Rn×q
to be determined. The output-feedback control law is as follows:

u (t) = Kσ(t)x̂(t) (6)

where Kσ ∈ Rm×n is the gain of controller and to be determined.
Remark 1. Stabilization and estimation problems are crucial issues
for every control system. The basis of design in this system is
based on the estimation of state variables and the formation of the
augmented system. As stated in [37], the employ of the co-positive
Lyapunov function is unable to provide feasible answers due to
two reasons, the production of BMI terms and a large number of
intermediate parameters in the design. In addition, compared to
the approach presented here, that mentioned method requires more
repetition in the recursive process of solving the problem and more
sensitivity to the initial values.

How the closed-loop system operates for the model introduced
in this paper can be seen in Fig. 1. In this figure, Sub 1, Sub 2,
..., and Sub n represent the modes or subsystems in the model.
To guarantee the positivity of the estimated x̂(t), it is required
that Gσ(t) be Metzler and Lσ(t) be non-negative matrices. By
considering the control law (6) and from (1), (5), the closed-loop
system is as follows:

ẋ (t) = Aσ(t)x (t) +A1,σ(t)x (t− h(t))
+Bσ(t)Kσ(t)x̂(t) +D1,σ(t)ω(t)

z (t) = C2,σ(t)x (t) +A2,σ(t)x (t− h(t))
y (t) = Cσ(t)x (t)
x (t) = ϕ (t) ≥ 0 t ∈ [−h, 0]
x̂ (t) = ν (t) ≥ 0 t ∈ [−h, 0]

(7)

where ν (t) is the initial function for state estimation and the
signal e (t) = x (t) − x̂(t) is defined as state estimation error.
From (5) and (7) we can write:

x̃ (t) =

[
x (t)
e (t)

]
(8)

˙̃x (t) =

[
(Aσ +BσKσ)x (t)−BσKσe (t) +A1,σx (t− h (t)) +D1,σω(t)

(Aσ +BσKσ − LσCσ −Gσ)x (t) + (Gσ −BσKσ) e (t) +A1,σe (t− h (t)) +D1,σω(t)

]
(9)

˙̃x (t) =

[
Aσ +BσKσ −BσKσ

Aσ +BσKσ − LσCσ −Gσ Gσ −BσKσ

]
x̃ (t) +

[
A1,σ 0

0 A1,σ

]
x̃ (t− h (t)) +

[
D1,σ

D1,σ

]
ω(t) (10)

where

Ax,σ =

[
Aσ +BσKσ −BσKσ

Aσ +BσKσ − LσCσ −Gσ Gσ −BσKσ

]
(11)

Ah,σ =

[
A1,σ 0

0 A1,σ

]
(12)

Aw,σ =

[
D1,σ

D1,σ

]
(13)

Definition 4. Switched positive system (1) with observer-based
control is said to be H∞ observer-based stabilizable concerning
(2), γ > 0, and the switching signal σ(t) if the following
conditions are satisfied:

1) Switched positive system (1) with observer-based control is
stabilizable.

2) Under zero initial condition ϕ (t) = 0 ∀tε
[
−h, 0

]
, the

output z (t) satisfies:∫ ∞
0

zT (t) z (t) dt < γ2

∫ ∞
0

ω(t)Tω(t)dt (14)
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Fig. 2. H∞ observer-based design flowchart

Remark 2. In Definition 4, γ means the suppression level of the
system to exogenous disturbance. Thus, the smaller γ will lead to
better performance.
The main objective of this paper is to design an observer-based
controller such that the states of the system and observer are
positive and converge to the origin. The implementation of this
issue will be seen in the next section.

3. H∞ OBSERVER-BASED STABILIZATION

In this subsection, we discuss H∞ observer-based stabilization
of a time-delay switched positive system (1) with an observer-based
controller. The observer-based controller design problem includes
the positivity and stability of the augmented system (10), which is
analyzed and dissected in the following two theorems and corollary.
In Theorem 1, we discuss the necessary condition to check the
feasibility of the problem. Also, in Theorem 2, some sufficient
conditions and the corresponding synthesis for an existing feasible
solution will be presented. The capabilities of the observer-based
control approach proposed in this paper will be compared with the
output feedback method in another paper through corollary 1.
Theorem 1. Augmented system (10) is positive and stable if for
any m ∈M with respect to Metzler Gm, Lm < 0 and Km 4 0,
the following inequalities are met:

[Am +BmKm]ij ≥ 0, 1 ≤ i 6= j ≤ n (15)

[Gm −BmKm]ij ≥ 0, 1 ≤ i 6= j ≤ n (16)

Am − LmCm +BmKm −Gm < 0 (17)

trace
(
Am +Gm +

(
Bm −Bm

)
Km

)
< 0 (18)

Proof: See proof in Appendix I.
Theorem 2. There exists an observer-based controller (5)-(6) for
the system (1) that provides H∞ stabilization and positivity
of system (10), if there exist scalar γ > 0, ε > 0, matrices

Pm = diag [P1,m, P2,m] > 0, Qm = diag [Q1,m, Q2,m] > 0, a
Metzler matrix Gm , A1,m < 0 , Lm<0 and Km 40 such that :

Γm Ah,m PmBm + CTmKTm εBm PmAw,m
∗ Q̃m 0 0 0
∗ ∗ −I 0 0
∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ −γ2I

 < 0

∀m ∈M (19)

and inequalities (15), (16) and (17) from Theorem 1 must be held
as follows:

[Am +BmKm]ij ≥ 0 1 ≤ i 6= j ≤ n

[Gm −BmKm]ij ≥ 0 1 ≤ i 6= j ≤ n

Am − LmCm +BmKm −Gm < 0

and the following two relations are given to ensure the stability of
the system according to ADT,

