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Abstract— The microgrid (µG) is an integration of distributed generation and local loads with energy storage system. Cost minimization is
one of the main objectives in modern power systems.Economic dispatch(ED) is a fundamental problem related to µG and the conventional
grid. Economic dispatch(ED) provides the optimal output of generators in order to reduce the total operating cost. Emission dispatch
(EMD) is one of the other major problems associated with CG. The emission dispatch (EMD) solution provides the optimal generator
operation to reduce harmful pollutants for a specific load demand. Multi-objective economic emission dispatch (MEED) provides a
compromise between ED and EMD. In this paper, two test systems have been proposed. Test system one consists of Six CG. Static ED,
EMD, and MOEED analysis has been provided for test system one. Test system two consists of four CG, One wind turbine generator
(WTG), and one photovoltaic module (PVM).This paper intends to provide sensitivity analysis and uncertainty regarding the curtailment
cost of RES. CPLEX solver in GAMS has been proposed to optimize the three fundamental problems. Comparative study and sensitivity
analysis show optimal results, and the GAMS solver provides a more comprehensive framework. Reduction in cost due to uncertainty in
ED is 9.58% as compared to 9.7% for test system two. The cost has been reduced in MEED by 9.33% as compared to 9.46%. MEED
comparison shows the increment in cost of 2.66 %, but the emission is reduced by 18.98 % for test system two.

Keywords—Economic Dispatch, Emission Dispatch, General Algebraic Modeling System, Micro-grid, Multi-Objective Economic
Emission Dispatch.

NOMENCLATURE

AI Artificial Intelligence
Bj(Xi) Membership function
Bmax

j Maximum value of objective function
Bmin

j Minimum value of objective function
BESS Battery energy storage system
CG Cost function
CG Conventional generators
CHP Combined heat and power
CO Carbon oxide
DED Dynamic economic dispatch
DEG Distributed energy generator
DES Distributed energy sources
ED Economic dispatch
EMD Emission dispatch
ESS Energy storage system
GA Genetic algorithm
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GAMS General Algebraic modeling system
LDt Electricity load demand at time t (MW)
µG Micro-grid
mi Coefficient of cost
MEED Multi-objective Economic emission dispatch
MILP Mixed integer linear programming
MPC Model predictive control
ni Coefficient of cost
NLP Non-linear programming
NOX Oxides of nitrogen
oi Coefficient of cost
Pi,min Minimum power(MW)
Pi,max Maximum power(MW)
Pi,t Power output of generator i at time t (MW)
PCC Point of common coupling
PVM Photovoltaic module
PSO Particle swarm optimization
qi Coefficient of emission
ri Coefficient of emission
RDi Ramp down limit of generator i(MW)
RUi Ramp up limit of generator i(MW)
RES Renewable energy sources
si Coefficient of emission
SED Static economic dispatch
SOX Oxides of sulphur
TC Total cost
TV Total variable
VPC Value of Photovoltaic power curtailment
VWC Wind turbine generator power curtailment
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WOA Whale optimization algorithm
WTG Wind turbine generator
η Variable between minimum and maximum

emission

1. INTRODUCTION

1.1. Research Motivation
Economic load dispatch(ED) is one of the basic problems that

need to be addressed in power systems [1]. ED allocates the power
of generating units so that the fuel/operating cost is reduced while
satisfying all the constraints. Emission is one of the key issues with
CG. RES such as WTG and PVM reduce these harmful pollutants
and the cost. RES has several advantages such as reduction in the
cost, emission, and improvement in reliability, etc. Uncertainty is
one of the main issues associated with RES. RES output may be
reduced due to uncertainty and randomness in power production.
ED with RES curtailment is a complex issue in the modern
power system. Uncertainty in terms of RES curtailment value in
microgrids is a challenging issue [2].

ED may be classified as a static and dynamic problem. Static
ED is the cost minimization problem in a single time snapshot
under different constraints. Dynamic ED problem is the optimal
generation of each conventional generator so that operating costs
may be reduced for different times of the day. Dynamic ED
considers different time horizons with an interval of some time (one
hour, 15 minutes, or 5 minutes) and follow-up ramp limits. The
day ahead and real-time dispatch are the two different scheduling
strategies [3]. The schedule of generators and demand is maintained
before a day in the day ahead ED. In real-time ED, the schedule is
maintained in real-time according to generation and demand. ED
may be classified as cost-based and market-based. Cost-based ED
does not consider any forecasted price. According to bidding in
market, the forecasted price is considered in market-based ED.ED
based on cost is a simple optimization problem. The objective
function of the cost-based ED is minimizing the cost while
satisfying equality, inequality, and other technical constraints. The
equality constraint is balancing the generation and the load demand
of electricity. The total generation should always be equal to the
total load demand at every instant of time. Generators should lie
in the inequality constraint between their lower and upper limits of
generation. Other technical constraints, such as ramp limits, valve
point loading, etc., should be satisfied during optimization. In the
price-based ED, the objective function is the maximization of profit
of the generation company. Profit is the difference between income
and the operating cost. The income of the generation company
is dependent on the day-ahead electricity price and the power
sold. The cost is the expenditure in the generation. The difference
between the cost and the price-based ED is the satisfaction of
the equality constraints. There is no need to balance demand and
supply in price-based [3]. The load demand should always be more
than the generation in price-based ED. Other technical constraints
should be satisfied in price-based ED as in cost-based ED.

