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Abstract— Distribution system state estimation (DSSE) is widely used for real-time monitoring of power grids, where different types of
metering devices such as phasor measurement units, smart meters, power quality meters, and etc. are installed. The accuracy of estimated
states and the system observability level depends on the type, number and location of meters and since there are many nodes and
branches in such large networks, a highly redundant measurement infrastructure is practically unattainable due to the limited investment
budget. Hence, this paper proposes a novel meter placement algorithm aiming to minimize the distribution system state estimation error
and enhance the system observability level considering the limited number of available meters or investment cost. To this end, on one
hand, Monte Carlo simulation (MCS) is applied to a weighted least squares (WLS) based DSSE to find the nodal voltage magnitude
and angle as the state variables under the uncertainty of measurements. A MCS and WLS-DSSE hybrid iterative nonlinear optimization
mesh adaptive direct search (NOMADS) algorithm is proposed to obtain the best locations of the voltage measuring units considering a
trade-off between the DSSE performance and the investment cost. The uncertainties associated with the voltage measurements are modeled
using random errors with normal probability distribution function. The efciency and applicability of the proposed method are analyzed by
its implementation on a 25-node unbalanced radial distribution system and numerical results demonstrate that this method technically
outperforms other heuristic algorithms in the literature which are usually computationally intractable or more demanding in finding the
optimal meter places under uncertainties. Compared to other recently developed algorithms, the accuracy of the estimated states as well as
the runtime of the proposed algorithm are improved significantly especially under severe measuring errors. Moreover, it is capable to find
the minimum number of voltage meters ensuring that the system observability criterion and the expected DSSE accuracy are fulfilled under
the uncertain operating conditions.

Keywords—Distribution system state estimation (DSSE), weighted least squares (WLS), meter placement, nonlinear optimization mesh
adaptive direct search (NOMADS).

NOMENCLATURE

Subscripts and superscripts
iter Iteration of meter placement algorithm
k Iteration of NOMADS algorithm
v Iteration of WLS based DSSE method
Symbols
erandi,s Random error for modelling the uncertainty of the voltage

measurement i at Monte Carlo scenario s
I
(v)
ϕ Load current for phase ϕ at iteration of DSSE algorithm
M (k,∆k) Model of a mesh with size ∆k at iteration k of

NOMADS algorithm
N

(iter)
VM Voltage meters at iteration iter of meter placement

algorithm
Nmin
VM , N

max
VM Minimum and maximum number of meters

PLoadϕ , QLoadϕ Active and reactive power load for phase ϕ
Pk A set of trial mesh points at iteration k of NOMADS

algorithm
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Pmax
V , Pmax

δ Probability of the voltage magnitude/phase angle
estimation error violation according to the actual and
estimated values of the nodal voltages

vrϕ, v
i
ϕ Real and imaginary parts of nodal voltage for phase ϕ

V
(v)
ϕ Voltage magnitude for phase ϕ at iteration v of DSSE

algorithm
V esti , δesti Actual voltage measurement i at Monte Carlo scenario

s
V LFi Real and imaginary parts of nodal voltage for phase ϕ
V acti,s Voltage magnitude for phase ϕ at iteration of DSSE

algorithm
εV , εδ Predefined threshold values for relative errors of voltage

magnitude and angle between actual and estimated nodal
voltages

cj(y) j-th optimization constraint of NOMDAS algorithm
Dk Positive spanning set representing n × 2n directions at

iteration k that is modelled as a [−I I]n×2n matrix
Ir, Ii Real and imaginary parts of branch current
In×n Identity matrix
x(v) Estimated voltage magnitude and angle of node i
yi Binary variable equal to 1 if there is a voltage meter at

node i, otherwise it will be 0
e Measurements error vector
G Gain matrix of DSSE algorithm
H Measurements Jacobian matrix
J(x) Objective function of DSSE algorithm (i.e., weighted

least squares of estimation errors)
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m Total number of measurements
W Voltage of node i obtained from the backward-forward

sweep load flow method
Y Binary decision vector in meter placement process
z Measurement vector