Qm2 ≤ µQm1 , Pm2 ≤ µPm1, for m1,m2 ∈M , µ ≥ 1 (20)

and the ADT satisfies

τa >
lnµ

α
, ∀m ∈M αm = α > 0 (21)

which

Γm = AmTPm + PmAm − εPmBmBmT − εBmBmTPm +Qm
(22)

and

Am =

[
Am 0
Am 0

]
, Bm =

[
0 Bm −Bm 0 Bm
0 Bm −Bm −I Bm

]
,

Q̃m =

[
−Q1,m(1− d)e−αh +AT2,mA2,m 0

0 −Q2,m(1− d)e−αh

]

Km =

 Gm Lm 0 0
Km 0 0 0
0
0

0
0

Gm Lm
Km 0

 , Cm =

 0 I
0 0
I −I
Cm 0

 ,
Ah,m =

[
P1,mA1,m + CT2,mA2,m 0

0 P2,mA1,m

]
(23)

Proof:
See proof in Appendix II.
Remark 3. The problem raised in this study is solved using
Theorems 1 and 2. By Theorem 1, the necessary condition to
LMI positive answers despite uncertainty is ensured, and by
Theorem 2, the sufficient condition for the presence of a positive
H∞ observer-based controller and its exponential stability is
guaranteed.
Remark 4. If the γ, α and ε design parameters are not selected
correctly according to the dynamics of the switched system, the
problem will not reach feasible solutions. There can be two
resolutions to solve this problem: 1) Assigning proper values to the
parameters of each mode (γm, αm, εm). 2) Assigning the same
proper values for all modes. In this work, we chose the second
way.
Remark 5. It is necessary to declare that the presented design
based on the Theorems 1 and 2 leads to stable and nonnegative
x (t) , x̂(t). The augmented closed-loop system by combining (5)
and (7) is:[

ẋ(t)
˙̂x(t)

]
=

[
Aσ BσKσ

LσCσ Gσ

] [
x (t)
x̂(t)

]
+

[
A1,σ 0

0 A1,σ

] [
x (t− h(t))
x̂(t− h(t))

]
+

[
D1,σ

0

]
ω(t) (24)
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If this system is considered as a based model, no feasible solution
exists for LMIs related to this problem and hence, (24) has been
replaced by (10).
Remark 6. From Theorem 1 and Theorem 2, the controller gains
Km and the observer gains Lm and Gm can be solved by the
following iterative algorithm in Flowchart 1. The conditions for
entering this flowchart are that the system is observable and
controllable, internally stable, and the parameter uncertainty does
not exceed a certain boundary. Each of the above conditions can
be checked in separate flowcharts.

In the above figure γ > 0, α > 0, µ > 1 and ε > 0 are design
parameters, and “No_subsystems” is the number of subsystems or
modes. By solving inequalities 15 to 19, in addition to obtaining
the observer and controller parameters, P and Q matrices are also
obtained for each mode, which are used to design the switching

regime.
If we remove the interval uncertainty, time-varying delay, and
disturbance from the system (1) and rewrite it simply as below:{

ẋ (t) = Aσ(t)x (t) +Bσ(t)u(t)
y = Cσ(t)x (t)

(25)

Then, dynamic observer-based controller for system (25) is exist
as follows:{

˙̂x (t) = Gσ(t)x (t) + Lσ(t)y (t)
u (t) = Kσ(t)x̂ (t)

(26)

Corollary 1: For σ (t) = m,mε M , and for given Metzler
matrices Am, Gm and matrices Bm < 0, Cm < 0, and
Lm < 0,Km 4 0 and Pm = diag [P1,m, P2,m] > 0, and for
given scalars λ > 0, ε > 0, τa > 0 and µ ≥ 1, such that:

Ξm =

 ATmPm + PmAm − εBmBTmPm − εPmBmBTm PmBm +GTmK
T
m εBm

∗ −I 0
∗ 0 −I

 < 0 (27)

[Am +BmKm]ij ≥ 01 ≤ i 6= j ≤ n (28)

[Gm −BmKm]ij ≥ 01 ≤ i 6= j ≤ n (29)

Am +BmKm −Gm − LmCm < 0 (30)

Pm2 ≤ µPm1, for σ (tk) = m2, σ
(
t−k
)

= m1 ∈M (31)

where,

Am =

[
Am 0
Am 0

]
, Bm =

[
0 0 0 Bm
0 0 −I Bm

]

Cm =

 0 I
0 0
I −I
Cm 0

 , Km =

 Gm Lm 0 0
Km 0 0 0
0 0 Gm Lm
0 0 Km 0


(32)

then, system (25) is positively switched and exponentially stable
with ADT τa >

lnµ
λ

.
Proof:
See proof in Appendix III.

4. SIMULATION RESULTS

In the current section, we will discuss three examples: a
numerical example (Case No.1), a practical example (Case No.2),
and a comparative example (Case No.3). The cause of the
presentation, for each of these examples is described in the related
subsection. An Intel Core i5-520M 2.4 GHz (boost up to 2.93
GHz) processor was used to measure the computational time
provided at the end of the examples.

