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Optimization Algorithm Considering Uncertainties
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Abstract— In this paper, virtual power plant (VPP) planning is done using distributed generation sources to create a safe platform for
electricity exchange and to increase the profitability and sustainability of electricity. In the proposed model, the effect of micro-grid
interaction with the electricity market in the presence of distributed generation resources and storage is investigated. To solve this problem,
an improved artificial bee colony algorithm using the accept-reject method (AR-ABC) is used. The AR method is employed to limit the
initial search space as well as for the scenario reduction process. Also, uncertainties related to loads and renewable sources are formulated
in a sample micro-grid including micro-turbine (MT), fuel cell (FC), wind turbine (WT), photovoltaic cells (PV) and batteries for storage;
the results are compared with those of other methods, which shows this method works better than others. The software simulations of this
research are done in the MATLAB software environment.
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NOMENCLATURE

Variables
αP Temperature coefficient
α , ω Parameters of the beta PDF
β Weight factor related to the step of movement
∆P The difference between the original losses and the

new losses of feeders
Xi, j Updated position of i th particle
τ Numerical value related to the algorithm stop

criterion
υi,j Updated velocity vector of i th particle
Ii The original flow of the ith branch
PSj(t) Output active power of j th storage at time t
Ri The resistance of the ith branch
v Wind speed [m/s]
C∆P The cost of the ∆P
dfPV Derating factor
Si,STC Solar irradiance at standard test conditions
Si(t, s) Solar irradiance for the PV array at time t and

scenarios
Tc,STC Temperature of PV cell under standard conditions
Tc Temperature of PV cell
xmin

j , xmax
j Lower and Upper bounds of the j th

k, c Shape and scale parameters of Weibull PDF
Pwt

r νr Output power and rated speed for WT
νci , νco Cut in and cut out speed states of WT
δ Movement step index
CFC Proposed cost for FC
CGrid Bid price of electricity

Received: 05 Sept. 2022
Revised: 18 Dec. 2022
Accepted: 02 Jan. 2023
∗Corresponding author:
E-mail: pourfar@jsu.ac.ir (I. Pourfar)
DOI: 10.22098/joape.2023.11310.1844
Research Paper
c© 2023 University of Mohaghegh Ardabili. All rights reserved

Cj Suggested cost for storage devices
CMT Proposed cost for MT
CPV Proposed cost for PV system
CWT Proposed cost for WT
Ng Total number of production units
Ns Total number of storage units
PBattery Power generated by battery
PFC Power generated by fuel sell
PGrid Power bought or sold from the market
PMT Power generated by MT
PPV Power generated by PV system
PWT Power generated by WT
PVarray Nominal PV capacity for array
SGi Unit start-up cost
SSj Unit shutdown cost
UFC Indicating whether the FC is OFF or ON
Uj Indicating whether the storage devices is OFF or

ON
UMT Indicating whether the MT is OFF or ON
UPV Indicating whether the PV system is OFF or ON
UWT Indicating whether the WT is OFF or ON

1. INTRODUCTION

Today, due to the use of fossil fuels for generating electricity
in power plants, the emission of industrial pollutants is one of
the most fundamental issues in power systems. Distributed energy
resources (DERs) that are close to load centers are used to reduce
the losses of electrical power and environmental pollutants. The
VPP is planned to reduce the complexities and problems associated
with the control and planning of DERs. The duty of the VPP
is to manage the large number of DERs scattered throughout
the system. One of the problems with VPPs is the uncertainty
of renewable energy sources such as wind and solar in PV and
WT [1]. Therefore, these uncertainties must be modelled and
formulated in the optimization problem. In this paper, a sample
network is planned by the VPP to reduce the generation and
operation costs and increase profit. DGs work together to supply
network loads, and store and sell electricity when the price of
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electricity in the grid is high and buy electricity when the price of
electricity is cheap.

