
Journal of Operation and Automation in Power Engineering

vol. XX, no. XX, Dec. 2022, Pages: XXXX (Proofed)

http://joape.uma.ac.ir

Static Security Assessment of Integrated Power Systems with Wind
Farms Using Complex Network Theory

F. Babaei1, A. Safari1, *, J. Salehi1, and H. Shayeghi2

1 Department of Electrical Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran.
2 Department of Electrical Engineering, University of Mohaghegh Ardabili, Ardabil, Iran.

Abstract— Although the presence of clean energy resources in power systems is required to reduce greenhouse gas emissions, system
security faces severe challenges due to its increased intelligence and expansion, as well as the high penetration of renewable energy
resources. According to new operating policies, power systems should withstand subsequent single contingencies. Also, the effect of electrical
and structural characteristics must be considered in power system security assessment. Thus, this paper introduces a comprehensive
risk-based approach that quantifies the impact of contingency-induced variation in topology by using complex network theory metrics. Then,
it identifies elements that surpass security limitations and eliminates them to execute cascading outage analysis via AC power flow. Lastly,
wind power uncertainty and contingency probability are multiplied by the linear combination of electrical and structural consequences,
and security status is assigned to each contingency based on its risk value. Additionally, simulations are carried out on modified 118 and
300 bus IEEE systems, and the extensive results are utilized to demonstrate the effectiveness of the proposed methodology.
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1. INTRODUCTION

Lately, the global tendency toward environmentally sustainable
power generation strategies has stoked the high penetration of
renewable energy resources and the increasing complexity of the
power system. On a broader scale, however, new knowledge of
power system operation is necessary, and potential barriers come
into being to the power system’s stability and security. Hence, the
future of the electricity industry will look very different thanks
to the impact of climate change and other environmental issues.
Due to recent blackouts [1], it can be understood that security
analysis is critical in a modern power system. Static and dynamic
security assessments are the two basic security assessment studies.
The former examines the steady-state reaction of the power system
when a contingency occurs. In contrast, the latter assesses the
system variables before the contingency, immediately after, and
during the transient period.

1.1. Literature review
This section begins with an overview of power system security

assessment methods. Then, it examines the risk-based approaches
in more detail. According to previous studies, it can be found
that power system security is classified into three categories
based on analysis methods: deterministic, probabilistic, and risk-
based techniques. Many deterministic methods based on the N-1
criterion assess the power system’s security under the predefined
contingency list. In these cases, the power system is kept close
to security margins to cope with the worst-case scenario [2].
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However, the deterministic approach disregards the power system
uncertainty and complexity in the operating mode. Probabilistic
methods can offer a better idea of how safe a power system is
because they consider the probability of contingency occurrence
and the power system various uncertainties [3]. Also, a risk-based
approach combines the consequences of the contingency and their
probability for investigating power system security [4].

Today, power system security analysis under risky conditions
is critical work. The power system vulnerability analysis has
attracted the researcher’s attention as a crucial piece of security
assessment. Several researchers are trying to identify indexes
to address the transmission line vulnerability, while others are
attempting to improve the security of power system infrastructure
against contingencies. The steady-state risk assessment of the
power system using the Monte Carlo method has been addressed
in Ref. [5]. Despite introducing security regions and uncertain
system topology variation, the proposed algorithm is complicated
and time-consuming. A technique to estimate the risk of line
overloading is described in [6]. In Ref. [7], a risk-constrained
stochastic scheduling model is proposed using the latent scheduling
capacity of multiple energy systems. In [8], a framework for
transient stability risk assessment considering the load level is
presented. Ref. [9] undertakes a risk assessment of hybrid storage
systems using an enhanced fuzzy synthetic evaluation method. The
fuzzy approach has many advantages, like solving complex multi-
factor and multi-level problems. However, its major drawback is
that it disregards the unpredictability of the external environment.
Ref. [10] models the likelihood and effect of wind uncertainties
and line flow oscillation in the risk index and then quantifies power
system security using it. One of the significant drawbacks of this
method is the dynamic line rating. It imposes more uncertainty on
the power system and may lead to additional operational losses due
to the random nature of line ratings and wind power generation.
A new security assessment of a modern power system with a high
penetration of wind power generation is given in [11]. It uses
sequential time simulation to develop risk-based security analysis
and considers overload risk based on the continuous severity
function. Despite the convenient implementation of sequential
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algorithms, they are impractical for large-scale systems due to their
high execution time. The robust security assessment that measures
the security level according to dynamic economic dispatching
using the DC power flow is formulated as a bi-level optimization
problem and is presented in Ref. [12]. The security assessment
tools can be developed using artificial intelligence and machine
learning techniques. These methods provide a qualitative and
quantitative assessment of power system security. For instance,
the interleaved index-based intelligent design has been applied
to assess smart grid security in Ref. [13]. This index comprises
the Lyapunov exponent section to track uncontrolled power flow
increases and another to monitor line overload.