1. INTRODUCTION

Nowadays, increasing rate of energy demand and uncertainties
associated with renewable power generation have greatly induce
electric distribution networks to be operated close to their stability
margins [1]. Hence, real-time monitoring of power distribution
systems is absolutely essential for effective control and protection
actions [2, 3]. However, as in realistic distribution feeders, there
are a large number of nodes and branches, it is not economical to
install the metering devices such as smart meters, micro phasor
measurement units (µPMUs), and power quality monitors (PQMs)
at all nodes or branches [4, 5]. In this way, distribution system
state estimation (DSSE) methods are usually used for processing
the limited number of actual measurements under a given network
topology to estimate all nodal voltages and branch currents [6].
In other hand, depending on how many measurement points
exist in a grid, the DSSE algorithm may or may not converge
to a state estimation [7]. A system is called observable when
there are adequate measurements for estimating its state variables
(i.e., magnitude and phase angle of nodal voltages or branch
currents) with minimum errors but distribution networks are mostly
unobservable due to the lack of actual measurements [8]. To deal
with this problem, many pseudo measurements with high variance
(e.g., load forecasts) must be used in the DSSE algorithm as the
input data to make the network observable. Mathematically, an
observable network is generally a determined system in which
the number of measurement points is equal to the number of
state variables [9]. In such systems, there is no redundancy in
measurement set and thus, one exact solution can be found as the
systems state. Nevertheless, since the type, number and location
of actual measurements affect the accuracy of DSSE module
[10], a meter placement algorithm should be adopted to optimally
determine the location of new meters in distribution networks with
the aim of achieving a fully-observable system [11].

The meter placement problem has been first introduced in
the work of Schweppe and Wildes [12]. In this research, the
measurement covariance matrix is used for solving both DSSE
and meter placement problems. Some notable works focusing on
µPMUs and smart meters placement in power distribution systems
are also extended in [13–16]. In [17, 18], a mixed integer linear
programming (MILP) problem is solved to allocate the voltage
and power measurements in radial feeders. Sum of node voltage
estimation errors is minimized considering the maximum number
of voltage and flow meters as well as the investment cost limit. In
[18], uncertainties associated with the distributed energy resources
(DER) and loads are also included in the allocation process. An
integer linear programming model is developed in [19] for optimal
ţPMU placement in order to maintain network observable following
a reconfiguration in distribution network considering the limited
current and voltage measurement channels. In [20], a data-based
method is described for optimal sensor placement to observe
the system states based on the proper orthogonal decomposition
approach using a limited number of measurements. A real-time and
computationally efficient state estimation algorithm is developed in
[21] for distribution networks using PMUs which can detect and
identify the anomalies such as bad date and sudden load changes.

In [10], a probability index is introduced to find the most
appropriate places for meters installation. This index is calculated
based on maximum relative errors between the actual and estimated
values of voltage magnitude and phase angle as well as the active
and reactive power flows of lines under different Monte Carlo
simulation (MCS) scenarios. In the proposed model, uncertainties
of loads and also actual measurements data are randomly generated

by 100 runs of MCS. At each meter placement scenario, the relative
errors of voltage magnitude and phase angle are calculated for all
network nodes. A node with maximum relative error between its
actual and estimated voltage values is selected as candidate for
installation of voltage measuring devices. Similarly, the relative
errors of active and reactive power flows of the branches are
determined as Monte Carlo iterations progress, according to which
a flow meter is then installed at a line with the maximum area of
the error ellipse.

In [22], the authors have mentioned that there are four important
aspects for distribution operators to prefer some specific places to
others for the purpose of installing metering devices: (1) branches
with high power capacity, (2) branches with high power losses, (3)
measurements in branches with frequently changes of power flow
direction, (4) main feeders, which directly feed several connected
laterals. With this aim in mind, the operational priority indices,
investment costs, relative errors of voltage magnitude and phase,
and also network observability are considered as objectives of the
meter placement problem. Moreover, in their work, relative errors
of node voltage magnitude and phase assumed to be 1% and
5%, respectively. Authors of [23, 24] have supposed that there
are two types of metering devices, µPMUs and smart meters,
to be installed in distribution networks. In their work, total cost
of µPMUs and smart meters as well as relative errors of nodal
voltage magnitude and phase angle are simultaneously minimized
using a GA based on N-1 degradation robustness approach and
a hybrid particle swarm optimization (PSO)-Krill Herd algorithm
(KHA). In addition, they have restricted the relative errors of
the voltage magnitude and phase using two inequality constraints.
More importantly, the stochastic nature of photovoltaic panels and
wind farms generation is also included in a robust optimization
scheme. In [25], sum of diagonal elements of covariance error
matrix is considered as an objective function to be minimized.
The main focus of this research is that since a fully-observable
n-bus grid is fulfilled by allocating (n-1) number of measurements,
the observability of distribution feeder can only be satisfied if
the rank of Jacobian matrix is greater than (n-1). To develop
previous works, Wang et al. [26] solved a robust meter placement
problem considering uncertainties associated with output powers of
distributed generations (DGs) and various network reconfiguration
scenarios using Markov chain and Gaussian mixture model (GMM).
Additionally, MCS is run to model uncertainties originated by
the inherent inaccuracy of measurements. In this work, the total
cost of the metering infrastructure is limited to an investment
budget with the aim of minimizing the average value of maximum
relative errors of the nodal voltages in MCS. In the same vein, in
[27], an interior point method is combined with DSSE algorithm
to minimize the total investment cost of power flow and voltage
magnitude meters, as well as sum of the average value of nodal
voltage magnitude and phase relative errors, obtained over MCS
process, for all network nodes.