Economic emission dispatch is a multi-objective problem in
which both the cost and emission are minimized [4–6]. The
emission may be taken as a constraint, with fuel cost minimization
as a prime objective. A trade-off solution is obtained between cost
and the emission in MEED. The Pareto optimal front solution
provides a compromise solution between both cost and emission.
Different AI techniques have been used to optimize a compromise
solution of cost and emission. For several decades, conventional
power systems with huge investment costs along with the emissions
of NOX , SOX , and carbon emissions have been in existence.
µG is a small-scale generation including RES, CG, Energy

storage system, and load close to the generation [5]. RES and
ESS in µG have a good capability to reduce cost and emission.
µG and smart grid with recent technologies with RES have
several advantages like reduction in cost, emission, and improved
reliability. µG may be operated in grid-connected or isolated mode.

RES, like WTG and PVM, are the main generation sources in
µG . Uncertainty and randomness are among the main issues with
RES [7, 8]. RES randomness may be the reason for instability.
Effect of demand and weather uncertainty is a critical issues in
power systems [9].

ESS, such as BESS, flywheel, ultra-capacitors, etc., can play
a significant role in uncertainty management. ESS can store
energy during low load periods and excessive generation. ESS can
discharge during peak load and low generation periods. Hence
ESS can optimize cost in ED by optimal charging and discharging.
Demand response may be a good alternative in the management of
power systems. Change or reduction in demand during peak load
can reduce costs in ED.

1.2. Literature Review
ED problem with equality, inequality, and other technical

constraints has been optimized in previous literature work. In the
Equality constraint, total generation must be equal to total demand
at every interval of time. The power generation must lie between
their boundary limits in inequality constraint. The solution should
satisfy technical constraints, such as wind curtailment should be
less than the total available wind. Combined economic emission
dispatch using PSO, GA and other techniques [3], optimal solution
with multi-microgrid including emission [1, 10, 11], optimal
dispatch with demand response [12] ,Optimal dispatch using water
cycle algorithm in power system and optimal scheduling [13]
with ESS and electric vehicle ,ED solution using PSO [14], ED
problem [15] using MILP, time-varying PSO [4] for multi-objective
optimization, the Cost based DED with wind integration [16],
Demand response in ED [17], RES and demand response strategy
in µG [15], MPC application in ED using hybrid ESS and µG
uncertainty MPC [18] approach with CHP has been discussed.
A smart energy dispatch unit model based on fuzzy to utilize
available energy optimally has been presented in a hybrid power
system. Researchers presented a Dynamic economic emission
dispatch with wind uncertainty [19]. WOA to solve economic
emission dispatch and compare existing algorithms with GAMS in
this paper [5].

Wind and solar curtailment are one of the important problems
in modern power systems. Wind and solar curtailment is the
reduction in the generation of electricity below its well-functioning
maximum capacity. There may be several reasons for curtailment,
like transmission congestion, high generation during low load
periods, uncertainty, etc. Curtailment of RES affects both cost and
emission adversely. RES curtailment is a bad outcome of modern
power systems.

Energy storage systems(ESS) such as Battery energy storage
systems (BESS), flywheels, pumped storage, and super-capacitors
are essential to manage the intermittency or uncertainty problem
[20, 21]. ESS can store energy during off-peak hours and may
be discharged during peak hours to manage load and generation
balance in the way of cost reduction in ED.

Microgrid (µG) is an integration of small distributed energy
sources (DES) and local loads with storage systems. It has several
advantages like uninterrupted power supply and hence reliability
increases [22]. DES may be CG or RES. RES are in tradition
due to a number of advantages over CG. µG may be connected
to the main grid or operated in islanded mode [23].In connected
mode, µG can exchange power with the main grid through a point
of common coupling (PCC). µG is disconnected from the main
grid and supplies power to the small geographical area in islanded
mode.

A day ahead and real-time dispatch are two different ED
problems. Generation and load demand before a day are committed
in a day ahead market [3, 24]. In real-time ED, the schedule of
generation and load demand varies in real-time. Economic emission
dispatch and energy storage systems [18], RES, and µG have been
studied in literature [15]. Cost-based and market-based ED [25],
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Table 1. Comparison of the proposed method with different studies

Reference Uncertainties Curtailment of RES Sensitivity Analysis
[2] X X ×
[7] X × ×
[8] X × ×
[9] X × ×
[18] X × ×
[33] X × ×
[39] X × ×
[40] X × ×
[41] X × ×
[43] X × ×

Proposed Method X X X

ED optimization using water cycle algorithm [13], cost-based ED
with renewable integration [26] and model predictive control with
ESS and combined heat and power [18] has been discussed in the
literature. RES curtailment is a fundamental issue associated with
modern power systems. Curtailment is the reduction in generation
capacity below it,s maximum generation capacity [27]. There may
be specific reasons for the curtailment, such as the over generation
and congestion in the energy market. The value of curtailment cost
defines the cost per unit energy quantity and hence establishes the
loss of generation. Load curtailment is the reduction in load in the
same way as that of RES curtailment.

Renewable energy curtailment is a challenging issue, and this
loss of generation has an adverse effect on the economy. Economic
dispatch with Combined heat and power (CHP) is a technology
that generates both heat and electrical power. Operating cost in
CHP units depends upon the heat level and electricity generation.
Literature has given Optimal operation using Whale optimization
algorithm (WOA) for MEED in CHP plants [28]. The optimal
function of CG decides the unit commitment in the power system.
Unit commitment is the on-off status of units [29].

Various optimization techniques have been used for optimal
scheduling in µG with uncertainty, demand response and ESS [30–
33]. µG optimal dispatch using meta heuristic methods has been
analyzed [34, 35]. Energy management in µG has been discussed
[36]. Stochastic operation of virtual power plants considering
contingencies using GAMS has been proposed [37]. Optimal
scheduling with demand response and uncertainty of RES have
been discussed [38–43]. Table 1 shows the comparison of
proposed method with different studies.