4.1. Numerical example (Case No.1)
In this subsection, a numerical example is presented that

supports the components of a positive compartmental switched
model with all the factors stated in the model (1). This example
challenges the approach presented in the study without considering
the constraints of a practical system model and the limitations of
choosing a system to compare the capabilities of the proposed
method. An SPS is introduced in this example, which includes
stable and unstable modes, time-varying delay, and external
disturbance. P and Q matrices are interface matrices employed in
system stability analysis. The related design parameters are shown

in Table 1. Note that the values of the switching parameters are
the same for both modes. Two subsystems are described with the
following matrices:

A1 =

[
−1.749 0.239
0.455 −1.101

]
, A1 =

[
−1.613 0.361
0.545 −0.699

]
,

A1,1 =

[
0.045 0.005
0.075 0.055

]
, A1,1 =

[
0.055 0.015
0.085 0.065

]

B1 =

[
1 0
0 1

]
, B1 =

[
1 0
0 1

]
, C1 =

[
0.9 0

]
,

C1 =
[

1.1 0
]
, D1,1 =

[
0.01

0

]
, C2,1 =

[
0.1 0

]
,

A2,1 =
[

0.1 0
]

;

A2 =

[
−1.749 0.239
0.455 0.200

]
, A2 =

[
−1.700 0.249
0.540 0.220

]
,

A1,2 =

[
0.045 0.005
0.075 0.055

]
, A1,2 =

[
0.050 0.006
0.080 0.070

]

B2 =

[
1 0
0 1

]
, B2 =

[
1 0
0 1

]
, C2 =

[
0.8 0

]
,

C2 =
[

1.0 0
]
, D1,2 =

[
0.01

0

]
, C2,2 =

[
0.01 0

]
,

A2,2 =
[

0.01 0
]

;

And time-varying delay and disturbance respectfully are calculated
as follows:

h (t) = h/2(1 +
sin(dt)

h
), ω (t) = e−0.2t.

Yalmip toolbox [43] was employed in MATLAB software to
obtain simulation results in all examples. Solving the matrix
inequalities in Theorems 2 gives feasible answers as follows
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Table 1. Design parameters of the case no. 1

Parameters Values

γ 0.5
d 0.6
α 0.6
ε 100

h 0.1
µ 1.6

 

Fig. 3. Disturbance signal

K1 =

[
−1.4977 −0.055371
−0.13023 −0.43027

]
,

K2 =

[
−17772 −0.066049
−0.10692 −19.958

]

L1 =

[
6.5454
0.10711

]
,

L2 =

[
72023

0.096979

]

G1 =

[
−10.753 0.1318
0.14497 −1.6129

]
,

G2 =

[
−94832 0.1069
0.1542 −39.569

]

P1,1 =

[
16.483 −0.86641
−0.86641 15.357

]
,

P1,2 =

[
18.797 −0.21121
−0.21121 14.961

]
P2,1 =

[
1.3349e+ 05 −0.21169
−0.21169 1.4e+ 05

]
,

P2,2 =

[
1.7214e+ 05 −0.22283
−0.22283 1.4e+ 05

]

Q1,1 =

[
43.218 −10.1
−10.1 8.7193

]
,

Q1,2 =

[
47.587 −5.9433
−5.9433 6.214

]

Q2,1 =

[
1.407e+ 09 −79086
−79086 14416

]
,

Q2,2 =

[
2.7257e+ 09 −78249
−78249 14416

]

 

Fig. 4. Time-varying delay

 Fig. 5. State trajectories and estimation

 

Fig. 6. Error signal for 12 seconds running time

Fig. 3 represents the treatment of exogenous disturbance. Fig. 4
shows the behavior of the time-varying delay function, which is
sinusoidal, and this behavior is very close to the delay variations
in a practical system.

Then, we present simulation results for ADT switching
τa ≥ 0.78 second for two subsystems. The simulation results
are shown in Fig. 5 where the initial conditions are x (0) =
[1 1]T , x̂ (0) = [0.6 0.6]T . The switching signal is designed by
keeping the average dwell time in Fig. 5 for 12 seconds. As can
be seen in Fig 5, the controllers and observers are well designed
for both stable and unstable states, and both state variables have
converged to zero within about 10 seconds of execution. During
this period, the estimates of state variables have also maintained
their tracing trend. In Fig. 6, the trajectories of the error signal
between the state variables (x1(t), x2 (t)) and their estimations
are drawn, which converge to zero. Parametric uncertainty has also
been applied during execution in the form of changing parameter
values in the desired range continuously. The time elapsed for the
calculations of case no.1 was approximately 30 seconds.

4.2. Practical example (Case No.2)
In this example, a compartmental model is considered a system

with positive switching characteristics, disturbance, time-varying
delay, and parametric uncertainty for analyzing the dynamics
of thyroid hormone metabolism [43]. As shown in Fig. 9,
the Mammillary model consists of three compartments, each
representing a state variable. State variables are the quantities of
hormones in each compartment. The two composite tissue pools
(fast and slow) represent two classes of organ pools of thyroid
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Fig. 7. General Mammillary compartmental model

hormone such as T3 and T4 [44] (Peripheral tissues such as the
liver, kidneys, brain, and pituitary gland can also convert T4 to T3).
The plasma pool is the central compartment. Each state variable
denotes the quantity of the hormone in the pool. Each tissue group
metabolizes or disposes of thyroid hormone. By measuring the
amount of thyroid hormone in the blood plasma with the aid of
an observer, the amount of this hormone in other tissues can be
estimated. The above compartmental model can be described as a
switching model. It means that we have different coefficients for
the same structures and can be switched between them. In [45],
a compartmental switching system for controlling the amount of
anesthetic is discussed. Factors such as taking certain medications
or psychosomatic illnesses such as mood disorders can cause these
different subsystems. A compartmental system can be a time delay
system. This is the subject of [46] and has been discussed in [47].
The effect of external disturbances on the compartmental system
has been investigated in [48]. These disturbances in the current
system can be caused by various factors such as hereditary and
environmental factors such as nutrition, stress, smoking, iodine
deficiency, and other underlying diseases.