There are many types of research in the field of VPP planning,
including as follows: In [2], peer-to-peer VPPs were analyzed
and evaluated. On a small scale, peer-to-peer operating systems
for VPP were introduced for coordination between manufacturers
and consumers. The authors in [3] proposed a VPP planning
model which used renewable energy sources and storage units to
participate in the energy market. A two-stage stochastic planning
problem, as well as a short-term and long-term strategy for
solving the problems related to the uncertainty of renewable energy
sources, were presented. In [4], in order to increase the profit and
the network reliability under maximum load conditions, a new
strategy was proposed for the simultaneous use of the load response
program with electric vehicles in the parking lots. This strategy
was used for the energy management of industrial VPPs in the
short-term planning of DERs. The simulation results proved that
the presence of EV in the EV parking area reduced the utilization
of the full capacity of the power grid. In [5], the planning of a VPP
was done in several layers. In this research, a randomized model
with a machine learning randomized control scheme was used to
address the uncertainties in VPP. The simulation results proved
that the effect of this planning in terms of penalty reduction in
most cases was better than that of the definitive approach. In [6],
considering the issues related to the stability of electrical energy in
municipal electricity, expressing the concept of VPP could address
this concept for urban sustainability by using the control and
stability issues and communication technologies and removing the
existing limitations and expressing future solutions and plans. In
[7], for a smart grid, an efficient three-level distribution model was
proposed to determine the optimal bilateral transactions, which
aimed to minimize production costs and transmission costs. The
performance of this load distribution model was tested on the
modified IEEE-14 bus system and the modified IEEE-30 bus
system. In [8], a study was performed on a VPP with electric
heating in Tianjin, China. In this research, first, the mechanism
and structure of the VPP market were studied and, then, a
model was considered for investigating the penalty for wind
uncertainty. The results showed that the two-stage optimization
model performed well, increased system reliability and reduced
costs. In [9], a two-layer power management model for a smart
distribution network was considered, and the first and second layers
were examined to maximize profits and reduce losses and voltage
fluctuations, respectively. The proposed model was implemented
by the Benders decomposition method in a standard IEEE 69 bus
distribution network. In [10], a VPP was considered as an example
for solving the problems related to the parameters’ uncertainties
that were generated or demanded randomly, such as wind speed,
electricity prices and load demand. To this end, a strategy based
on a deep learning approach with two-way short-term memory
networks (BLSTM) was proposed. In [11], optimization algorithms
based on the Big Bang algorithm were used to increase electricity
trade in unbalanced distribution networks, which aimed to manage
electrical energy in unbalanced distribution networks to reduce
energy costs. This method was done through optimal planning of
renewable resources, optimal load planning and optimal use of
energy storage in the network. In order to reduce the total cost
of cargo supply and decrease voltage fluctuations, a load response
program was proposed for the simultaneous use of electric vehicles.
In [12], for the robust self-scheduling of VPP, a new method based
on information gap decision theory (IGDT) was used for electricity
markets. For exchange in the pool market, the price of energy was
uncertain, but the decision variables in this research were energy.
Researchers of this research defined self-scheduling by considering
the level of risk-taking. In [13], to solve the problem of VPP
uncertainty and make VPP planning easier, information gap theory
was used and the two-stage planning method of power plants was
employed to determine the effectiveness of VPP planning; the
conditions for the load response program were implemented in

the IEEE 24-bus network. The results obtained in two cases were
examined and compared with each other.

In this paper, the planning of a VPP for supplying the electricity
consumption of a micro-grid that participates in the electricity
market and exchanges power with that is examined. To solve the
problem, the new AR-ABC algorithm is used, which improves the
numerical optimization process. The micro-grid is programmed to
be able to sell electrical power to the electricity market in the
hours that electricity prices are high in the market. Also, when
the price of electricity in the market is low, the micro-grid is
programmed to buy electricity from the market. A new method for
modelling the uncertainty of load, WT and PV system, considering
the probabilistic functions related to each of these unstable sources,
as well as the scenario reduction process is implemented using the
AR method. In order to examine the effect of power exchange
with the electricity market and examine the effectiveness of the
AR-ABC algorithm, three types of case studies, each of which
has ten different scenarios, are examined, so that we can check
the behavior of VPP according to the limitations of the electricity
market. According to Table 1, the problem-solving method and
other VPP operation parameters are compared in this paper with
other recent methods.

Other parts of this article are as follows: ABC and AR methods
are described. In the third section, the proposed method is fully
investigated and, in the fourth section, the planning of a VPP
is solved using the proposed method. In the fifth section, the
simulation results are presented and analyzed; finally, the general
result of this research is stated in the last section.

2. PROBLEM-SOLVING PROCESS

2.1. Accept-Reject Method
In particular, the AR method can be called a specific sequence

of a set of identically distributed independent random variables
[18, 19]. In this method, to create one or more random variables,
first, another random variable that is easier to produce must be
created. Finally, the amount produced is accepted or rejected by
performing an experiment or a condition [20]. The distribution
of the accepted point will be the same as the distribution of the
random variable. If we generate a random value with density f(x),
we use it to generate a density function g(x) that has the same
distribution as f(x). If c is the maximum g(x)

f(x)
, for the density of

g(x), we act as in Figure 1 [21] and Figure 2 shows which points
in the function f(x) are accepted or rejected by the AR method.