1.3. Research Necessity on the basis of gap in literature
Several techniques have been proposed in the literature to find

out the multi-objective solution between cost and emission with
uncertainties. The disadvantages of PSO are untimely convergence
and local optimal solutions. Population diversity is another
disadvantage of PSO. Unguided mutation and tuning time of
control parameters are the main problems with NLP. Not much
emphasis was proposed using GAMS for ED, EMD, and MEED.
This gap in literature motivated the authors to study GAMS
optimization for optimal dispatch problems. Sensitivity analysis
of ramp rate limits is very important for optimal scheduling.
CPLEX solver in GAMS has been proposed for optimal dispatch
including emission. CPLEX solver is very suitable for econometric
models like optimal scheduling in µG. Uncertainty of RES in
terms of curtailment cost for multi-objective economic dispatch
is a gap in the literature. Random numbers for the uncertainty
of RES,s have been generated in GAMS and provide optimal
results for MEED. Sensitivity analysis of load demand, Ramp rate
sensitivity, and optimal solution of MEED with curtailment due to
uncertainty using GAMS is the main literature gap. CPLEX solver
in GAMS provides automatic differentiation for NLP, and there
is no need to show gradients, and it optimizes large-scale NLP
very quickly. GAMS supports good global solvers such as Baron.

GAMS results have been compared with some algorithms, and
it shows better results. Local optimal solution, convergence, and
unguided mutation problems in various algorithms may be fulfilled
using GAMS very easily.

1.4. Novelty and main contribution of the paper
• Static ED, EMD, and MEED analysis for test system-1 and

better comparison results with PSO and NLP.
• To elaborate the results in test system-1 with load sensitivity

between the minimum and maximum generation limits of
generation.

• Dynamic ED and MEED optimization for twenty-four hour
at an interval of one hour in test system-2 with better results.

• Ramp rate sensitivity analysis has been provided for test
system-2 to check the proposed method’s effectiveness.

• Uncertainty due to RES curtailment on test system-2 has
been analyzed, and comparative results are better.

1.5. Organization of the paper
Problem formulation with constraints has been proposed in

Section 2. The proposed methodology has been presented in
Section 3. Section 4 is the results and discussion part of this paper.
Section 5 concludes the paper and presents the future scope of the
proposed work.

2. MODELING

2.1. Economic Dispatch
Load sharing between CG in such a manner so that the

operating cost may be reduced for the scheduled load is a quadratic
constrained problem. ED problem with different constraints
problem is formulated as [2, 3]. The cost equation with cost
coefficient and generated power output is formulated as [3]:

CG(Pi,t) = miP
2
i,t + niPi,t + oi (1)

where,
CG(Pi,t) is operational cost ($/hr) of ith CG.
Pi,t is power generated by ith CG at time t.
mi($/MW2h), ni($/MWh) and oi($/h) represents the coefficients
of cost of ith CG.

Cost coefficients mi, ni, and oi are critical factor in ED.
The value of cost coefficients determines the power production
of the corresponding CG. CG with the lower value of cost
coefficient will be used first and share the load economically. ni

coefficient represents the linear multiplication with output power.
oi is independent of power, and it is a fixed cost coefficient.

Economic dispatch is a constrained problem, which is non-linear.
ED Problem should satisfy equality, inequality, ramp constraints,
and other technical constraints.
1) Equality constraint: Total generation should be equal to the total
load demand at every interval of time [3].∑

i,t

Pi,t = LDt (2)

Where,

LDt Shows the load demand.
2) Inequality constraint: CG should be restricted in between their
minimum generation (Pi,min) and maximum generation capacity
(Pi,max) [3].

Pi,min ≤ Pi,t ≤ Pi,max (3)

3) Ramp limit constraint: The ramp limit constraint determines the
sudden change in the upper and lower limits of power generation
by CG. CG can not increase or decrease power after a specific



N. Kumar et al.: Sensitivity Analysis Based Multi-Objective Economic Emission Dispatch in Microgrid 130

limit. These upper and lower limits are known as ramp-up and
ramp-down limits, respectively [3].

Pi,t − Pi,t−1 ≤ RUi (4)

Pi,t−1 − Pi,t ≤ RDi (5)

Where,
RUi represents the ramp up limits of ith CG.
RDi represents the ramp down limits of ith CG.

2.2. Emission Dispatch

Emission of SOx, NOx, and CO2 etc. is formulated in terms
of CG power production. This is a non-linear problem similar to
the cost equation with different emission coefficients. Emission
dispatch (EMD) reduces the harmful pollutants [2].

EG(Pi,t) = qiP
2
i,t + riPi,t + si (6)

Where,
EG(Pi,t) is Emission of CG (Kg/hr).
qi(Kg/MW2h), ri(Kg/MWh), and si (Kg/h) are the coefficients
of emission of ith CG.

2.3. Multi-objective Economic emission Dispatch

In multi-objective EED, both cost and emission are minimized
simultaneously. We can not attain both value minimum at the same
time. A compromised solution of both the cost and emission is
obtained. Various methods, such as price penalty factor, weighting
sum, fractional programming, and Pareto method etc. may be used
to determine the compromised solution. Pareto optimal solution
using the fuzzy satisfaction method has been proposed in this
paper to determine a compromised solution [2].

min
TV

TC =
∑
i,t

CG(Pi,t) +
∑
i,t

EG(Pi,t) (7)

Where,
TV is total variable.
TV ∀[Pi,t, PVt,WTt]

Pareto optimal front is used to determine the compromise
solution between cost and emission. Procedure of minimization is
as follows:
1) Find maximum value of the cost function and emission function.
2) The emission function will be added as a constraint.

E ≤ η (8)

3) η is a variable between EGmin and EGmax and cost function
will be minimized.
4) To find the best solution in the pareto front, fuzzy method with
a assigned membership function will be used.
5) Find the minimum value of both cost and emission in the
membership function.