The mathematical model of the system is similar to the system
(1) and is as follows:

A1 =

 −k21 − k31 k12 k13
k21 −k02 − k12 0
k31 0 k03 − k13

 ,
A1,1 =

 0 0 0.02
0.01 0 0

0 0 0

 ,
B1 =

 0.1 0 0
0 0.2 0
0 0 0.2

 ,
C1 =

[
kc 0 0

]
D1,w =

 0.02
0.01
0.01



(33)

A2 =

 −k21 − k31 k12 k13
k21 −k02 − k12 0
k31 0 −k03 − k13

 ,
A1,2 =

 0 0 0
0.02 0 0.03

0 0 0

 ,
B2 =

 0.1 0 0
0 0.3 0
0 0 0.2

 ,
C2 =

[
kc 0 0

]
D2,w =

 0.03
0.01
0.04



(34)

The kij parameters of the model are estimated to be obtained with
the help of the observer or reliable references. The values of these
parameters represent interval uncertainty in the system matrices.
Table 2 lists these values for both modes.

Table 2. Uncertain parameters of the model

Second mode First mode Parameters

2.6080±0.0802 1.8090± 0.0420 k21
1.6607±0.0505 1.5550± 0.0630 k31
2.2011±0.0103 2.0650± 0.0610 k12
1.4512±0.0308 1.2550± 0.0450 k13
0.8051±0.0310 0.7050± 0.1010 k02
1.2501±0.1399 1.2310± 0.1400 k03
0.8±0.1 1± 0.1 kc

Table 3. Design parameters for case no.2

Parameters Values

γ 0.5
d 0.9
α 0.7
ε 100
h 1

By applying Theorem 2 for the current example, using the Yalmip
toolbox, the following gains for the controller and observer have
been obtained:

K1 =

 −14.73 −0.67 −0.41
−0.85 −8.57 0.00
−0.67 0.00 −4.49

 , L1 =

 50.05
0.34
0.29

 ,
G1 =

 −73.93 0.92 0.55
0.59 −13.40 0.00
0.52 0.00 −8.73


K2 =

 −15.08 −1.86 −1.48
−5.26 −6.17 0.00
−4.33 0.00 −5.08

 , L2 =

 38.43
0.44
0.33

 ,
G2 =

 −40.86 1.51 0.95
0.41 −6.16 0.00
0.33 0.00 −4.21


It should be noted that all time units in this example are

in minutes. If ADT is calculated in minutes and a plasma
compartment is used for measurement, effective thyroid drugs
(controller) can be employed according to the defined target.
Disturbance and Time-varying delay (Fig. 8 and Fig. 9) defined
respectfully as: h (t) = h/2(1 + sin(dt)

h
). The wgn(), butter(),

and filter() functions in MATLAB are used to generate disturbance
ω (t). As can be seen in the figure, the disturbance implementation
is such that it has all the nonnegative values that a positive
system must have for this example. Figs 10 and 11 shows
parameter uncertainty in matrices A and C, respectively. The
switching signal is given in Fig. 12. The initial values for states
and their estimations are, respectfully: x (t) =

[
1 1 1

]T ,
x̂ (0) =

[
0.7 0.7 0.7

]T and the other related parameters has
been shown in Table 3.

The trend of Fig. 12 curves can be interpreted as follows, for
one cycle, thyroid hormone enters the plasma pool and then enters
the slow and fast pools. The amount of hormone in each of them is
metabolized and finally excreted. The controller and observer that
measures the plasma pool play an important role in this process.
The results of reference [44] are the same in general. The time
elapsed for the calculations of this example was about 0.5 second.

4.3. Comparative example (Case No.3)
In this subsection, we wanted to compare the capabilities

of L1-gain (with relatively similar models and from other
references) and L2-gain (described in this paper) methods in
observer-based controller design, such as the number of iterations
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Fig. 8. Disturbance signal for case no. 2

 

Fig. 9. Time-varying delay for case no. 2

 Fig. 10. Parameter uncertainties of A matrix elements

 

Fig. 11. Parameter uncertainties of A matrix elements

Table 4. Comparison of MSE values by two methods (T = 5 sec)

Liu [49] Corollary 1

MSE of x1(t) 0.081 0.008
MSE of x2(t) 0.048 0.034
MSE of x3(t) 0.058 0.032

required to solve the problem, error, and performance. But, for
the proposed dynamics, none of the methods introduced in the
literature [36, 38, 41] became feasible hence, there was no
possibility for comparison. The reference method [48], despite the
difference in model components such as delay and parametric
uncertainty with the model of this article and also the use of
the Linear Programming (LP) method instead of L2-gain and
Lyapunov function, can be compared with the approach of this
paper. It is because the existence of commonalities, such as
positivity, linearity, switching, ADT design, use of output feedback
in controller design, and most importantly, feasible solutions.
In other cases, without feasible answers, the accuracy of the
controller and observer performance cannot be trusted. Corollary1,
was created to make this comparison. Theorem (3.1) from [48]
was implemented, with the control law described below (p is the
mode number), and the results were compared.

u (t) = Gpy (t)

= kpvpy (t)

=
1

vpCpλp
zpvpCpx (t) kpεR

m×l, λpεR
n, zpεR

m

(35)

vp is a fixed parameter. The following system matrices were
simulated for both methods.

A1 =

 −3 2 1
1 −2 0
1 0 −2

 B1 =

 0.3 0 0
0 0.2 0
0 0 0.4


C1 =

[
1 0 0

]
A2 =

 −4 2 1
2 −3 0
1 0 −2

 B2 =

 0.1 0 0
0 0.3 0
0 0 0.2


C2 =

[
1 0 0

]
The simulation results for the first mode are as follows (Gm is
control gain matrix in [48]):

K1 =

 −58.65 −1.84 −1.14
−2.18 −25.44 0.00
−0.92 0.00 −20.94

 , L1 =

 178
0.38
0.33

 ,
G1 =

 −219.59 0.94 0.56
0.60 −21.40 0.00
0.52 0.00 −24.91



G1 =

 −1.62
−6.35
−2.24

 , z1 =

 −51.42
−23.60
−11.84

 , λ1 =

 9.45
5.57
9.43


and for the second mode are:

K2 =

 −79.82 −4.79 −3.53
−2.25 −21.00 0.00
−2.08 0.00 −23.48

 , L2 =

 319.12
0.71
0.44

 ,
G2 =

 −283.59 1.11 0.69
0.85 −20.77 0.00
0.55 0.00 −19.08



G2 =

 2.27
−8.10
−5.82

 , z2 =

 −41.57
−68.54
−31.73

 , λ2 =

 11.78
6.15
10.79
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Fig. 12. States and their estimations

The switching signal for this example is presented in Fig. 13. The
convergence of the modes of each method is also shown in the
same figure. As clearly seen in the figure, the rate of convergence
in the approach of this paper is more suitable than the procedure
of [49]. In Table 4, the mean square error (MSE) values of both
methods are presented for all three state variables. The method of
calculating MSE for each mode is according to Equation 34. e(t)
is the vector of values of the errors between the current time and
the predicted values.