2.2. ABC Algorithm
Inspired by the collective behavior of bees to find the best

place (in terms of nectar in that place), this algorithm was first
proposed by Karaboga [22]. This collective behavior consists of
four phases. In the first phase, which is the initial search phase,
the bees randomly go to food sources to find nectar [23], which is
formulated as Equation (1):

xi,j = xminj + rand(0, 1) × (xmaxj − xminj ) (1)

In the second phase, which is the employed bee phase, the
resources in the vicinity of the previous sources are randomly
searched and formulated as Equation (2) [23]:

υi,j = xi,j + φi,j (xi,j − xk,j) (2)

υi,j is the velocity vector to update the position of the bees and
φi,j is a uniform random number in [1 1]. In the third phase,
the onlooker bees only decide on better solutions. So, they work
on solutions that have higher probability of finding nectar [24] as
formulated by Equations (3) and (4):

1
1+f(xi)

f(xi) ≥ 0

|1 + f(xi)| f(xi) < 0
(3)
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Table 1. Literature works related to VPP management
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[2] Two-stage random game algorithm Risk management - reducing energy consumption 5 X X 5 X X X X X

[4] Complex number nonlinear programming Increase profit - decrease operating cost 5 5 X 5 X X X X X

[8] Non-dominant Classified Genetic Algorithm Increasing the profit of the virtual power plant 5 5 X 5 X X X X X

[9] Benders analysis method Increasing profits - reducing network costs 5 X X 5 X X X 5 5

[10] Deep learning based on short-term memory networks Increasing the profit of the virtual power plant 5 X 5 X X X X X X

[14] Column constraint generation algorithm Reducing virtual power plant operating costs 5 X 5 X X 5 X X X

[15] Linear programming with robust optimization Reduce network costs 5 X 5 X X X X 5 X

[16] Sequence-based differential evolution Increase profit - Reduce network costs X 5 X 5 X X X X X

[17] Column constraint generation algorithm Provision of consumption load - storage management 5 5 X 5 X X X X X

This paper Artificial bee colony algorithm using the accept-reject method Increase profit - Reduce operating costs X X X 5 X X X X X

  

Generate a random number (U) 

U  g(y)

c · f(y)
 ?  

Start

End 

No 

Yes 

Product y with density f

X=Y

Fig. 1. Flowchart related to the acceptance or rejection process of a random
point U by the accept-reject method.

  

Fig. 2. Examining acceptance or rejection of the random variable u using
the AR method.

Pi=
fit(Xi)∑SN
i=1 fit(Xi)

(4)

In the fourth stage, which is the stage of scout bees, with the help
of the "limit parameter", which is displayed by symbol Tr , the
food source that cannot be improved through a certain number of
paths is destroyed [25]. The new situation can be easily reproduced
according to Equation (1).

3. PROPOSED ALGORITHM

Considering that in the first phase of the ABC algorithm, the
initial search is usually done completely randomly and sometimes
this search is long, in the proposed method, the AR method is used
to make the initial search smarter. The AR method is formulated
in the form of Equations (5) to (7) [21, 26].

ci= max

(
gi(x)

f(x)

)
(5)

U = rand

{
gi(x)

}
(6)

Xi=

{
accept U ≤ gi(y)

ci×f(y)

reject else
(7)

Then, due to the limited search space, access to optimal answers
with high accuracy and better quality increases. We include new
xmini,j and xmaxi,j in the previous equations. Equation (1) is updated
as Equation (8). Also, for the controlled and optimal movement of
employed bees, Equation (2) is replaced according to Equation (9)
[25, 26]:

xnewi,j = xminnewj + rand(0, 1) × (xmaxnewj − xminnewj ) (8)

υnewi,j =xnewi,j + φm,i · xk,i k = i = 1, 2, . . ., FN (9)

{
xk,i= δ xnewi,j = 0

xk,i= δ · |xbi | else
(10)

δ =
β

n
n = 1, 2, . . . , N (11)



Journal of Operation and Automation in Power Engineering, Vol. 12, No. 4, Dec. 2024 315

xb1 , . . . , xbFN∼ U(xbmin , xbmax) (12)

xbmin = xnewi,j −
xnewi,j

2
(13)

xbmax = xnewi,j +
xnewi,j

2
(14)

In (10), index β, which represents the weight coefficient of the
motion stage, is inversely related to index N, which indicates the
number of repetitions. φm,i must be chosen randomly, can be 1
or -1 and cannot be zero because, in this case, the second part
of Equation (8) becomes zero and no improvement is achieved
compared to the previous iteration. So, one unit is added to the
trial index. The size of β for long and short steps is as Equation
(15). 

xbmax+|xbmin |
2

≤
x
maxnew
i,j

3
β= 1

xbmax+|xbmin |
2

>
x
maxnew
i,j

3
β= 10

(15)

The stopping criterion of the algorithm is formulated as Equation
(16): 

υnewi,j +···+υnewi,j+γ

γ
= υm,i

υnewi,j − υnewi,j−1= τ

(16)

Other parameters used for the proposed algorithm are: the initial
population is equal to 20 bees, the number of food sources (SN)
is half of the initial population, the limit parameter is equal to
SN×D, the number of objective function calls is 30 trials and the
number of iterations is 1000. Table 2 presents the pseudo-code of
the proposed algorithm.