Raposo et al. [28] have considered the correlated measurements,
multiple load levels and also the accuracy of estimation results to
find an optimal measurement system design. Toward this aim, they
have also employed binary particle swarm optimization (BPSO)
algorithm. Further, they have introduced a probabilistic risk index,
which limits the maximum voltage magnitude and phase errors to
1% and 5%, respectively. In their proposed model, the maximum
number of different types of meters is also considered as a
constraint to lead the algorithm toward an adequate solution vector
with the minimum investment cost. In [29], the ellipsoid area of
the estimation error is minimized to improve the accuracy of DSSE
using a mixed-integer semi-definite programming method. In [11],
a limited number of voltage magnitude meters and µPMUs is
assumed to be available in the distribution network, according to
which the accuracy of DSSE algorithm is investigated by tracing
the inverse of Fisher information matrix. This work has shown that
the Greedy algorithm is able to find a near-optimal solution with
minimum total estimation variance for meter placement problem.
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Othman et al. [30] have presented a rule for installation of smart
meters in distribution systems. A reference meter is placed at the
HV/MV substation for concentrating some key information of the
feeders and their laterals (e.g., branch topologies, impedances, line
currents and power flows, voltage profile, load levels, and power
losses) from all individual smart meters. In this proposed approach,
the nodes located at the beginning and end of the farthest laterals
of each feeder are suggested as candidate points for installing
smart meters.

Another relevant issue is discussed in [31], which a seeker
optimization technique is employed for optimal allocation of
power quality (PQ) meters. In this model, the weighted sum
of the maximum relative errors of harmonic voltage values is
minimized considering a limited number of PQ measuring units.
In [32], an optimal ţPMU placement algorithm is proposed to be
applicable in radial distribution networks, taking into account the
uncertainties of the configuration and topology of their feeders.
From a technical viewpoint, data security and system observability
is evaluated in [33] using a bi-level optimization model. At the
upper level, optimum locations of µPMUs are found considering
the observability of nodes and the investment cost of measurement
system. Owing to some security issues, it is assumed that all
µPMUs should be covered at least by one firewall to ensure their
secure data exchange. Hence, a security index is defined for all
nodes and must be maximized in the lower level. In [34], a
weighted least square (WLS)-based DSSE algorithm is developed
introducing virtual meters concept. It is assumed that a virtual
meter is installed at each node except the slack bus (i.e., the
HV/MV substation), which results in higher accuracy and lower
calculation time in DSSE convergence. Mazlumi et al. [35] have
proved that data security and system observability can be improved,
especially in case of line or µPMU outages, if some single-channel
µPMUs are placed at the beginning points of candidate branches.
In [36], it is suggested that PMUs data are used for solving
the DSSE algorithm in balanced multi-area distribution systems.
For this purpose, the main system must be separated into several
sub-systems based on µPMUs locations. Then, DSSE algorithm is
run for each area to estimate all its local state variables. These
estimated values along with actual measurements can be used to
solve the integrated DSSE for the primary grid.