The power system security evaluation in [14] employs quicker
indexing based on artificial neural networks. Although the neural
network replaces conventional techniques to achieve the desired
speed and accuracy, it faces significant problems, such as an
extensive training process, complicated design procedures, and
the need to be more accurate when some components are
strongly correlated. Ref. [15] used a machine-learning-based
security assessment to reduce the simulation burden caused by
unpractical phenomena in real time. The researchers are motivated
by the advances in complex network (CN) theory to analyze
networks from a novel structural view regarding nodes and
their connections. Finding the power system’s weak points and
analyzing the operational characteristics, which may be done
with a CN theory, are helpful steps toward a technical analysis
of the power system’s performance. The CN theory can be
employed to evaluate power system security by identifying the
critical branches or buses [16]. From the CN theory perspective,
many studies show that transmission network fault propagation
can extend to non-adjacent branches and adjacent branches [17].
Because of the small-world properties, the branches may impact
one another during a failure operation. Scale-free features [18]
show that electrical networks are sensitive to planned attacks
but robust to random attacks when crucial branches are removed
from the networks to explore their corresponding loss of load.
Power systems are particularly vulnerable to purposeful attack
because they are scale-free, requiring the precise identification
of important branches (or buses). Today, the statistical indices
of the CN theory, like degree, betweenness and closeness, are
used for risk-based security assessment [6–8]. Even though the
comprehensive statistical indices take the physical characteristics
of the power system into account, they are still skewed toward the
structural vulnerability analysis of the electrical networks.

Consequently, applying the CN theory to analyze operational
risk remains problematic and has been studied more thoroughly.
Taking statistical graphs, such as cascading fault graphs [19, 20],
risk graphs [21, 22], influence graphs [23], and interaction graphs
[24, 25], besides structural and electrical characteristics, can be
advantageous. The statistical graphs point out the propagation
path of faults and the temporal correlations between branches.
Numerous studies have observed that the power grid system
adheres to the small-world model and have demonstrated the
profound repercussions that can arise from a few critical nodes
and lines in the overall design [26]. These findings underscore
the significant consequences that can result from the power grid
topology variation under severe attacks. Moreover, much literature
has focused on developing algorithms to enhance the efficiency
of complex networks within network theory [27, 28]. While
several studies have examined the application of CN theory to the
power grid, only a few have emphasized analyzing the potentially
severe outcomes encountered by the power grid. Although many
researchers have provided metrics based on the topological
model, they should have paid more attention to the indicators
corresponding to the power system operating mechanism. The
shortcomings above led us to attempt to improve the ability of
the power system to prevent the occurrence of widespread outages
caused by single contingency and to achieve a practical security
assessment approach.

1.2. Contributions
A significant portion of the studies in electrical engineering have

been focused on power system security assessment. In contrast,
only some have addressed both structural and electrical indices
simultaneously. Our paper is motivated by the necessity for a
risk-based security assessment to identify critical transmission lines
in integrated power systems with wind farms. In summary, this
paper’s contributions can be stated as follows:

• Investigation of the impacts of RES penetration on power
system security

• Presentation of a new risk index (based on structural and
electrical indices) to identify the set of power system
vulnerable lines

• Consideration of the probability of a line outage and its
impact on the security assessment

• Classification of security status based on the proposed risk
index.

Next, a general description of how contributions were achieved
is explained. The Weibull distribution function examines the
uncertainty associated with wind power generation. Also, a new
probability concept is presented to estimate the transmission line
outage. It incorporates transmission line tripping and unavailability
concerning line ampacity and environmental parameters like
sunshine intensity and ambient temperature. Then, the cascading
outages resulting from the initial contingency are computed. The
electrical risk index caused by the cascading outages is added to
the structural risk index. Finally, the comprehensive risk index
is computed, and the power system security status is defined
according to the levels presented in Section 4.