4. VIRTUAL POWER PLANT PLANNING USING THE
AR-ABC ALGORITHM

At this stage, a sample micro-grid is programmed for 24 h as
an optimization problem for VPP operation and, finally, the results
obtained from different aspects are examined and compared.

4.1. Virtual Power Plant
A VPP is a tool that was first introduced by Awerbuch as

a "virtual tool" for controlling and planning production units
[27, 28]. VPP is an integrated network, the components of which
can include a variety of storage systems and power generation
generators that participate in the energy markets as an integrated
system. Energy management system (EMS) is one of the main
components of VPP, the main task of which is to monitor and
manage VPP components [6, 29]. The main purpose of this
research is to participate in the energy market to increase profits
and reduce losses with VPP planning.

4.2. Test System
The network studied in this paper includes residential,

commercial and industrial loads. The single-line diagram of
the test system and the limitations and suggestions of RES and
Utility are shown in Figure 3. The real-time market prices, the
predicted output power of WT and PV systems and the daily load
curve of a sample micro-grid for a full day are presented in Table
3 and Figure 4 The limitations and bids of RESs and the utility
are shown in Table 4 [30, 31]. The cost of starting and shutting
down the MT and FC is 0.96 and 1.65 (¤ct), respectively; the
maintenance cost of battery, WT, PV, FC and MT is 0.38, 1.073,
2.584, 0.294 and 0.457 (¤ct/KWh), respectively.

In this paper, a sample network including MT, FC, PV system,
WT and energy storage is used. In order to exchange energy with
the upstream grid, subject to power generation constraints, when
the price of electricity is cheap, electricity is purchased from the
grid; when the price of electricity is high, electricity is sold to the
electricity market.

4.3. Objective Function
The objective function of this problem is defined as Equation

(17) [31].
T∑
t=1

Cost =

T∑
t=1



PGrid (t) · CGrid (t) + UWT (t) · PWT (t) · CWT (t) + UPV (t)

·PPV (t) · CPV (t) + UFC (t) · PFC (t) · CFC (t) + UMT (t)

·PMT (t) · CMT (t) +
∑Ng
j=1 SGi |Ui (t)− Ui (t− 1)|+∑Ns

j=1 SSj |Uj (t)− Uj (t− 1)| −∆P (t) · C∆P (t)


(17)

T∑
t=1

∆P (t) =

T∑
t=1

(Poriginal losses (t)− Pnew losses (t))

(18)

Pfinal losses (t) =

T∑
t=1

Nbr∑
i=1

Ri × |Ii(t)|2 (19)

4.4. Constraints

There are constraints on electricity generation and
consumption. For efficient optimization, these constraints
must be considered. This section describes the various
constraints for electrical power. The power balance
constraints are obtained according to Equation (20) [31].

T∑
t=1

(
PGrid (t) + PWT (t) + PPV (t) + PFC (t)

+PMT (t) +PBattery discharge (t)

)
=

T∑
t=1

(
PLoad (t) +PBattery charge (t) +PLoss (t)

)
(20)

The FC and MT constraints are obtained according to
Equations (21) to (22) [31].

PFCmin (t) ≤ PFC (t) ≤ PFCmax (t) ; t = 1, . . . , T (21)

PMTmin (t) ≤ PMT (t) ≤ PMTmax (t) ; t = 1, . . . , T (22)

Equation (23) is used to express the output power limits of
a WT for 24 h [31].

PWTmin ≤ PWT (t) ≤ PWTmax; t = 1, . . . , T (23)

Equation (24) is used to express the limit of output power
produced by PV panels for 24 h [31].

PPV min (t) ≤ PPV (t) ≤ PPV max (t) ; t = 1, . . . , T (24)

The utility and storage constraints are obtained according to
Equations (25) and (26).

PGridmin (t) ≤ PGrid (t) ≤ PGridmax (t) ; t = 1, . . . , T
(25)
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Table 2. Pseud code of proposed algorithm according to the proposed problem.

Algorithm: AR-ABC

1 Limiting the search space by AR method (Equations (5) to (7))
2 Determining the upper and lower limits of the parameters
3 Initialization by new parameters and units (Equation (8))
4 Evaluate fitness value
5 n = 1

6 While ( n<N )
7 For n = 1 : N

8 Calculate the new bee position (xmi ) (Equations (9) to (10))
9 Calculate the value of "β" and the best position of the bee and the new position of the bees (Equation (11))
10 Determine xbmin

& xbmax for all units (Equations (13) to (14))

11 For all dimensions
12 Fitness calculations
13 If fitness (n)<= fitness (n-1) (Equations (15) or (16))
14 Tr=0

15 else
16 Tr=Tr+1

17 End If
18 End For
19 End For
20 n = n + 1

21 End While

 

Fig. 3. Single line diagram of the test system
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Fig. 4. Daily load curve of a typical micro-mrid.