The problem addressed in this paper is of high practical
significance for any power distribution company. As reviewed in
recently published works, there are some heuristic approaches for
optimal placement of different types of metering devices such as
PQ monitors, µPMUs, smart meters, and so on. But, uncertainties
associated with actual measurements have not be well modeled
yet; especially, the conventional meters for measuring the voltage
magnitude of nodes as well as the active and reactive power flows
of lines. Moreover, most of these approaches do not consider the
trade-off between accuracy of DSSE algorithm and computational
complexity of meter placement process. Hence, this paper presents
a simple, straightforward and efficient meter placement approach
for application in radial distribution feeders considering the
actual measurements uncertainties/errors and enhancing modeling
accuracy of the DSSE-based optimization technique. The novelties
of the present research are summarized as follows:

• A nonlinear optimization mesh adaptive direct search
(NOMADS) algorithm is developed for optimal allocation
of voltage magnitude and phase angle measuring units in
medium-voltage radial distribution feeders. Compared to
other recently published works, this optimization procedure
minimizes sum of weighted squares of DSSE errors
considering a limited number of voltage measurements under
uncertain operating condition. It is supposed that there is a
smart meter in bus 1 (slack node). In the first iteration of the
NOMADS algorithm, the locations of the available meters
as well as the maximum number of voltage meters, which
could be installed at network nodes, are determined by the
distribution system operator (DSO).

• In each meter placement scenario generated by NOMADS,
a number of Monte Carlo simulations (MCS) are run to
calculate the probability of the voltage magnitude/phase angle
estimation error violation based on actual and estimated values
of nodal voltages. In other words, the actual measurements
matrix is updated at each iteration of NOMADS algorithm
according to the randomly generated binary decision variables,
which indicate the installation states of the voltage meters
at network nodes. Then, a number of MCS is run for
each iteration of NOMADS algorithm to generate a random
error with normal distribution function for each actual
measurement.

• At each MCS, a weighted least squares based DSSE
algorithm is run to find optimal values of system states
(magnitude and angle of nodal voltages) and their relative
errors according to actual voltages. The maximum relative
errors of the node voltage magnitude/phase are calculated
based on the actual voltage measurements. If these values
are less than 1% for voltage magnitude and 5% for voltage
phase, a feasible solution is found for allocating meters;
otherwise another meter placement scenario will be generated
by NOMADS algorithm. If a feasible solution is obtained
for meter locations, the maximum number of meters required
for making the distribution system full observable will be
updated as equal to minimum value of (a) and (b), where:
(a) the number of primary meters (determined by DSO)
and (b) the sum of binary decision variables obtained in
this solution (indicating the installation status of voltage
meters). Otherwise, if an infeasible solution is found and
the optimization constraints are not fulfilled, the minimum
required voltage meters will be calculated as the maximum
value of (c) and (d), where: (c) the number of primary meters
(determined by DSO) and (d) minimum required meters (at
iteration 1, this value is considered as the number of available
meters before implementation of the placement strategy; at
other iterations, it is calculated as minimum of (c) and (d)).

• After updating the minimum and maximum numbers of the
voltage measurements, the number of meters will be updated
as:
round((minimum number of meters + maximum number of
meters)/2)
Then, meter placement solution is updated to be used as the
initial solution vector in NOMADS optimization algorithm.
This process is repeated until the minimum number of the
voltage measuring units is found in a way that the maximum
relative errors of the voltage magnitude and phase among all
nodes for at least 80% of MCS would be less than 1% and
5%, respectively.

• Simulations are conducted on a 25-node radial distribution
system to find the best measuring scheme for the installation
of the voltage magnitude and phase angle metering devices.
Numerical analyses are finally presented to reveal the higher
accuracy and lower computational burden of the proposed
approach in comparison with other recently introduced
algorithms.

Other parts of this paper is organized as follows. In Section 2,
the proposed meter placement algorithm is presented to illustrate
performance gains of using WLS-based DSSE and NOMADS
optimization methods. A case study and its numerical results are
evaluated and discussed in Section 3. Finally, some concluding
remarks and future trends are stated in Section 4.

2. PROPOSED METER PLACEMENT STRATEGY
In the branch-current based DSSE approach, the measurement

vector z is defined using the state vector x and the measurement
error vector e, as formulated by Eq. (1).

z = h(x) + e (1)
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where, h(x) is the function of the measurement matrix which
relates the measurements to the state variables. According to
Eq. (2), the real and imaginary parts of the branch current are
considered as the state variables.

x = [Ir, Ii] (2)

The performance of the DSSE algorithm is evaluated by the
weighted least squares (WLS), as given by Eq. (3).