1.3. Orgnization
The rest of the paper is provided as follows: Section 2 presents

the CN-based power system indicators, and the security evaluation
index is investigated in Section 3. The security assessment
procedure and simulation results are shown in sections 4 and 5,
respectively. Finally, the paper concludes in Section 6.

2. CN-BASED GRID MODEL INDICATORS

According to the CN theory, this section develops a power-
weighted grid complex network model. It proposes indicators for
evaluating the grid network’s properties. CN theory assumes that
any given network could be represented as G = (N,E) , where N
and E are sets of nodes and edges, respectively. Hence, this paper
considers the generator and load as CN nodes and transmission
lines between nodes as its edges to develop a power system model
based on CN theory and analyze its operation characteristics. As
is known, an edge is created between two nodes whenever a
physical line connects them. Also, an adjacency matrix is used to
record the underlying relationship between the nodes, where the
presence/absence of a connection relationship is shown by 1 and
0, respectively. Due to the edge direction in the directed network,
the adjacency matrix is not necessarily symmetric. CN theory was
used to develop grid network characteristics indicators based on
the weighted model. In this model, edge weight is determined
by line impedance. Thus, the shorter the distance, the greater the
power.

2.1. Electrical and edge betweenness
With the traditional topological method, betweenness is

calculated as the probability that a given node or edge is
part of a randomly chosen geodesic path connecting any other pair
of nodes. It is a more suitable tool for estimating the critical load
on a specific network edge. One of the most influential segments
of betweenness is network connectivity. The betweenness is a local
metric to describe the centrality value and criticality of elements.
It evaluates how significant an edge is in a network structure. The
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betweenness centrality is the ratio of the number of the shortest
paths containing a line over the number of all the shortest paths.
The larger this index is, the greater the number of the shortest
paths traversing the edge and the higher the power flow stress. In
this paper, betweenness centrality can be obtained as follows [29]:

Bl =

N∑
i

N∑
j

σij(l)

σij
. (1)

Where, the number of the shortest path between i and j that
passes through line l is represented by σij(l) . An example of
edge betweenness centrality is given in Fig. 1. According to the
value of the individual betweenness centrality and the number of
two-hop neighbours they are connected to, the logical neighbours
are selected. Since all 2-hop neighbours can be reached through
node 2, and the edge connecting nodes 1 and 2 has a higher EBC
value than the edge connecting nodes 1 and 3, node 1 will decide
to broadcast only to node 2.

Fig. 1. Description of edge betweenness centrality.

2.2. Clustering coefficient
A network’s aggregation is measured by the clustering

coefficient, which shows how closely the network’s nodes are
connected. If it is assumed that the neighbour sets of node i are
N(f), and |N(f)| equals ki, then the clustering coefficient of
node i can be expressed as the ratio of the number of edges Ei to
the total number of potential edges [29].

Ci =
2Ei

ki(ki − 1)
. (2)

The clustering coefficient is a critical measure for describing the
network’s structural properties. The average clustering coefficient
C indicates the average of all node clustering coefficients, which is
0 when all nodes are isolated and 1 when all nodes are connected.

3. SECURITY EVALUATION INDEX
The power security metrics should support the predominance of

complex network methodologies in structure analysis and account
for the unique characteristics of power system engineering. For
this purpose, two distinct aspects, operating status and network
structure, are recommended for resolving power system security
issues. This paper presents the power system structural security
index to measure the impact of contingency occurrences.

3.1. Lost load
When random disturbances cause grid edges to become

overloaded, the whole grid load will accordingly alter. The
percentage of lost load, denoted by PL, is calculated by dividing
the removed load in the current operational state by the initial
power system load.

PL =

∑
j∈G1

Lj∑
j∈G0

Lk
. (3)

Where, set of healthy and failed load nodes are represented by
G0 and G1, respectively. Also, Lj and Lk are the loads of of jth
and kth nodes.

3.2. Lost generation capacity
During the cascading process, a portion of the network

generation capacity (generator node) will be lost due to the
expansion of the edge’s failure and inability to transfer power to
other nodes. In this paper, lost generation is defined as the ratio
of forfeited generation in the current operational state to the total
power system generation.

PG =

∑
j∈H1

Pj∑
j∈H0

Pk
. (4)

Where, H0 and H1 reflect a set of the available and failed
generator nodes, respectively. Also, Pj and Pk represent the power
generation value at the jth and kth nodes.