Figure 1 shows the proposed model with multi-objective
minimization. Various generation sources such as CG, WTG,
and PVM have been used for generation. CG emits harmful
pollutants. The generation side includes renewable curtailment
and VPC (value of photovoltaic curtailment), and VWC (value
of wind curtailment).VWC and VWC represent the energy
quantity($/MWh) and cost of curtailment. Load shedding is
another option for optimal scheduling in terms of loss of load.
Demand response is the management of load from the distribution
side. Demand response is not considered in this paper.

2.4. Economic Dispatch including RES curtailment

RES curtailment is a significant problem in the power system.
When this available generation from RES is not injected into the
grid, power producers miss their opportunity to generate more
power, increasing the overall cost [44]. There may be several
reasons for RES curtailment. RES curtailment due to uncertainty
is modeled as [2]:

min
TV

TC =
∑
i,t

CG(Pi,t) +
∑
t

PV C(PVt) +
∑
t

WTC(WTt)

(9)

Where,
TV ∀[Pi,t, PVt,WTt]
TV is total variable
TC is total cost.
PVC is photovoltaic power curtailment (MW)
WTC is wind turbine generator power curtailment (MW)
PVt is photovoltaic power production at time t.
WTt is wind turbine generator power production at time t.

Objective function with curtailment should satisfy equality
constraint. ∑

i,t

Pi,t + PVt +WTt = LDt (10)

2.5. Multi-objective Economic emission dispatch including
RES curtailment

RES curtailment in multi-objective problems includes the cost
of CG, wind curtailment, and solar curtailment costs, along with
emission cost and constraint should be followed for multi-objective
problems. The total cost to be minimized is formulated as [2].

min
TV

TC =
∑
i,t

CG(Pi,t) +
∑
t

PV C(PVt) +
∑
t

WTC(WTt) +
∑
i,t

EG(Pi,t)

(11)

2.6. RES with uncertainty

RES like wind and solar are unpredictable and depend upon
weather conditions at different times of the day. Uncertainty may
be modeled using some stochastic and robust approach. Uncertainty
may be modeled as [45]:

PVM t
uncer. = SDPVMuncer. ×RN1 + PVM t

forc. (12)

SDPVMuncer. = 0.7×
√
PVM t

forc. (13)

WTGt
uncer. = SDWTGuncer. ×RN2 +WTGt

forc. (14)

SDWTGuncer. = 0.8×
√
WTGt

forc. (15)

SDPVMunct. is standard deviation in PVM. RN1 and RN2 are
random number functions with zero standard deviation and mean
1. PVM t

uncer. is PVM output with uncertainty. PV t
forc. is solar

forecasting at time t. SDWTGuncer. is the standard deviation
in WTG output. WTGt

uncer. is WTG output with uncertainty.
WTGt

forc. is forecasted WTG output at time t.
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Fig. 1. Proposed model in microgrid

2.7. Economic Dispatch with Energy Storage system
ESS may play a significant role in power system uncertainty

management by optimal charging and discharging. ED with energy
storage system may be modeled efficiently [3]. Equation (1)
can be minimized using ESS with the following equations and
constraints [3].

SCt = SCt−1 + (P ch
t ηch − P dis

t /ηdis)δt (16)

P chg.
min ≤ P

chg.
t ≤ P chg.

max (17)

P disch.
min ≤ P disch.

t ≤ P disch.
max (18)

SCmin ≤ SCt ≤ SCmax (19)

∑
i,t

Pi,t + P disch.
t = LDt + P chg.

t (20)

∑
i,t

Pi,t + P disch.
t + Pwtg

t + P pvm
t = LDt + P chg.

t (21)

Equation (16) represents the state of charge at the time (t) with
the state of charge at the previous time (t− 1), including charging
and discharging efficiency. Equations (17)-(19) represent charging,
discharging, and charging state limits of operation. Equation (20)
shows that the generation with battery should always be equal
to load demand. Discharging power is generation, and charging
power is load in ESS. Equation (21) shows the equality constraint
with renewable energy sources.
SCt = Battery charging state at time t.

P chg.
t = Battery charging power

P disch.
t =Battery discharging power

ηchg. = Efficiency of charging

ηdisch. =Efficiency of discharging

δt= Scheduling time interval (1 hour)

Pwtg
t = Wind turbine generated power at time t

P pvm
t = Power generated by photo-voltaic module at time
t

3. PROPOSED ALGORITHM

3.1. GAMS

A general algebraic modeling system (GAMS) is an available
tool for optimization and modeling. The main three elements of
optimization are input, output, and interconnection of modeling
with equations. Input element are defined in the form of sets, tables,
and fixed values. The input parameters are the total number of
generators, cost and emission coefficients, the limit of generators,
load demand, and uncertainty of RES. Variables value needs to be
solved. The variables are generated power output, cost, emission,
and multi-objective cost. Modeling of equations interconnects the
input data with variables, which should be defined in GAMS. The
cost equation and emission equation with operating constraints
are the modeling equations. Output parameters are total operating
cost and optimal generated power output. Solve statements need
to be defined according to the nature of the problem. ED is
a quadratic-constrained problem(QCP). Different solvers may be
used for specific problems. CPLEX solver has been used in this
modeling. In this problem, the multi-objective solution needs to
be determined between cost and emission. Iteration will specify
the minimum and maximum value of cost and emission. But it
is challenging to decide on the best-compromised result. Fuzzy
method is used to determine the best solution. Membership
functions are need to defined for each objective function. A
membership function is defined in equation [3] (16) for both
objective functions.

αBj(Xi) =

{
0, elsewhere

Bmax
j −Bj(Xi), if Bmin

j ≤ Bj(Xi) ≤ Bmax
j .

(22)

The final solution regarding decision is minimum satisfaction and
maximum dissatisfaction is obtained by equation [3] (17).

max
i=1:N

(min
j=1:2

αBj(Xi)) (23)

Maximum value in all iterations from 1 to N is best compromise
solution.