MSE =

√∫ T

0

e(t)T e(t)dt (36)

Employing an observer-based controller for an SPS using the
output feedback method is not very common, as mentioned earlier.
The few cases that exist in the literature have no feasible solution
and cannot be presented in a comparative example. Liu et al. [49]
was the only case that was observed to have feasible solution by
the output feedback controller and LP approach. The execution
time of both algorithms was approximately 0.1 second.

5. CONCLUSIONS

In this paper, an effective method for designing a positive
augmented closed-loop switched system consisting of an observer
and a controller based on output feedback and state estimation
was presented. In addition, minimizing the effects of destructive
factors that generally exist in practical systems, such as parametric
uncertainty, time-varying delay, disturbance, and unstable modes,
has been one of the design goals. This methodology, especially for
solving augmented systems, produces a large number of interface
parameters in the form of positive vectors, which can be converted
to BMI terms in the solution process. BMI terms either should be
linearized with algebraic methods, which is not always possible, or
solved with special-purpose solvers that do not have trustworthy
answers, which in both cases does not provide a reliable design
for the observer and the controller. In the proposed method that

 

 

 
 Fig. 13. Three states convergence with both methods
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leads to H∞ stabilization, the solution method consists of a set of
LMI terms.

For further validation of the proposed approach, three examples
were illustrated. In the first case, a numerical example was
evaluated. In this case, in addition to reducing the effect of
parametric uncertainties and disturbance and delay, it was noticed
that the robust controller and the ADT switching regime did not
allow the divergence of the trajectories of the state variables when
the unstable mode was activated. Also, the gains of the controller
and observer were obtained according to the design assumptions,
and the diagonals of the matrices P and Q were positive, which
are used to design the switching regime. This example best
demonstrated the achievement of our robust observer-based control
system. In the second case, a positive compartmental switched
system was presented, in which the variables of thyroid hormone
metabolism states were considered in three organs of the body
with high and low metabolism and blood plasma. This system
had high disturbance, parametric uncertainty, and delay in state
variables. By measuring the hormone in the blood, its status in
other organs can be estimated and controlled. In this case, all the
state variables converged to the origin, but due to the bias in the
disturbance, a small amount of steady-state error remained. By the
presented method, after about 27 minutes, the amount of hormone
in the tissue reaches the desired amount.

In order to evaluate the performance of the proposed
observer-based controller, there was a condition for a similar
system, a system with a similar model should be used in
comparison (output feedback). Among the existing papers in this
field, [48] was selected because of feasible answers. On the other
hand, Corollary 1 was generated in Section 3 for comparison.
As can be seen in the figures of the third example Fig. 13,
the convergence rate of our proposed method was much better
than that of the reference method [48]. The MSE of the system
output (y = x1 (t)) for the method of this paper is 0.008 and for
the compared approach is 0.081. Also, this value for two other
state variables obtained by estimation with values of 0.034 and
0.0032 is more acceptable than the method [48] with values of
0.048 and 0.0058, respectively (see Table 4). In this example,
the advantage of employing dynamic output feedback over static
output feedback was also shown.

6. APPENDIXES

Appendix I.
If there exists such an observer-based controller from (10), for

stability of the closed-loop system we should have ϑ (Ax,m) < 0
and for positiveness Ax,m should be Metzler. Thus for any m ∈M ,
Am ∈ [Am, Am], Bm ∈ [Bm, Bm] and Cm ∈ [Cm, Cm], with
respect to Km 4 0, we have:[

Am +BmKm −BmKm

Am +BmKm − LmCm −Gm Gm −BmKm

]
4

[
Am +BmKm −BmKm

Am +BmKm − LmCm −Gm Gm −BmKm

]
4

[
Am +BmKm −BmKm

Am +BmKm − LmCm −Gm Gm −BmKm

]
(A1)

Then, it can be interfered:

ϑ

([
Am +BmKm −BmKm

Am +BmKm − LmCm −Gm Gm −BmKm

])
< 0

(A2)

and
[

Am +BmKm −BmKm

Am +BmKm − LmCm −Gm Gm −BmKm

]
should

be Metzler which guarantees (15), (16) and (17). Eq. (A2) indicates
that all the eigenvalues of Ax,m are negative. From (A2) in
conformity with Lemma 2, the same condition is held for Ax,m
and we have:

trace

([
Am +BmKm −BmKm

Am +BmKm − LmCm −Gm Gm −BmKm

])
< 0

(A3)
Inequality (A3) is equivalent to (18) and the proof is complete.