3.3. Power system connectivity
Network connectivity indicates the network’s ability to keep

going and operating despite the unexpected loss of a power system
component. In other words, the reliability and efficacy of complex
networks are contingent upon their connectivity. It is defined as
the ratio of the number of healthy nodes and edges in the power
system to their total number.

Qi = 1− Nf,i

Nt
. (5)

Where, Nf,i and Nt indicate the number of failed and total
power system elements, respectively. When the survivability index
reaches zero, the power system is at severe risk; whenever it leans
towards 1, the grid will be in an appropriate state.

3.4. Power system vulnerability
The vulnerability index provides a numerical measure of

how vulnerable a system or its components are. From a
vulnerability perspective, a minor disturbance can result in
disastrous consequences. In order to assess the grid’s vulnerability,
the network average clustering coefficient ratio is presented.

C =
C1

C0
. (6)

Where, C0 and C1 reflect the network’s average clustering
coefficients before and after contingency.
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3.5. Power system transmission efficiency
The analysis of only a few fundamental topological metrics can

disclose only the structural characteristics of the sequential system.
Hence, to assess how well a power system transmits energy, the
following efficiency index can be used [30].

Ei =
1

N(N − 1)

∑
i ̸=j

1

dij
. (7)

According to Eq. (7), the transmission efficiency of a weighted
network is the inverse of the shortest path between any two nodes.
Assuming that there is no direct link between nodes i and j, it
can be seen that dij → ∞ at this point and that (1/dij) → 0
after that. Therefore, we have assumed that topological efficiency
corresponds to the power flow in a line. As a result of removing a
line or node, the loss of transmission efficiency leads to a decline
in average power. The network transmission efficiency reduction,
E, is calculated as the ratio of current network transmission
efficiency, Ei, to its initial value, E0 .

E =
Ei

E0
. (8)

3.6. Wind power modeling
Here, the wind speed data is considered using the Weibull

distribution and its probability density function formula is given as
[31, 32].

f(v) =
γ

α
(
v

α
)γ−1 exp(−(

v

α
)γ)) v > 0, γ > 0, α > 1. (9)

In Eq. (9), wind speed, shape and scale parameters are shown
by , γ and α, respectively. Although α is highly dependent on
the wind farm location, we only consider a single value because
this work regards the aggregated zonal wind power without
taking wind farm size into account. Note that the AC power
flow uses wind power generated with γ = 2 and α = 11 for
non-correlated situations. Note that two main factors, line ampacity
and environmental parameters like sunshine intensity, ambient
temperature, etc., affect the temperature of the transmission line
conductor. Here, weather-based transmission line loading and
their unavailability index are used to calculate the line outage
probability. According to the IEEE 738 standard, the steady-state
heat balance equation is provided by [33]:

qc + qr = qs + I2RTc. (10)

where qr and qc are the radiative and convective heat losses
while qs, I and RTc are the solar heat gain, current flowing
through the conductor and resistance at the specific temperature.
Using Eqs. (11) to (13), the radiative and convective heat losses
as well as solar heat gain are calculated as [34]:

qs = αsQs sin(η)d, (11)

qr = πdεrσ([Tc + 273]4 − [Tα + 273]4), (12)

qc = 0.641πλf (Tc − Tα)(
dρfVw

µf
)0.471. (13)

The variables used in the correlations discussed above are listed
in Table 1.

The rated current can be computed as follows if the line type
and meteorological data are known:

Table 1. Simulation parameters.

Parameters Description Value
αs Solar absorption rate 0.27
η Angle bet line and light 30◦
d Conductor diameter 0.02 (m)
λf Air thermal conductivity 0.024
ρf Air density 1.225 (Kg/m3)
vw Wind speed 0-8 (m/s)
µf Air viscous coefficient 1.81× 10−5 Pa.s
εr Line emissivity 0.9
σ Stefan-Boltzmann constant 5.67× 10−8

Rdc Resistance 0.0738× 10−3(Ω/m)
k Temperature rise coefficient 0.0039(Ω/◦C)

Inom =

√
qc + qr − qs

RTc
. (14)

The conductor’s internal charge carrier collision frequency
increases along with its temperature rise. Thus, the lines’
conductor resistance will increase as follows [34]:

Iline =
U

Rdc(1 + k∆T )
. (15)

Hence, weather-based line tripping is calculated as:

Pline_trip,l =
{
1− exp(−10× (

Iline,l

Inom,l
− 1)) ,

Iline > Inom.
(16)

On the other hand, the ratio of the number of hours a
transmission line is out of service to the entire time the line is in
use is defined as unavailability.