Figure 3 shows the flow chart used for ED, EMD, and MEED
optimization. Table 2 shows the data for test system 1. The
input parameters are cost coefficients, emission coefficients, and
minimum-maximum limits of generators. Equations relate the input
and output parameters. Output parameters are cost, emission, and
optimal output of generators.

3.2. Steps of proposed algorithm

The following steps have been used for optimization.
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Fig. 2. Flow chart of GAMS

1) Sets: Initial step for CPLEX optimization is sets. It provides
indices like the number of generators, time period and
counters, etc.

2) Input Data: Input data such as cost and emission coefficient,
ramp limits, minimum and maximum limits of generators,
etc., need to be defined over the sets. They may be defined
in the form of fixed value or tabular value.

3) Variable: Variables are the unknown before optimization,
such as total cost, generated power of plants, and total
multi-objective cost, etc.

4) Equations: Equations provide the relation between predefined
input data and unknown variables. Proposed system contain
equations such as objective function and some constraints.

5) Model and solve statement: Model name and solve statements
like minimization or maximization will be defined with the
model name in this step. The solver option is also available
for different kinds of optimization problems. CPLEX solver
has been used in the proposed study.

6) Output: Output with global solution determines the optimal
value of variables required.

7) Display and summary: Output display statements like TC.l
and P (g, t).l will display the best value of a variable. The
output summary will provide the global results with the total
execution time of the problem.

4. SIMULATION RESULT

4.1. Description of test systems
Test system one consists of six CG [46]. Data for test system

one is shown in Table 2. The input parameters are cost coefficients,
emission coefficients, and minimum-maximum limits of generators.
The output parameters are the total operating cost with an optimal
power output of generators. Load sensitivity analysis has been
provided between the summation of the maximum and minimum
power of all CG. Static ED, EMD, and MEED Problem has been
optimized using a CPLEX solver installed on a personal computer
with specifications of intel corei3 processor 2.00 GHz and 4GB
RAM. Test system two consists of four CG, One WTG, and One

 

Fig. 3. Load demand vs cost for test system-1

 

Fig. 4. Uncertainty vs cost for MEED in test system-2

PVM [2]. This test system consists of a grid connected µG through
a point of common coupling [2]. Transmission losses through
energy transfer network have been neglected for simplicity. Case
study for test system two has been considered for total capacity
of grid connected. Cost and emission parameters are shown in
Table 3 for test system two. This test system considers WTG
and PVM curtailment cost due to uncertainty [2]. Uncertainty
reasons may be aging, change in wind speed, change in solar
radiation, and other technical reasons like wiring issues. Wind and
solar curtailment with load curtailment have been considered in
test system two. Forecasting of the load demand, WTG, and PVM
power is shown in Table 4.

 

Fig. 5. Uncertainty vs cost for ED in test system-2
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Table 2. Data for CG [46]

CG Pi,min Pi,max mi($/MW 2h) ni($/MWh) oi($) qi(Kg/MW 2h) ri(Kg/MWh) si(Kg)

G1 10 125 .15247 38.5397 756.79886 .00419 .32767 13.85932
G2 10 150 .10587 46.1591 451.32513 .00419 .32767 13.85932
G3 40 250 .02803 40.3965 1049.3251 .00683 -.54551 40.26690
G4 35 210 .03546 38.3055 1243.5311 .00683 -.54551 40.26690
G5 130 325 .02111 36.3278 1658.5696 .00461 -.51116 42.89553
G6 125 315 .01799 38.2704 1356.6592 .00461 -.51116 42.89553

Table 3. Data of CG for test system-2 [2]

CG Pi,min(MW ) Pi,max(MW ) mi ni oi qi ri si RUi(MW ) RDi(MW )

G1 25 210 .16 38.50 789 1.6 5 13 35 35
G2 23 290 .11 46.15 483 2.4 4.24 16.3 39 39
G3 32 195 .03 40.39 1030 1.2 2.15 15.6 43 43
G4 21 263 .04 38.30 1149 1.8 3.99 16.3 51 51

Table 4. WTG, PVM Generation and Load Demand forecasting of power
for test system-2 [5]

Time(Hours) Forecasted load Forecasted wind Forecasted PV
demand (MW) Power (MW) Power (MW)

1 530 51.1 0
2 540 56.5 0
3 531 63.7 0
4 525 152.7 0
5 561 212.1 32
6 571 317.1 72
7 671 368.2 105
8 691 337.2 119
9 748 281 236
10 754 336.1 265
11 749 434.1 312
12 770 411 445
13 759 456.2 482
14 730 551.7 415
15 691 521.1 407
16 730 520.5 375
17 718 491.8 207
18 781 386.6 55
19 721 392.4 0
20 700 307.3 0
21 671 327.6 0
22 514 342.4 0
23 579 411.4 0
24 512 434.4 0

Table 5. ED Cost (in $) comparison with PSO and NLP(test system-1)

Unit PSO [46] NLP [46] GAMS

Generated Power(MW) G1 32.450 32.490 32.497

G2 10.720 10.810 10.816

G3 143.69 143.64 143.646

G4 143.15 143.03 143.032

G5 287.16 287.10 287.104

G6 282.80 282.90 282.905

Total cost ($/h) – 45463.49 45463.49 45463.47

Total emission (Kg/h) – 795.110 795.070 795.018

Table 6. Emission (in Kg) comparison in EMD of micro-grid (test
system-1)

Unit PSO [46] NLP [46] GAMS

Generated Power(MW) G1 116.99 116.99 116.993
G2 116.99 116.99 116.993
G3 135.69 135.69 135.694
G4 135.69 135.69 135.694
G5 197.31 197.31 197.313
G6 197.31 197.31 197.313

Total cost ($/h) – 48051.22 48051.51 48051.21
Total emission (Kg/h) – 646.12 646.81 646.11