Appendix II.
The Lyapunov-Krasovskii function can be constructed as follow:

Vσ (t) = V (t)

= x̃T (t)Pσ(t)x̃ (t) +

∫ t

t−h(t)
e−α(t−s)x̃(t)Qσ(t)x̃(t)ds

(A4)

For σ (t) = m, by substituting Pm = diag [P1,m, P2,m] > 0 and
Qm = diag [Q1,m, Q2,m] > 0, we have:

V (t) = xTP1,mx+ eTP2,me

+

∫ t

t−h(t)
e−α(t−s)

[
xT (s)Q1,mx (s)

+eT (s)Q2,me (s)
]

ds

(A5)

By derivation of (A5), we can get:

V̇ (t) = xT (t)P1,mẋ (t) + ẋT (t)P1,mx (t)

+ eT (t)P2,mė (t) + ėT (t)P1,me (t) + xT (t)Q1,mx(t)

+eT (t)Q2,me (t)−α
(
V − xT (t)P1,mx (t)− eT (t)P2,me (t)

)
−
(

1− ḣ
)
e−αh(t)[xT (t− h (t)Q1,mx (t− h (t))

+ eT (t− h (t))Q2,me (t− h (t))] (A6)

We can conclude:

V̇ (t) + αV (t) ≤ ηT (t)ϕmη(t) (A7)

Which guarantees the stability of the system (ω = 0), where η(t)
is a matrix consisting of several vectors:

ηT (t) =
[
xT (t) eT (t) xT (t− h (t)) eT (t− h (t)) ωT

]
(A8)

ϕm =


π11 π12 P1,mA1,m 0 P1,mD1,m

π21 π22 0 P2,mA1,m P2,mD1,m

AT1,mP1,m 0 −(1− d)e−αhQ1,m 0 0

0 AT1,mP2,m 0 −(1− d)e−αhQ2,m 0
DT

1,mP1,m DT
1,mP2,m 0 0 0

 ≤ 0 (A9)
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π11 = P1,m (Am +BmKm) +Q1,m + (Am +BmKm)TP1,m + αP1,m

π12 = (Am +BmKm − LmCm −Gm)TP2,m − P1,mBmKm

π21 = P 2,m (Am +BmKm − LmCm −Gm)−KT
mB

T
mP1,m

π22 = P2,m (Gm −BmKm) +Q2,m + (Gm −BmKm)TP2,m + αP2,m

For disturbance attenuation by means of L2-gain stability relation
‖z(t)‖L2
‖ω(t)‖L2

≤ γ, it can be stated that:√∫∞
0
zT (t)z (t) dt√∫∞

0
ω(t)Tω(t)

≤ γ (A10)

L2-gain stability criterion in (A10) can rewritten in following
form:

J =

∫ ∞
0

zT (t)z (t)− γ2ωT (t)ω (t) dt ≤ 0 (A11)

According to Definition 4, we can conclude

J ≤
∫ ∞
0

zT (t) z (t)− γ2ωT (t)ω (t) dt+V (x (∞))−V (x (0)) ≤ 0

(A12)
Which yields:

J ≤
∫ ∞
0

(zT (t) z (t)− γ2ωT (t)ω (t) + V̇ (t))dt ≤ 0 (A13)

A sufficient condition to guarantee the above inequality is:

zT (t) z (t)− γ2ωT (t)ω (t) + V̇ (t) ≤ 0 (A14)

With respect to (A7), (A15) is rewritten as:

zT (t) z (t)− γ2ωT (t)ω (t) + V̇ (t)

≤ zT (t) z (t)− γ2ωT (t)ω (t) + V̇ (t) + αV (t)

≤ zT (t) z (t)− γ2ωT (t)ω (t) + ηT (t)ϕmη(t)

(A15)

By considering the system dynamic (1), z (t) = C2,σ(t)x (t) +
A2,σ(t)x (t− h(t)), we have:

xT (t)CT2,mC2,mx (t) + xTCT2,mA2,mx (t− h (t))

+ xT (t− h (t))AT2,mC2,mx (t) + xT (t− h)AT2,mA2,mx (t)

− γ2ωTω (t) + ηT (t)ϕmη(t) ≤ ηT (t)ψmη(t) (A16)

So, we should have ψm ≤ 0 in which:

ψm =


χ11 χ12 P1,mA1,m + CT2 A2,m 0 P1,mD1,m

χ21 χ22 0 P2,mA1,m P2,mD1,m

AT1,mP1,m +AT2,mC2 0 − (1− d) e−αhQ1,m +AT2,mA2,m 0 0

0 AT1,mP2,m 0 −(1− d)e−αhQ2,m 0
DT

1,mP1,m DT
1,mP2,m 0 0 −γ2I

 ≤ 0

χ11 = P1,m (Am +BmKm) +Q1,m + (Am +BmKm)TP1,m + CT2,mC2,m + αP1,m

χ12 = (Am +BmKm − LmCm −Gm)TP2,m − P1,mBmKm + αP2,m

χ21 = P 2,m (Am +BmKm − LmCm −Gm)−KT
mB

T
mP1,m

χ22 = P2,m (Gm −BmKm) +Q2,m + (Gm −BmKm)TP2,m

(A17)

By substituting (23) into (A17) with respect to upper bound of the uncertain parameters, matrix ψm can be rewritten as follows,

ψm =

 (Am + BmKmCm)TPm + Pm (Am + BmKmCm) +Qm Ah,m PmAw,m
∗ Q̃m 0
∗ ∗ − γ2I

 ≤ 0 (A18)

where

Qm =

[
Q1,m + CT2,mC2,m + αP1,m 0

0 Q2,m + αP2,m

]
(A19)

Q̃m =

[
−Q1,m(1− d)e−αh +AT2,mA2,m 0

0 −Q2,m(1− d)e−αh

]
(A20)

Σm = Am + BmKmCm

=

[
Am +BmKm −BmKm

Am +BmKσ − LmCm −Gm Gm −BmKm

]
(A21)

By the means of Schur compliment [28], (A18) can be given in

the following form:

[
Σm

TPm + PmΣm +Qm Ah,m
∗ Q̃m

]
+

[
PmAw,m

0

] (
−γ−2I

) [
ATw,mPm 0

]
≤ 0 (A22)

Again, using Schur compliment yields:

Σm
TPm + PmΣm +Qm − γ

−2PmAw,mA
T
w,mPm

−Ah,mQ̃TmA
T
h,m ≤ 0 (A23)

The following inequality can be considered as a sufficient condition



Journal of Operation and Automation in Power Engineering, Vol. 12, No. 3, Aug. 2024 257

for (A23):

Σm
TPm + PmΣm +Qm − γ

−2PmAw,mA
T
w,mPm

−Ah,mQ̃TmA
T
h,m + CTmKTmKmCm ≤ 0 (A24)

After replacement Σm = Am + BmKmCm, yields:

ATmPm + PmAm + PmBmKmCm + CTmKTmBTmPm
+ CTmKTmKmCm +Qm − γ

−2PmAw,mA
T
w,mPm

−Ah,mQ̃TmA
T
h,m ≤ 0 (A25)

which can be rewritten in this form:

ATmPm + PmAm + PmBmKmCm

+
(
PmBm + CTmKTm

)(
BTmPm + KmCm

)
− PmBmBTmPm

+Qm − γ
−2PmAw,mA

T
w,mPm −Ah,mQ̃TmA

T
h,m ≤ 0 (A26)

Also, it can be rewritten as follows:

ATmPm + PmAm + PmBmKmCm

+ (BTmPm + KmCm)
T

+
(
BTmPm + KmCm

)
− PmBmBTmPm

+Qm − γ
−2PmAw,mA

T
w,mPm −Ah,mQ̃TmA

T
h, ≤ 0 (A27)

The equation (A28) is constructed to obtain the upper bound in
inequality (A29):

[Am +BmKm]ij ≥ 0 1 ≤ i 6= j ≤ n (A28)

Then, it holds that:

[Gm −BmKm]ij ≥ 0 1 ≤ i 6= j ≤ n (A29)

By substituting the upper bound of (A29) in (A27), we can get to:

ATmPm + PmAm + PmBmKmCm

+
(
PmBm + CTmKTm

)(
BTmPm + KmCm

)
− εBmBmTPm − εPmBmBmT + ε2BmBmT

+Qm − γ
−2PmAw,mA

T
w,mPm −Ah,mQ̃TmA

T
h,m ≤ 0 (A30)

Now, applying Schur compliment to the previous relation leads to:[
θ11 Ah,m
∗ Q̃m

]
≤ 0

where

θ11 = ATmPm + PmAm

+ (BmTPm + KmCm)
T
(
BmTPm + KmCm

)
− εBmBmTPm − εPmBmBmT + ε2BmBmT

+Qm − γ
−2PmAw,mA

T
w,mPm

(A31)

Applying Schur compliment two times:
ξ11 Ah,m PmBm + CmTKmT εBm
∗ Q̃m 0 0
∗ ∗ −I 0
∗ ∗ ∗ −I

 ≤ 0 (A32)

where

ξ11 = ATmPm + PmAm − εBmBmTPm
− εPmBmBmT +Qm − γ

−2PmAw,mA
T
w,mPm

By using one more Schur compliment on the term
γ−2PmAwA

T
wPm :


Γm Ah,m PmBm + CmTKmT εBm PmAw,m
∗ Q̃m 0 0 0
∗ ∗ −I 0 0
∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ −γ2I

 ≤ 0

(A33)
where

Γm = ATmPm + PmAm − εBmBmTPm
− εPmBmBmT +Qm

With respect to (A15) and (A16) and integrating from tk to t
gives:

V (t) ≤ e−α(t−tk) Vσ(tk) (tk)−
∫ t

tk

e−α(t−s)
(
zT (s) z (s)

− γ2ωT (s)ω (s)

)
ds

(A34)

Assume that σ (tk) = m2, σ
(
t−k
)

= m1 at switching instant tk,
inequalities given in (20) guarantee

Vm2 (tk) ≤ µVm2(t−k ) (A35)

When t ∈ [tk, tk+1), from (A7) and (A9) we get to:

Vσ(t)(t) ≤ e−α(t−tk) Vσ(tk) (tk) (A36)

And from Definition 3, after k times switching (k ≤ t−t0
τa

), it can
be concluded that:

Vσ(t) (t) ≤ e−α(t−tk) µV
σ(t−k )

(
t−k
)
≤

· · · ≤ e−α(t−t0)µk Vσ(t0) (t0)

≤ e−(α− lnµ
τa

)(t−t0)Vσ(t0) (t0) (A37)

We define R1 = maxm λ (Pm) , R2 = maxm λ (Qm) and
R3 = minm λ (Pm) thus:

Vσ(t0) (t0) ≤ x̃T (t0)R1x̃
T (t0) +

t0∫
t0−h(t0)

x̃T (t0)R2x̃
T (t0) ds

≤ R1 ‖x̃ (t0)‖+R2h ‖x̃ (t0)‖ (A38)

It is derived from (A37) and (A38) that:

x̃T (t)Pσ(t)x̃(t) ≤ Vσ(t) (t)

≤ e−
(
α− lnµ

τa

)
(t−t0)(R1 +R2h) ‖x̃ (t0)‖ (A39)

Consequently,

‖x̃(t)‖ ≤ e−
(
α− lnµ

τa

)
(t−t0)(R1/R3 +R2h/R3) ‖x̃ (t0)‖ (A40)

So, this bound τa > lnµ
α

should be hold for ADT.
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On the other hand, from (A34) and (A37) we get to:

V (t) ≤ e−α(t−tk) Vσ(tk) (tk)

−
∫ t

tk

e−α(t−s)(zT (s) z (s)− γ2ωT (s)ω (s)) ds

≤ µk V (t0) e−αt

− µk
∫ t1

t0

e−α(t−s)
(
zT (s) z (s)− γ2ωT (s)ω (s)

)
ds

− µk−1

∫ t2

t1

e−α(t−s)
(
zT (s) z (s)− γ2ωT (s)ω (s)