Ul =
Toutl

Toutl + Tinl

. (17)

Where, Tout and Tin represent the total time the line i is out of
service and is in service, respectively. Finnaly, the combined line
outage probability is given as:

f(l) = P (line_tripl ∩ Ul) = Pline_trip,l × Ul. (18)

Typically, the probability and consequences of contingencies are
multiplied to determine risk levels, while other variables, such as
weighting, may also be considered. Due to the above assumptions,
a comprehensive metric to evaluate the power system risk-based
security is obtained as follows:

Riskl = Pl × Cl,
where

Pl = f(l)× f(v),
Cl = (Ql(PL,l + PG,l)) + β((1− El) + (1− Cl)).

(19)

The bigger 1 − El and 1 − Cl parameters provide a more
significant threat to power system security. For this reason, the β
coefficient is used to illustrate their importance in Eq. (19). Note
that this coefficient is set to 10 here.

4. SECURITY ASSESSMENT PROCEDURE

Fig. 2 depicts the overall structure of the power system
employed in this work. Conventional power plants and wind farms
regulate the power flow. The power system must be stable to
prevent the loss of a significant component in the case of a
transmission system. Therefore, the line outage is considered to be
a contingency.
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Fig. 2. Comprehensive structure of the power system.

The operating state and network structure are presented as
two different aspects of resolving power system security issues,
and their relationships are examined. Thus, it is emphasized that
power security metrics should maintain the dominance of the
complex network approach in structure analysis and consider the
unique characteristics of power system engineering. In this paper,
transmission efficiency and average clustering as complex network
metrics are used to compute the risk level of line outages. Also,
the cascading failure process is applied to quantify the effects
of line outages in the power system. According to Fig. 3, the
cascading failure procedure can be separated into three stages: the
trigger, expansion, and collapse.

Fig. 3. Cascading failure procedure.

Fig. 4. Flowchart methodology for power system security assessment.

In summary, the power system security assessment procedure is
broken down into the following steps:

Step1: Removing the ith branch (edge)
Step 2: Running power flow; if it is converged, go to the next

step; if not, execute load shedding and resume power flow.
Step 3: Checking for line overload; if a line is overloaded, run

the cascading failure analysis course.
Step 4: Calculating the grid security assessment index.
Step 5: Were all line outages evaluated? If not, return to step

one; otherwise, proceed to the next step.
Step 6: Here, line outages are ranked, and the power system

security status is finally defined based on this ranking.
The flowchart methodology of this paper is presented in Fig.

4. Classifying the security levels of the power system is essential
to investigating its security state and improving it. Because grid
security is affected by the power system’s structure and its
operating conditions, the security levels should be categorized
according to these two factors. For this reason, the proposed risk
index is selected. The power system is divided into four security
levels using proposed risk index values.

Level 1: Riskl = 0
The grid security level is high for specified contingencies.
Level 2: 0 < Riskl < 1
Here, the grid security level is normal.
Level 3: 1 < Riskl < 5
In this case, the grid security level is low, and the overloaded

lines lead to operational issues.
Level 4: Riskl > 5
There is a high security risk, and the operators take immediate

action to mitigate the significant security threat they face.

5. SIMULATION RESULTS

The power system must resist the loss of a significant element
in a transmission trip. Hence, a line outage is considered a
contingency. In this section, the proposed method for risk-based
security assessment is implemented on diverse standard networks,
including IEEE 118, modified IEEE 118, and 300 bus systems.
It should be noted that the power flow solution is computed
using data from the cases in Matpower. Also, all algorithms are
programmed in Matlab 2017a and executed on a computer with a
Core i3 2.40 GHz CPU and 4 GB of memory.