Table 7. Multi-objective EED cost (in $) comparison of micro-grid (test
system-1)

Unit PSO [46] NLP [46] GAMS

Generated Power(MW) G1 68.86 36.02 68.860
G2 66.77 16.66 66.768
G3 143.77 143.79 143.769
G4 156.01 146.54 156.010
G5 244.55 278.73 244.538
G6 220.01 274.24 220.010

Total cost ($/h) – 46112.09 46248.23 46112.083
Total emission (Kg/h) – 682.32 775.48 682.316

Table 8. Optimal cost in ED sensitivity analysis with different loads (test
system-1)

Load Demand (MW) Cost (in $)
350.0 20578.137
425.5 24933.190
555.0 29431.729
657.5 34051.453
760.0 38792.360
862.5 43654.453
965.0 48635.784

1067.5 53746.606
1170.0 59095.149
1272.5 65078.572
1375.0 72357.409
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Table 9. Optimal output of CG in ED (test system-1)

Load Demand (MW) G1(MW) G2(MW) G3(MW) G4(MW) G5(MW) G6(MW)

350.0 10.000 10.000 40.000 35.000 130.000 125.000
452.5 15.601 10.000 51.740 70.383 165.070 139.707
555.0 19.478 10.000 72.830 87.053 193.073 172.566
657.5 23.355 10.000 93.919 103.724 221.076 205.426
760.0 27.232 10.000 115.009 120.395 249.079 238.285
862.5 31.109 10.000 136.099 137.066 277.082 271.145
965.0 34.829 14.174 156.329 153.057 303.944 302.666

1067.5 40.503 22.346 187.195 177.456 325.000 315.000
1170.0 49.381 35.132 235.487 210.000 325.000 315.000
1272.5 85.439 87.061 250.000 210.000 325.000 315.000
1375.0 125.000 150.000 250.000 210.000 325.000 315.000

Table 10. Optimal output of CG for ED in test system-2

Time(Hours) Demand (MW) G1(MW) G2(MW) G3(MW) G4(MW) WTG (MW) PV (MW)

1 530 48.985 36.477 195.000 198.438 51.1 0
2 540 49.697 37.514 195.000 201.289 56.5 0
3 531 47.187 33.863 195.000 191.249 63.7 0
4 525 38.108 23.000 156.260 154.932 152.7 0
5 561 50.426 38.574 113.260 114.640 212.1 32
6 571 25.000 23.000 70.260 63.640 317.1 72
7 671 25.000 23.000 70.671 79.129 368.2 105
8 691 25.000 23.000 91.814 94.986 337.2 119
9 748 25.000 23.000 88.828 94.172 281 236
10 754 25.000 23.000 45.829 59.071 336.1 265
11 749 25.000 23.000 32.000 21.000 434.1 312
12 770 25.000 23.000 32.000 21.000 411 445
13 759 25.000 23.000 32.000 21.000 456.2 482
14 730 25.000 23.000 32.000 21.000 551.7 415
15 691 25.000 23.000 32.000 21.000 521.1 407
16 730 25.000 23.000 32.000 21.000 520.5 418
17 718 25.000 23.000 32.000 21.000 491.8 375
18 781 25.000 23.000 67.784 69.616 388.6 207
19 721 27.463 23.000 110.784 112.353 392.4 55
20 700 45.659 31.641 153.784 161.616 307.3 0
21 671 60.000 62.000 110.784 110.616 327.6 0
22 514 25.000 23.000 67.784 59.616 342.4 0
23 579 25.000 23.000 53.414 66.186 411.4 0
24 512 25.000 23.000 32.000 21.000 434.4 0

4.2. Analysis of results
Results for test system one are shown in Tables 5, 6, and 7

for ED, EMD, and MEED, respectively. Results are compared
with NLP and PSO with the proposed method. The generators’
power outputs are shown in Tables 5, 6, and 7 for ED, EMD, and
MEED, respectively. Load sensitivity analysis is provided between
350 and 1375 MW of load demand for ED. The total cost for
intermittent load is shown in Table 8. The optimal power output
of generators for different load demands is shown in Table 9. The
sum of the minimum power of all generators is 350 MW, and
the sum of the maximum power is 1375 MW. These values are
operating boundary limits for test system -1. The operating cost
with 350 MW is 20578.137 $ and 72357.409 $ with 1375 MW.
Cost is changing by 71.56% from minimum to maximum feasible
load demand. Results for test system-1 are shown for static load

demand.

Results for test system-2 are analyzed with RES curtailment
in terms of uncertainty. Cost-only and multi-objective cost and
emission results have been compared with RES curtailment. For
uncertainty analysis, twenty values from 0 to 20% have been
considered in the simulation. This uncertainty will increase the
cost of ED and MEED. Uncertainty reasons may be uncertain
weather conditions or the aging effect of equipment. Figure 4
shows the variation of cost with uncertainty (0 to 20%) for MEED.
Cost increases linearly with uncertainty, and curtailment cost is
a sensitivity variable. Cost variation with uncertainty for ED is
shown in Figure 5. The power output of generators for cost only
and multi-objective optimization are shown in Tables 10 and 11,
respectively. Ramp rate sensitivity analysis has been provided, and
variations of cost and emission with different ramp limits have
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Table 11. Optimal output of CG for MEED in test system-2