Table 3. Real-time market prices and the forecasted output power of PV
system and WT.

hour PV WT Price (ect /kWh)

1 0 1.7850 0.23

2 0 1.7850 0.19

3 0 1.7850 0.14

4 0 1.7850 0.12

5 0 1.7850 0.12

6 0 0.9150 0.20

7 0 1.7850 0.23

8 0.200 1.3050 0.38

9 3.750 1.7855 1.50

10 7.5279 3.0900 4.00

11 10.450 8.7750 4.00

12 11.964 10.413 4.00

13 23.900 3.9228 1.50

14 21.050 2.3766 4.00

15 7.875 1.7855 2.00

16 4.225 1.3050 1.95

17 0.550 1.7850 0.60

18 0 1.7850 0.41

19 0 1.3020 0.35

20 0 1.785 0.43

21 0 171.3017 1.17

22 0 1.3005 0.54

23 0 0.9150 0.30

24 0 0.6150 0.26

Table 4. The limitations and bids of RESs and the utility.

Type Bid(ect/KWh) Startup/Shut down cost(ect) Min power (KW) Max power (KW)

WT 1.073 0 0 15

FC 0.294 1.65 3 30

Utility - - -30 30

Battery 0.38 0 -30 30

PV 2.584 0 0 25

MT 0.457 0.96 6 30

PSjmin (t) ≤ PSj (t) ≤ PSjmax (t) ; t = 1, . . . , T (26)

The battery cannot be charged and discharged at the same
time. So, its limit is formulated according to Equation (27):

X(t) + Y (t) ≤ 1; t = 1, . . . , 24; X and Y ∈{0, 1} (27)

4.5. Uncertainty Modeling

The load, solar energy and wind speed have unknown
values and cannot be expressed definitively. So in this
research for investigating the uncertainty of load, sun and
wind energy, the AR method is used to reduce the scenarios
and deal with the probabilities of the model. In this research,
10 scenarios related to each of the wind, sun and load
scenarios are extracted and examined and calculated using
the AR method.

A) Wind Speed Modeling
The Weibull distribution function is used for wind speed

modelling [32].

PDF (υ) =

(
k

c

)
·
(υ
c

)k−1

· e
(
−( υc )

k
)

(28)

Equation (29) shows the wind turbine production power
in terms of different wind speeds, which is considered a
quadratic equation [33].

PWT (vt)=


0 0 ≤ vt ≤ vci or vt ≥ vco
Pwtr ·

v2
t−v

2
ci

v2
r−v2

ci
vci ≤ vt ≤ vr

Pwtr vr ≤ vt ≤ vci
(29)

B) Solar Irradiance Modeling
The beta distribution function is used to model solar

uncertainty and the solar model is in the form of Equation
(30) [34].

PDF (Si) =


Γ(α,ω)

Γ(α)·Γ(ω) · Si
(α−1) · (1−Si)ω−1

, for 0 ≤ Si ≤ 1, α,ω ≥ 0

0 else

(30)

Equation (31) is used to express the limit of output power
produced by PV panels for 24 hours [35].

P epv (Si (t, s)) =PV arraydfPV
(
Si (t)

Si,STC

)
[1 + αP (Tc − Tc,STC)]

(31)

C) Load Modeling
Load modelling is performed according to Equation (32) using

the normal probability distribution function [34].

PDF (L)=
1√

2πσ2
L

e
− (L−µL)2

2σ2
L (32)

Considering that the set of network loads is classified into three
main groups: domestic, industrial and commercial, we assume that
each of the sets of domestic, industrial and commercial loads
behaves similarly. Similar behavior means that, for example, all
the loads in a set are simultaneously at their maximum or all
the loads in a set are at their average values at the same time.
So, different modes are considered for all the three sets. Figure 5
shows a twelve-point normal distribution. Assuming that each of
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Fig. 5. Twelve-point normal distribution

these three sets has twelve modes similar to Figure 5, the total
number of possible scenarios will be equal to 123 = 1728. By
considering each of the different states for multiple times, the
possible scenarios under these assumptions will be in the form
of Table 5. In this table, the total load in each case is the sum
of household, industrial and commercial loads, which shows a
possible scenario.

Investigating all the possible scenarios requires a large amount
of time and energy. In order to be able to quickly identify the
effective scenarios and use them to comment on the operation
of the VPP, the AR method is used to reduce the scenario. The
normal distribution function which is introduced in Equations (30)
is used as g(x) in Equations (5) to (7) and sampling of this
function according to Equations (5) to (7) of Figures 1 and 2 is
done. Thus, g(x) is introduced as Equation (33) and should be
sampled from it:

g(x) =
1√

2πσ2
L

e
− (L−µL)2

2σ2
L (33)

To obtain the value of c, the largest number must be obtained from
the result of the equation

(
g(x)
f(x)

)
. Now, by testing the condition

of U ≤ gi(y)
ci × f(y)

, according to Equation (7), if the random value
of U meets the requirement, that value is accepted; otherwise, it
is rejected. This process continues until the desired number of
scenarios is set. According to the previous explanation, Figure 6
shows an example of using the AR method to reduce the scenario;
out of 1728 possible scenarios, more than 99% are rejected. Since
the number of possible scenarios is very large, the samples that
are the most effective ones are extracted through the AR method.
Random variable U should be chosen to have distribution g(x).
Also, f(x) can be a uniform distribution function or a normal
distribution function. f(x) is actually the entire search space or all
the available scenarios.