5.1. Risk evaluation on IEEE 118-bus system
The IEEE 118-bus system illustrates a simplistic estimation

of the power system in the Midwest of the United States. It
has 19 generators, 35 condensers, 186 lines, and 91 loads [35].
Under normal operating conditions, the total generation capacity
is 4377.4 MW and 1474.94 MVar, whereas the total load is 4242
MW and 1438 MVar. Here, the contingency set is first constructed.
Then, the grid operating situation is measured by the power flow
solution after the contingency. When power flow calculations do
not converge, load shedding is performed in steps. When a line’s
maximum capacity is exceeded, it is removed from the power
system, and this procedure continues until there are no more
overloads. Finally, the consequences of line outages are evaluated
by the electrical and structural indices mentioned above. The 138,
230, and 345 kV circuit outage data by average duration for
2015–2019, as well as their transformer data, are reported in Ref.
[36]. The obtained risk indices are sorted for assessing the severity
of line outages. The 20 contingencies with the highest ratings are
shown in Table 2.

Based on the proposed risk index, transformer 5-8 is the most
essential elements in the overall system. Also, in previous literature
[37, 38], this branch has been identified as a contingency with the
potential for starting and spreading cascading failures in the IEEE
118 bus system, leading to blackouts. Thus, the correctness of the
obtained results is confirmed by past works. The generator at node
10 and the area of zone 1 with the highest load concentration are
linked together primarily through this transformer. Transformers
5-8 and other grid branches going out at once cause cascade



F. Babaei et al.: Static Security Assessment of Integrated Power Systems with Wind Farms Using Complex Network Theory 6

Table 2. Risk of the line outages for IEEE 118 bus system.

Line From bus To bus Risk
L8 8 5 3.088503

L36 30 17 3.081106
L21 15 17 2.993498
L38 26 30 2.540655
L96 38 65 1.454068
L51 38 37 1.351755
L69 48 49 1.129388
L68 45 49 1.129388
L83 51 58 1.062208
L129 82 83 0.914758
L107 68 69 0.906882

L7 8 9 0.849253
L81 50 57 0.779599
L9 9 10 0.727632

L40 29 31 0.676063
L66 42 49 0.658092
L37 8 30 0.603534
L54 30 38 0.455442
L62 45 46 0.445464
L33 25 27 0.404201

failures to start. In addition, the disconnection of transformers 5-8
causes lines 830 to become overloaded. The security risk index for
all line outages in this system is illustrated in Fig. 5.

Fig. 5. Line outages risk for IEEE 118 bus system.

5.2. Risk evaluation on modified IEEE 118-bus system
Simulation is performed on the modified IEEE 118 bus system

to investigate the effectiveness of the proposed security assessment
method. For this goal, it has been constructed by adding 11 wind
generators and 4 energy storage systems to the IEEE 118-bus
system. Note that information on the installed capacity and location
of wind generators and energy storage systems is provided in
Ref. [39]. In this case, simulations are performed on the same
calculation platform. Due to the results presented in Table 3, high
penetration of wind power can lead to an increase in the degree
of power system risk. Here are some of the contingencies with the
highest risk level.

Also, the computed risk index for all line outages is illustrated
in Fig. 6.

Fig. 6. Line outages risk for all branch of modified IEEE 118 bus system.

The risk-based security assessment process previously discussed
is used to identify the critical branches in the modified 118

Table 3. Risk of the line outages for the modified IEEE 118 bus system.

Line From bus To bus Risk
L161 89 92 20.62431
L59 38 37 19.96280
L157 89 90 2.15620
L94 54 59 1.21720
L46 29 31 1.01920
L76 42 49 1.00960
L77 45 49 1.00960
L90 56 57 0.83460
L91 50 57 0.83460
L9 8 5 0.82757

L40 27 28 0.78500
L41 28 29 0.78500
L74 47 49 0.51340
L103 61 62 0.40860
L148 82 83 0.40480
L149 83 84 0.40480
L166 94 95 0.39840
L130 69 75 0.38980
L131 74 75 0.38980
L70 45 46 0.35960

bus system. According to the proposed risk index, it has been
determined that Lines 8992 and Transformers 3738 are the two
components of the overall system that are of the highest importance.
The failure of lines 8992 has resulted in the disconnection of a
generation capacity of 810 MW that was previously linked to buses
87 and 89. It is noted that generator failure leads to frequency
instability and starts cascading failures that culminate in a power
system blackout. Figs. 7 and 8 depict the out-of-service branch
or node and the loss of load and generation, respectively. Fig. 9
illustrates the risk resulting from complex network indicators in
the aforementioned system.

Fig. 7. Loss of branch and node for each line outage in modified IEEE
118 bus system.

Fig. 8. Lost load and generation for each line outage in modified IEEE
118 bus system.