)
ds−

· · · −
∫ t

tk

e−α(t−tk)
(
zT (s) z (s)− γ2ωT (s)ω (s)

)
ds

=e−α(t−t0)+Nσ(t0,t)lnµV (t0)

−
∫ t

t0

e−α(t−s)+Nσ(s,t)lnµ
(
zT (s) z (s)

− γ2ωT (s)ω (s)

)
ds

(A41)

Under zero initial condition, (A41) gives:

0 ≤

−
∫ t

t0

e−α(t−s)+Nσ(s,t)lnµ
(
zT (s) z (s)− γ2ωT (s)ω (s)

)
ds

(A42)

Simplifying the relation (A42) and integrating both sides of
inequality from t = t0 to ∞ yields:∫ ∞

0

zT (t) z (t) dt < γ2

∫ ∞
0

ω(t)Tω(t) dt

H∞ stabilization is guaranteed and the proof is complete.

Appendix III.
With respect to systems (26) and (27) we have:

e = x(t)− x̂(t)

⇒ ẋ = (Am +BmKm)x(t)−BmKme(t) (A43)

ė(t) = ẋ(t)− ˙̂x(t)

= (Am +BmKm)x(t)−BmKme(t)

− (Gm + LmCm)x(t) +Gme(t)

(A44)

if x̃ (t) =

[
x (t)
e (t)

]
is considered, then we can rewrite to recent

relations as:

˙̃x (t) =

[
Am +BmKm −BmKm

Am +BmKm −Gm − LmCm Gm −BmKm

]
x̃ (t)

(A45)
By selecting the following Lyapunov function:

Vm(t) = V (t) = x̃T (t)Pmx̃(t)

= xT (t)P1,mx(t) + eT (t)P2,me(t) (A46)

The derivative of the Lyapunov function yields:

V̇ = 2xT (t)P1,mẋ (t) + 2eT (t)P2,mė (t)

= 2xT (t)P1,m (Am +BmKm)x (t)− 2xTP1,mBmKme (t)

+ 2eT (t)P2,m (Am +BmKm −Gm − LmCm)x (t)

+ 2eT (t)P2,m (Gm −BmKm) e (t)

=
[
x(t)T e(t)T

]
ηm

[
x(t)
e(t)

]
(A47)

That ηm will be in this form:

ηm =

[
P1,m (Am +BmKm) + (Am +BmKm)TP1,m −P1,mBmKm + (Am +BmKm −Gm − LmCm)TP2,m

−KT
mB

T
mP1,m + P2,m(Am +BmKm −Gm − LmCm) P2,m (Gm −BmKm) + (Gm −BmKm)TP2,m

]
< 0

(A48)

For stability of the system, its necessary that ηm < 0, so in the
following with respect to (32):

Am + BmKm =[
Am +BmKm −BmKm

Am +BmKm −Gm − LmCm Gm −BmKm

]
(A49)

ηm = (Am + BmKm)TPm + Pm (Am + BmKm) < 0 (A50)

It is also concluded that:

ηm + CTmKTmKmCm < 0 =⇒ ηm < 0 (A51)

ηm + CTmKTmKmCm = ATmPm + PmAm

+
(
PmBm + CTmKTm

)(
BTmPm + KmGm

)
− PmBmBTmPm < 0 (A52)

Also, due to the (A28) and (A29) by placing the band above
−PmBmBTmPm in (A52), we have:

ATmPm + PmAm +
(
PmBm + CTmKTm

)(
BTmPm + KmGm

)
− εBmBmTPm − εPmBmBmT + ε2BmBmT < 0 (A53)

By applying Schur complement to the term(
PmBm + CTmKTm

) (
BTmPm + KmGm

)
:

[
ATmPm + PmAm − εBmBmTPm − εPmBmBmT + ε2BmBmT PmBm + CTmKTm

∗ −I

]
< 0 (A54)

By applying Schur complement, one more this time to the term ε2BmBmT , we can reach to:

Ξm =

 ATmPm + PmAm − εBmBTmPm − εPmBmBTm PmBm +GTmK
T
m εBm

∗ −I 0
∗ 0 −I

 < 0 (A55)
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On the other hand, Assume that σ (tk) = m2, σ
(
t−k
)

= m1, µ ≥
1 at switching instant tk:

Vm2 (tk) ≤ µVm2(t−k ) (A56)

with respect to (A46) to (A50) and stability of the system, we
assume λ = −2maxm λ (Am + BmKm) , thus:

V̇σ(t)(t) ≤ λVσ(t)(t) (A57)

when t ∈ [tk, tk+1), from (A57) we get to:

Vσ(t)(t) ≤ e−λ(t−tk) Vσ(tk) (tk) (A58)

And from Definition 3, after k times switching ( k ≤ t−t0
τa

), it can
be concluded that:

Vσ(t) (t) ≤ e−λ(t−tk) µV
σ(t−k )

(
t−k
)
≤ . . .

≤ e−λ(t−t0)µk Vσ(t0) (t0) ≤ e−(λ− lnµ
τa

)(t−t0)Vσ(t0) (t0) (A59)

We define R1 = maxm λ (Pm) ,R2 = minm λ (Pm) thus:

Vσ(t0) (t0) ≤ x̃T (t0)R1x̃
T (t0) ≤ R1 ‖x̃ (t0)‖ (A60)

It is derived from (A59) and (A58) that:

x̃T (t)R2x̃(t) ≤ Vσ(t) (t) ≤ e−
(
λ− lnµ

τa

)
(t−t0)R1 ‖x̃ (t0)‖

(A61)
Consequently,

‖x̃(t)‖ ≤ e−
(
λ− lnµ

τa

)
(t−t0)(R1/R2) ‖x̃ (t0)‖ (A62)

So, this bound τa > lnµ
λ

should be hold for ADT.
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