Figure 7 presents the structured flowchart of the proposed
algorithm according to the proposed problem.

4.6. Case Studies and Basic Information
To analyze and use distributed generation resources for optimal

network performance and evaluate the impact of distributed
generation sources to increase profits and reduce costs, the issue is
investigated in three different situations. The explanations provided
below describe several case studies for this study:
(Case 1): DGs can generate electricity within their allowable
range. The possibility of exchanging electricity with the market is
allowed only in the range and is limited.
(Case 2): DGs can be turned on or off, but the initial charge of
the battery is zero. This means that due to the battery charge,
the amount of battery discharge in the early hours is limited. PV
and wind power must be fully in the circuit. The possibility of
exchanging electricity with the market is allowed only in the range
and is limited.
(Case 3): DGs can only generate electricity within their allowable

range and the possibility of exchanging electricity with the main
network is unlimited.

Also, Table 6 introduces the parameters used for implementing
the problem simulation [35].

5. SIMULATIONS AND DISCUSSION

In order to investigate the performance of the network
and evaluate the impact of distributed generation resources on
increasing profits and reducing costs, the issue is examined in
three different situations.

5.1. Results of the First Case Study
According to Figure 8, the cost of VPP for the first case study

is compared with the cost obtained by other algorithms. According
to the obtained results, the AR-ABC algorithm imposes the lowest
cost on the studied system; according to Figure 9 and Table 7, for
the first case study, it is as follows:

• From 1 to 7 am: Due to the absence of sunlight, electricity is
not produced by PV and, due to the cheap price of electricity
in the electricity market, the maximum possible power is
purchased from the grid, which makes MT, the cost of which
is higher than Utility for producing power with its minimum
power. FC produces power at its maximum capacity because
it is economical. Excess production is used for storage for
batteries.

• At 8 am: It is the same as 7 am, with the difference that PV
generation helps to generate grid power.

• From 9:00 to 17:00: Due to the increase in the price of
electricity in the electricity market, in order to gain profit
from the electricity market, all units are requested to produce
electricity to supply electricity to the main grid in addition to
it. To supply the requested load and sell it in the electricity
market, the battery injects its stored power into the grid
according to the required power. Since FC and MT are
economical, they generate power at their maximum capacity.
WT and PV work together with other units and generate
electricity. All the excess power of the micro-grid is injected
into the main grid to be sold in the electricity market.

• From 18:00 to 20:00: The price of electricity is slightly
cheap; so, power is received from the grid, which makes MT,
the cost of which is higher than Utility to produce power
with its minimum power. FC produces power at its maximum
capacity. The load demand is slightly high; so, the battery is
discharging.

• From 21 to 22: The same as 8 am, but during this hour,
electricity is not produced by PV and the power demand is
more.

• From 23 to 24: Electricity is not produced by PV. The
maximum possible power is purchased from the grid, so MT
production is minimized because its cost is higher than the
Utility. FC produces power at its maximum capacity because
it is economical. Excess production is used for storage for
batteries. Figure 10 shows the graph of the total cost function
related to the first case study.

5.2. Results of the Second Case Study
According to Figure 11, the cost of VPP for the second case

study is compared with the cost obtained by other algorithms.
According to the obtained results, the AR-ABC algorithm imposes
the lowest cost on the studied system; according to Figure 12 and
Table 8, for the second case study, it is as follows:

• From 1 to 7 am: Due to the absence of sunlight, electricity
is not produced by PV; due to the cheap price of electricity
in the electricity market, the maximum possible power is
purchased from the grid, but because the battery must be
fully charged in the early hours, it makes high power MT
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Table 5. The created scenarios

Scenario Number Residential Load Commercial Load Industrial Load Total Load Possibility

1 PResidential 1 PCommercial 1 PIndustrial 1 Pt 1 0.125e-6

2 PResidential 2 PCommercial 2 PIndustrial 2 Pt 2 0.425e-6

. . . . . . . . . . . . . . . . . .

1728 PResidential 1728 PCommercial 1728 PIndustrial 1728 Pt 1728 0.125e-6

  

Fig. 6. An example of using the AR method to reduce the load scenario at 22:00.
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Fig. 7. Flowchart of the AR-ABC algorithm according to the proposed problem
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Table 6. Parameters used in the simulation

Parameter Unit Value

Pwtr kW 15

vci m/s 4

vr m/s 10

vco m/s 22

Tmc ◦C 60

Tc,STC
◦C 25

dfPV % 80

αP %/◦C -0.5

Si,STC kw/m2 1

k - 1.75

c - 8.78

α - 6.38

ω - 3.43

Table 7. Results of economic dispatch using AR-ABC for the first case
study.