In the modified IEEE 118 bus system, Fig. 11 shows how
eliminating line 161, the most severe contingency, impacts
the branch power flow. As seen, the loading of the adjacent
transformers and lines increases as the above-mentioned line is
removed. After a while, these outages isolate a section of the power
system, which results in diverging power flow and blackouts.
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Fig. 9. Topology risk index for modified IEEE 118 bus system.

(a)

(b)
Fig. 10. a) Cascading failure stages, b) Blackouts caused by the line outage
161.

Fig. 11. Power flow variation after line outage 161.

5.3. Risk evaluation on modified IEEE 300 bus system

In this paper, the modified IEEE 300-bus system, which consists
of 69 generators, 195 loads, and 416 branches, is used to illustrate
the effectiveness of large-scale power systems. Also, the overall
generation is 36418 MW and 15586 MVar, while the total load
is 23526 MW and 7788 MVar under normal operating conditions.
In the modified 300-bus network, a wind farm with a maximum
generation capacity of 500 MW is added at buses 84, 143, 190,
236, 241, 7002, 7003, 7012, 7017, 7024, 7039, 7061, 7130, 7139,
and 7166 [40]. Some of the contingencies with the highest risk
level are reported in Table 4. Also, Fig. 12 shows the risk index
for each line outage in the modified IEEE 300 bus system.

In order to maintain the power system’s reliability and stability,
it is necessary to keep the power generation equal to the demand
at all times. For this goal, several smaller power networks are

Table 4. Risk of the line outages for modified IEEE 300 bus system.

Line From bus To bus Risk
L386 223 224 0.725001
L387 229 230 0.720115
L385 218 219 0.710916
L389 238 239 0.61881
L378 195 212 0.59849
L392 120 1200 0.573222
L391 119 1190 0.532857
L379 200 248 0.513247
L321 235 238 0.419986
L390 196 2040 0.419799
L380 201 69 0.389403
L388 234 236 0.377782
L408 7057 57 0.349282
L395 7061 61 0.336467
L409 7044 44 0.321108
L91 41 49 0.310675
L410 7055 55 0.307773
L100 45 74 0.298431
L374 164 155 0.284386
L177 118 119 0.273003
L404 7139 139 0.270387
L328 244 246 0.247636
L383 209 198 0.24616
L249 173 174 0.245234
L407 7039 39 0.241081
L174 115 122 0.24022
L405 7012 12 0.237211
L173 112 114 0.235707
L111 57 58 0.232738
L382 204 2040 0.226615

interconnected to form much bigger ones. The results also validate
that the larger the network dimensions, the lower the probability
of cascading failure and widespread blackouts. Moreover, Figs.
13 and 14 illustrate the out-of-service branch/node and the loss
of load and generation. According to the obtained results, the
modified IEEE 300 bus system has a high level of security for the
specified line outages under N-1 criteria. Moreover, the risk value
of line outage 386 is caused by the structural indices because all
buses and lines are in service. This fact is presented in Fig. 15.
Comparing the results of modified IEEE 118 and 300 buses reveals
that the larger the network dimensions and the greater the number
of connections, the lower the likelihood of cascading failures and
blackouts.

Fig. 12. Line outage risk for all branches of the modified IEEE 300 bus
system.

6. CONCLUSIONS

This paper provides a novel risk index for power system
security assessment with a broad emphasis on integrating grid
electrical and structural characteristics. For this goal, structural
indices such as transmission efficiency and vulnerability have
been combined with electrical features like cascading failure and
its consequences. Also, the combined line outage and Weibull
distribution functions have been used to model, respectively, the
probability of line outages and wind speed uncertainty. The
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Fig. 13. Loss of branch and node for each line outage in modified IEEE
300 bus system.

Fig. 14. Lost load and generation for each line outage in modified IEEE
300 bus system.

Fig. 15. Graph model of modified IEEE 300 bus system with line outage
L386.

simulations were implemented on the modified IEEE 118 and 300
bus systems with wind farms to analyze the presented method’s
efficiency in the security assessment. This method can investigate
the numerous contingencies to be studied in security assessment
and rank the contingencies using the corresponding risk index.
Furthermore, it enables transmission system operators to determine
the most hazardous contingencies and provide preventive or
corrective actions to address them. In summary, our approach is a
step forward in traditional security assessment since it completes
the N-1 credibility criterion with outages that lead to cascading
failure. On the other hand, it determines the power system security
status with less computational burden and improves the ability to
deal with critical contingencies.
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