J(x) =
∑m

i=1
wi (zi − hi (x))

2 = [z − h(x)]TW [z − h(x)]

(3)

The weighting matrix and the total number of actual and
pseudo measurements are denoted by W and m, respectively. As
calculated in Eqs. (4)-(6), the decision variables of the DSSE
algorithm at each iteration v can be found when the 1st-order
derivation of the objective function J(x) is zero.

g(x) = ∂J(x)/∂x = −HT (x)W [z − h(x)] = 0;
H(x) = ∂h(x) = ∂h(x)/∂x

(4)

x(v+1) = x(v) −
[
G
(
x(v)

)]−1

G
(
x(v)

)
(5)

G
(
x(v)

)
= ∂g(x)/∂x = HT (x).W.H(x) (6)

Where, Jacobian and Gain matrices are indicated by H and G,
respectively. It is supposed that the values of active and reactive
loads are pseudo measurements. These values are stated in the
form of a three-phase current using Eq. (7) to be simply used in
the branch-current based DSSE algorithm.

I
(v)
ϕ =

[
PLoadϕ − jQLoadϕ

V
(v)
ϕ

]∗

; ∀ϕ ∈ {a, b, c} (7)

where, V (v)
ϕ is the three-phase nodal voltage magnitude at

iteration of the state estimation process. To involve the role of
each measurement (both actual and pseudo ones) in the three-phase
DSSE solution, a weighting matrix needs to be also defined; as
shown in Eqs. (8) and (9).


∆Ira
∆Irb
∆Irc
∆Iia
∆Iib
∆Iic



(v)

=
[
G
(
I(v)

)]−1

.HT
(
I(v)

)

.W.



∆Ira
∆Irb
∆Irc
∆Iia
∆Iib
∆Iic
∆V ra
∆V rb
∆V rc
∆V ia
∆V ib
∆V ic



(v)

(8)

W=



W r
Ia 0 0 0 0 0 0 0 0 0 0 0
0 W r

Ia 0 0 0 0 0 0 0 0 0 0
0 0 W r

Ic 0 0 0 0 0 0 0 0 0
0 0 0 W i

Ia 0 0 0 0 0 0 0 0
0 0 0 0 W i

Ib 0 0 0 0 0 0 0
0 0 0 0 0 W i

Ic 0 0 0 0 0 0
0 0 0 0 0 0 W r

va 0 0 0 0 0
0 0 0 0 0 0 0 W r

vb 0 0 0 0
0 0 0 0 0 0 0 0 W r

vc 0 0 0
0 0 0 0 0 0 0 0 0 W i

va 0 0
0 0 0 0 0 0 0 0 0 0 W i

vb 0
0 0 0 0 0 0 0 0 0 0 0 W i

vc


(9)

Accordingly, the Jacobian matrix of the state estimation
algorithm can be calculated as Eq. (10). In the mesh adaptive
direct search optimization algorithm, the objective function f(y)
with the decision variables y is minimized as Eq. (11) [37].

H =



∂Ira
∂Ira

∂Ira
∂Ir

b

∂Ira
∂Irc

∂Ira
∂Iia

∂Ira
∂Ii

b

∂Ira
∂Iic

∂Irb
∂Ira

∂Irb
∂Ir

b

∂Irb
∂Irc

∂Irb
∂Iia

∂Irb
∂Ii

b

∂Irb
∂Iic

∂Irc
∂Ira

∂Irc
∂Ir

b

∂Irc
∂Irc

∂Irc
∂Iia

∂Irc
∂Ii

b

∂Irc
∂Iic

∂Iia
∂Ira

∂Iia
∂Ir

b

∂Iia
∂Irc

∂Iia
∂Iia

∂Iia
∂Ii

b

∂Iia
∂Iic

∂Iib
∂Ira

∂Iib
∂Ir

b

∂Iib
∂Irc

∂Iib
∂Iia

∂Iib
∂Ii

b

∂Iib
∂Iic

∂Iic
∂Ira

∂Iic
∂Ir

b

∂Iic
∂Irc

∂Iic
∂Iia

∂Iic
∂Ii

b

∂Iic
∂Iic

∂Ira
∂Ira

∂Ira
∂Ir

b

∂Ira
∂Irc

∂Ira
∂Iia

∂Ira
∂Ii

b

∂Ira
∂Iic

∂Irb
∂Ira

∂Irb
∂Ir

b

∂Irb
∂Irc

∂Irb
∂Iia

∂Irb
∂Ii

b

∂Irb
∂Iic

∂Irc
∂Ira

∂Irc
∂Ir

b

∂Irc
∂Irc

∂Irc
∂Iia

∂Irc
∂Ii

b

∂Irc
∂Iic

∂Iia
∂Ira

∂Iia
∂Ir

b

∂Iia
∂Irc

∂Iia
∂Iia

∂Iia
∂Ii

b

∂Iia
∂Iic

∂Iib
∂Ira

∂Iib
∂Ir

b

∂Iib
∂Irc

∂Iib
∂Iia

∂Iib
∂Ii

b

∂Iib
∂Iic

∂Iic
∂Ira

∂Iic
∂Ir

b

∂Iic
∂Irc

∂Iic
∂Iia

∂Iic
∂Ii

b

∂Iic
∂Iic



(10)

min
y∈Ω⊆Rn

f (y) (11)