Hour WT PV FC Utility MT Battery

1 0 0 30 30 6 -14

2 0 0 30 30 6 -16

3 0 0 30 30 6 -16

4 0 0 30 30 6 -15

5 0 0 30 30 6 -10

6 0 0 30 30 6 -3

7 0 0 30 30 6 4

8 0 0 30 30 6 9

9 1.7855 0 30 -15.7855 30 30

10 3.0900 7.5030 30 -21.5930 30 30

11 8.7750 9.2250 30 -30 30 30

12 10.413 3.5870 30 -30 30 30

13 3.9228 0 30 -21.9228 30 30

14 2.3766 9.6234 30 -30 30 30

15 1.7855 0 30 -14.7855 30 30

16 1.3050 0 30 -11.3050 30 30

17 0 0 30 -5 30 30

18 0 0 30 22 6 30

19 0 0 30 30 6 24

20 0 0 30 21 6 30

21 1.3017 0 30 -13.3017 30 30

22 0 0 30 -19 30 30

23 0 0 30 30 6 -1

24 0 0 30 30 6 -10

 

Fig. 8. Comparing the total cost for the first case study (¤ct).

help to supply power. FC produces power at its maximum
capacity because it is economical.

• At 8 am: It is the same as 7 am, with the difference that PV
generation contributes to grid electricity generation.

• From 9 to 17: The price of electricity in the market is
high, all the units produce electricity, so that they can sell
electricity to the main grid and make a profit. The battery
is discharging at full capacity to help provide power and
profit. FC, MT, WT and PV are economical; so, they produce
power at their maximum capacity. All the excess power of
the micro-grid is injected into the main grid to be sold in the
electricity market.

• At 17:00: The price of electricity is slightly cheap; so,
electricity is bought from the grid. In order to prevent the
complete discharge of the batteries, it is necessary to allocate
the excess power production to the battery storage while
meeting the load demand; so, MT and FC produce power at
their maximum capacity.

• From 18:00 to 20:00: It is the same as 17:00, but at this
hour, electricity is not produced by PV.

• From 21 to 22: It is the same as at 20, but at this time,
electricity is not produced by PV and the need for electricity
is higher.

• At 23: The maximum possible power is received from the
grid, which makes MT, the costs of which are more than
Utility to produce power with its minimum capacity. Because
it is cost-effective, FC produces power at its maximum
capacity. Excess production is used to store batteries.

• At 24: Due to the low price of electricity, the maximum
possible power is purchased from the grid which causes the
MT to turn OFF. FC is economical; so, it produces power
at its maximum capacity. Excess production is used to store
batteries. Figure 13 shows the graph of the total cost function
related to the second case study.

5.3. Results of the Third Case Study
According to Figure 15, considering that buying and selling

electricity from the grid are unlimited, the cost of VPP for the third
case study is compared with the cost obtained by other algorithms.
According to the obtained results, the AR-ABC algorithm imposes
the lowest cost on the studied system. According to Figure 14 and
Table 9, for the third case study, the results are as follows:

• From 1 to 7 am: PV does not produce electricity, the price of
electricity is cheap in the market and electricity is completely
purchased from the electricity market, which is very high
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Fig. 9. Power generation diagram of the units in the first case study.

 

Fig. 10. The graph of the total cost function related to the first case study.

 

Fig. 11. Comparing the total cost for the second case study (¤ct).

Table 8. Results of economic dispatch using AR-ABC for the second case
study.

hour WT PV FC Utility MT Battery
1 1.785 0 30 30 20.215 -14

2 1.785 0 30 30 18.215 -16

3 1.785 0 30 30 18.215 -16

4 1.785 0 30 30 19.215 -30

5 1.785 0 30 30 24.215 -30

6 0.915 0 30 30 30 -27.915

7 1.785 0 30 30 30 -21.785

8 1.305 0.2 30 30 30 -16.505

9 1.7855 3.75 30 -19.5355 30 30

10 3.09 7.5279 30 -21.593 30 30

11 8.775 10.45 30 -30 30 28.775

12 10.413 11.964 30 -30 30 21.6230

13 3.9228 23.9 30 -30 30 14.1772

14 2.3766 21.05 30 -30 30 18.5734

15 1.7855 7.875 30 -23.6605 30 30

16 1.305 4.225 30 -11.305 30 30

17 1.785 0.55 30 30 30 -7.335

18 1.785 0 30 30 30 -3.785

19 1.302 0 30 30 30 -1.302

20 1.785 0 30 30 30 -4.785

21 1.3017 0 30 -13.3017 30 30

22 1.3005 0 30 -19 30 0.232

23 0.915 0 30 30 6 -1.915

24 0.615 0 30 30 0 -4.615
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Fig. 12. Power generation diagram of the units in the second case study.