Time(Hours) Demand (MW) G1(MW) G2(MW) G3(MW) G4(MW) WTG (MW) PV (MW)
1 530 122.586 81.967 164.894 109.448 51.1 0
2 540 123.768 82.757 166.467 110.503 56.5 0
3 531 119.607 79.978 160.918 106.792 63.7 0
4 525 95.209 63.695 128.322 85.071 152.7 0
5 561 81.118 54.821 107.645 73.203 212.1 32
6 571 46.119 30.375 64.646 40.649 317.1 72
7 671 50.367 33.757 68.442 45.123 368.2 105
8 691 59.869 40.104 81.125 53.590 337.2 119
9 748 58.894 39.452 79.821 52.721 281 236
10 754 38.836 26.047 53.044 34.862 336.1 265
11 749 25.000 23.000 32.000 21.000 434.1 312
12 770 25.000 23.000 32.000 21.000 411 445
13 759 25.000 23.000 32.000 21.000 456.2 482
14 730 25.000 23.000 32.000 21.000 551.7 415
15 691 25.000 23.000 32.000 21.000 521.1 407
16 730 25.000 23.000 32.000 21.000 520.5 418
17 718 25.000 23.000 32.000 21.000 491.8 375
18 781 47.182 31.623 64.186 42.289 388.6 207
19 721 69.832 46.752 94.428 62.466 392.4 55
20 700 100.448 67.198 135.312 89.738 307.3 0
21 671 83.714 63.823 111.112 84.747 327.6 0
22 514 48.714 24.824 68.113 33.748 342.4 0
23 579 42.640 28.579 58.131 38.249 411.4 0
24 512 25.000 23.000 32.000 21.000 434.4 0

Table 12. Ramp rate sensitivity analysis and it,s effect on cost and emission
for test system-2

Ramp Rate ( %) cost( $) Emission (Kg)

100 329696.560 864266.931
98 329844.297 864668.264
96 329994.304 865390.114
94 330148.295 865445.397
92 330314.363 863070.005
90 330490.717 861366.369
88 330690.087 857188.270
86 330910.831 851966.206
84 331153.295 847216.837
82 331416.887 842661.864
80 331714.400 838846.264
78 332089.058 837549.178
76 332476.447 836535.259
74 332876.601 835784.171
72 333289.815 835250.741
70 333799.229 835251.975

been proposed in Table 12. Ramp rate variation from 100 to 70 %
shows an increase in cost by 1.24 % and a decrease in emission
by 3.35 %. Results for cost only and multi-objective cost and
emission dispatch are compared with the proposed method for
20% uncertainty in terms of curtailment and show better results.
ED cost Without curtailment is 329696.439 $. ED cost with
curtailment is 365200.978 $. In MEED, emission without RES
curtailment is 700112.273 kg. In MEED, emission with curtailment
is 700109.113 kg. Uncertainty results for multi-objective cost
and emission dispatch and ED are shown in Tables 13 and 14,

Table 13. Variation in cost due to uncertainty variation in multi-objective
problem for test system-2

Uncertainty cost( in $)

0 339766
1 340162
2 343721
3 347666
4 351611
5 355556
6 359501
7 363446
8 367391
9 371336
10 375281
11 379226
12 383171
13 387116
14 391061
15 395006
16 398951
17 402896
18 406841
19 410786
20 414731
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Table 14. Variation in cost due to uncertainty variation in only cost
minimization for test system-2

Uncertainty cost( in $)

0 329696
1 329891
2 333641
3 337586
4 341531
5 345476
6 349421
7 353366
8 357311
9 361256
10 365200
11 369146
12 373091
13 377036
14 380981
15 384926
16 388871
17 392816
18 396761
19 400706
20 404651

 

Fig. 6. Pareto optimal solution

Table 15. Comparison of results in terms of cost for test system-2

Methods cost ($) [2] Cost ($) (GAMS)

ED -Without curtailment 3.30×105 329696.439
ED-with curtailment 3.65×105 365201.078

MEED-without curtailment 3.40×105 339776.459
MEED-with curtailment 3.75×105 375281.766

Table 16. Comparison of results in terms of emission for test system-2

Methods Emission (in Kg) [2] Emission (Kg) (GAMS)

ED -Without curtailment 8.64×105 864271.345
ED-with curtailment 8.64 ×105 864177.089

MEED-without curtailment 7.00×105 700112.273
MEED-with curtailment 7.00×105 700109.135

Table 17. Comparison of results in terms of percentage improvement for
test system-2

Methods Cost ($) [2] GAMS

ED 9.70% 9.58%
MEED 9.46% 9.33%

respectively. Comparisons in terms of cost and emission have been
shown in Tables 15 and 16, respectively. A membership function
for cost (βcost) and emission (βemission) have been shown in Table
18. Membership function values have been assigned between 0
and 1. The minimum value (βcost,βemission) of both membership
functions have been determined in the last column of Table 18 as
per the procedure of the Pareto solution. The maximum value of
min(βcost,βemission) is .703 in the 9th iteration, and it shows the
optimal compromised solution.

In MOEED solution with curtailment, Cost is changing by
9.33% from 3.40 × 105 to 3.75 × 105. In ED solution with
curtailment, Cost is changing by 9.58% from 3.30 × 105 to 3.65
× 105. As compared to MOEED with ED, Cost is increasing by
2.66 % from 3.65 × 105 to 3.75 × 105, but the emission is
decreasing by 18.98 % from 8.64 × 105 to 7.00 × 105. Percentage
improvement in results for test system-2 has been shown in Table
17.

4.3. Results obtained and the main achievements

Three comparative studies have been done for test system -1,
i.e., ED, EMD, and MEED. For ED, only cost has been minimized
without any concern of emission by harmful pollutants. The total
cost is 45463.47 $, and the emission is 795.018 kg with an
execution time of 4.834 seconds. For EMD, only emission has
been minimized without any cost concern, and results have been
shown in Table 6. Execution time is 4.981 seconds. In MEED,
both cost and emission have been minimized, the total cost is
46112.083 $, and the emission is 686.316 kg with an execution
time of 6.997 seconds. There are various methods to determine
the multi-objective solution. This paper uses a Pareto optimal
solution with fuzzy decision-making to determine the compromised
solution. Load sensitivity analysis provides the feasible operation
limits of test system-1. The optimal output of generators for load
sensitivity has been shown in Table 9, and the execution time
is 8.823 seconds. Execution time comparison has been shown in
table 19 for old PC and new updated PC.