Table 9. Results of economic dispatch using AR-ABC for the third case
study.

hour WT PV FC Utility MT Battery
1 0 0 3 73 6 -30

2 0 0 3 71 6 -30

3 0 0 3 71 6 -30

4 0 0 3 72 6 -30

5 0 0 3 77 6 -30

6 0 0 3 84 6 -30

7 0 0 3 91 6 -30

8 0 0 30 69 6 -30

9 1.7855 0 30 -15.7855 30 30

10 3.0900 7.5279 30 -21.6179 30 30

11 8.7750 10.4500 30 -31.2250 30 30

12 10.413 11.964 30 -38.3770 30 30

13 3.9228 0 30 -21.9228 30 30

14 2.3766 21.0500 30 -41.4266 30 30

15 1.7855 0 30 -14.7855 30 30

16 1.3050 0 30 -11.3050 30 30

17 0 0 30 -5 30 30

18 0 0 30 22 6 30

19 0 0 30 84 6 -30

20 0 0 30 21 6 30

21 1.3017 0 30 -13.3017 30 30

22 0 0 30 -19 30 30

23 0 0 30 59 6 -30

24 0 0 3 77 6 -30

 

Fig. 13. The graph of the total cost function related to the second case
study.

considering the unlimited power exchange with the electricity
market. The battery is charged at maximum capacity. FC
and MT are working at their minimum capacity. WT is not
economical, so it is off.

• At 8 am: The battery is charged at maximum capacity and the
MT works at its minimum capacity. FC works at maximum
power and WT is turned off because it is not economical.
PV produces electricity, but it is not economical, so it is off.
All the surplus power produced by the units is sold in the
electricity market.

• From 9 to 17: The price of electricity in the market is
expensive; the battery injects power into the grid with its
full capacity. WT is affordable, so it is ON. PV stays ON
when the price of electricity is very expensive, but turns off
when it is slightly expensive. FC and MT operate at their
maximum capacity because they are economical.

• At 18: PV does not produce electricity, the price of electricity
is cheap in the market and electricity is completely purchased
from the electricity market. The battery is charged at
maximum capacity. MT works at its minimum capacity. FC
is working at its maximum capacity. WT is not economical,
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Fig. 14. Power generation diagram of the units in the third case study.

so it is off.
• At 19: The same as 20:00, but PV does not produce

electricity.
• At 20:00: The price of electricity is cheap in the market

and electricity is completely purchased from the electricity
market. The battery is charged at maximum capacity. MT
works at its minimum capacity. FC is working at its maximum
capacity. WT is not economical, so it is off.

• At 21:00: The load demand increases slightly. Battery as well
as FC and MT works at their maximum capacity because
they are economical. WT is economical, so it is ON.

• At 22: There is a slight decrease in demand. Battery as well
as FC and MT works at their maximum capacity because
they are economical. WT is not economical, so it is off.

• At 23: The demand comes down again. FC works at its
maximum capacity because it is economical. MT works at
its minimum capacity because the load demand is low. WT
is not economical, so it is off. The battery is fully charged.

• At 24: Load demand drops to such an extent that FC and
MT work at their minimum capacity. WT is not economical,
so it is off. The battery is fully charged. Figure 16 shows the
graph of the total cost function related to the third case study.

6. CONCLUSION
In this research, to plan the VPP optimally and reduce

generation and operation costs, a modified ABC was used. At the
initialization stage of AR-ABC, the AR method was used to limit
the search space for the problem solving process. When search
space became limited and small, the points that were accepted had
the highest probability of minimizing the objective function. To
prevent employed bees from moving away from the initial optimal
points, a movement step index was introduced. To avoid falling
into the trap of local optimal points and to reach global optimal
points, the movement phase index was very effective. In this paper,
three case studies for VPP were analyzed and their results were
compared with the results obtained from other algorithms, which
showed the superior performance of the proposed algorithm. Also,

 

Fig. 15. Comparing the total cost for the third case study (¤ct).

 

Fig. 16. The graph of the total cost function related to the third case study.
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with the planning of the VPP and the exchange of electric power
with the power market, it was found that the more the exchange
of electric power with the power market (purchase and sale of
power), the more profitable the network and the lower the costs of
operation and power generation would be.

Suggestions for improvement and review of future works are
presented as follows: 1) Investigating the effects of environmental
issues in the studied network and the objective function; 2) Design,
feasibility and planning of VPP in the presence of electric vehicles;
3) Using the capabilities of the AR method in other optimization
problems; 4) Analyzing the AR method for solving probabilistic
engineering problems; 5) The possibility of using the AR-ABC
algorithm for combining with other algorithms and 6) Using the
AR method for robust optimization algorithms.
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