Test system -2 with 4 CGs, one WTG, and a PVM have been
studied. Two comparative case studies have been analyzed, i.e., ED
and MEED. Two sub-studies have been analyzed, i.e., with and
without curtailment cost due to uncertainty for ED and MEED.
Comparison Table 15 and 16 shows the cost and emission results,
respectively. Comparison in terms of percentage improvement for
test system-2 has been shown in Table 17. For ED, the cost has
been reduced by 9.58 % as compared to 9.70 % in the literature.
For MEED, the cost has been reduced by 9.33 %as compared to
9.46 %. Pareto optimal results with fuzzy decision making have
been shown in Table 18. Variations in cost due to uncertainty
(0-20%) for MEED and cost have been shown in Tables 13 and
14, respectively.

The proposed methodology using GAMS for MEED has been
compared with the weighting method (WM). Different weights
may be assigned for cost and emission according to priority.
MEED problem has been converted into scalar optimization. Equal
weights have been assigned for both the cost and emission.
Similarly, the proposed method has been compared with NNC and
price penalty factor (PPF). The penalty has been imposed in terms
of the ratio of cost to the emission. The proposed method has been
compared with different methods in terms of cost and emission in
Table 21 and 22, respectively. Execution time with the updated PC
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Table 18. Pareto optimal results with fuzzy satisfaction method for test system-2

Iteration η Total cost($) Emission (Kg) βcost βemission min(βcost,βemission)

1 864266.931 365201.078 864177.089 1.000 0.000 0.000
2 847851.711 365225.178 847850.903 0.997 0.099 0.099
3 831436.491 365301.900 831435.809 0.989 0.199 0.199
4 815021.270 365439.264 815017.345 0.976 0.299 0.299
5 798606.050 365656.340 798603.274 0.954 0.399 0.399
6 782190.830 365980.909 782187.158 0.922 0.499 0.499
7 765775.609 366459.230 765775.378 0.875 0.599 0.599
8 749360.389 367159.261 749359.977 0.805 0.699 0.699
9 732945.169 368188.968 732942.462 0.703 0.799 0.703
10 716529.948 369838.885 716526.590 0.539 0.899 0.539
11 700114.728 375281.766 700109.135 0.000 1.000 0.000

Table 19. Comparison of Execution time with new upgraded PC (test
system-1)

Problem Old PC (Seconds) New updated PC (Seconds)

ED 5.103 4.834
EMD 5.314 4.981

MEED 7.409 6.997
ED sensitivity 9.072 8.823

Table 20. Comparison of Execution time with new upgraded PC (test
system-2)

Problem Old PC (Seconds) New updated PC (Seconds)

ED 10.769 10.063
MEED 12.081 12.673

Ramp rate sensitivity 13.523 13.102
ED with uncertainty 11.721 11.147

MEED with uncertainty 14.709 13.927
Pareto optimal solution 14.018 13.671

for test system-2 has been compared with the old PC in Table 20
for various problems.

BESS may be a better alternative for uncertainty management.
The ED problem with the battery’s charging and discharging have
been formulated in equations (16-21). The main contribution of the
proposed scheme is the reduction in cost, emission, and execution
time. The comparison table shows the optimal solution and better
results.

5. CONCLUSION AND FUTURE SCOPE OF WORK

In this paper, two test systems have been analyzed. Results of
test system one have been compared for static ED, EMD, and
MEED. A comparison of results shows the effectiveness of the
proposed method. Load sensitivity analysis has been proposed for
different load demands within feasible generation limits for ED in
test system one. The feasible range of load is 350 MW to 1375
MW. ED, MEED, and RES curtailment due to uncertainty has
been analyzed in test system two. Ramp rate sensitivity analysis
provides the effect on cost and emission with the change in ramp
limits from 100% to 70%. Major contributions of this paper are

• Static ED, EMD, and MEED results have been compared
with different techniques in test system one.

• Load sensitivity analysis for test system-1 provides the 71.56
% change in cost from minimum to maximum feasible load
demand.

• MEED study shows the increment in cost by 2.66 % but
emission is decreasing by 18.98 %. A comparison of results
in test system two shows the effectiveness of the algorithm.

Table 21. Comparison of results in terms of emission for MEED (Test
system-2)

Methods WM PPF NNC GAMS

MEED-without curtailment 700117.425 700118.523 700117.536 700112.273
MEED-with curtailment 700113.619 700114.802 700113.048 700109.135

Table 22. Comparison of results in terms of cost for MEED (Test system-2)

Methods WM PPF NNC GAMS

MEED-without curtailment 339779.853 339780.002 339784.417 339776.459
MEED-with curtailment 375286.493 375287.162 375289.098 375281.766

• Reduction in cost due to uncertainty in ED is 9.58% as
compared to 9.7%.

• Cost has been reduced in MEED by 9.33% as compared to
9.46%.
Future scope of the proposed work: Purposed work may
be extended using different kinds of generation sources like
biomass, geothermal and tidal, etc. ESS with demand response
may be used for a better optimal schedule. Sensitivity analysis
of different parameters may be imposed on standard IEEE
test systems and multi micro-grid. The proposed problem
may be optimized using good global solvers such as Baron
in GAMS. GAMS have some minor limitations. GAMS
requires some other software tools to visualize results like
MATLAB. It requires solver selection according to the nature
of optimization problem. Purposed work may be extended
by optimal dispatch of different generation types with virtual
energy storage systems such as hydrogen storage systems
and virtual power plants with contingencies. Optimal sizing
of battery for proposed model may be better future scope.
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