In which, f : Rn → R ∪ {∞} , Ω =
{y ∈ Y : cj (y) ≤ 0; j = 1, 2, ..., l} and Y ⊆ Rn represents the
closed or bounded constraints of the decision variables y. Moreover,
cj(y) : Rn → R for j = 1, 2, ..., l models other optimization
limitations or open constraints. To solve such a big decision-making
problem aected by uncertain input data, the method of NOMADS
can constitute a powerful solution alternative. It is an iterative
algorithm using a mesh with discrete structure, which is modeled
at each iteration k as Eq. (12) [37].

M (k, ∆k) = ∪y∈ψk {Y +∆kDk} ⊆ Rn (12)

where, the parameter ∆k ∈ R+ refers the mesh size, Dk is
a positive spanning set representing n × 2n directions in Rn
that is generally modeled as a

[
−I I

]
n×2n

matrix. It should
be noted that I is an n × n identity matrix. In addition, ψk
represents the set of points for assessing both objective function
and constraints at iteration k. It is assumed that all trial mesh
points belongs to a compact set, for instance, set ω, and each
mesh is constructed using integer combinations of ∆kD. Hence,
there is a finite number of points in ω ∩M (k,∆k). As illustrated
in Fig. 1, each iteration of mesh adaptive direct search consists
of two steps, namely, poll and search. In the search step, the
objective function is evaluated on a finite number of points of
mesh M (k,∆k) using the variable neighborhood search (VNS)
[37]. The set of trial mesh points included in the poll step, called
a frame, is also constructed as Pk using Eq. (13). The objective
function is then evaluated on nD points of Pk. The parameter Dk
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models the set of directions involved in construction of the frame
Pk.

Pk = {Y +∆kd : d ∈ Dk} (13)

If a trial mesh point with lower objective function than that
explored previously is found, it is called an improved mesh point
resulting a successful iteration. Hence, the mesh size parameter
and the solution are updated using Eqs. (14) and (15), respectively.

∆k+1 = τwk ×∆k (14)

Yk+1 = Yk ×∆kDk (15)

Note that τ⟩1 is a fixed reasonable number. In addition, wk is a
positive finite integer if kth iteration is marked success; otherwise,
it will be negative. The mesh size will be decreased after failures
and increased while a successful iteration is found. As mentioned
before, Dk+1 is an identity matrix at iteration k + 1, which is
shown as

[
−I I

]
n×2n

.A binary decision vector is defined as
Eq. (16), where, yi denotes the installation status of the voltage
meter at node i and ΩB is the set of network nodes. If a voltage
measuring unit is placed at node i, yi will be equal to 1; else it is
0.

Y = [y1, y2, ..., yi, ... yN ] ; i ∈ ΩB (16)

To find the binary decision vector Y , the lower and upper
bound of the integer decision variables yi should be set to 0
and 1, respectively. Before adopting the optimal meter placement
strategy, if there is a voltage meter at node j, the lower bound
of the decision variable yj will be equal to 1. Taking into
account this trick, the initial decision vector y must be primarily
updated. Afterwards, considering the investment budget on the
one hand, and the voltage meter cost on the other hand, the
maximum number of measuring devices, which can be added to
the metering infrastructure, is determined by DSO as Nmax

VM . In
the first scenario of the NOMADS optimization algorithm, the
number of voltage meters is updated using N iter=1

VM = Nmax
VM .

Meanwhile, the minimum
(
Nmin
VM

)
and maximum (Nmax

VM ) numbers
of meters are determined based on available measurements in the
distribution network. For example, if there are two voltage meters
at nodes 1 and 5, initial values of these variables must be set to
Nmin
VM = Nmax

VM = 2. Also, a stopping criterion is defined for the
NOMADS optimization method as stopopt, which initially equals
to 0 and changes into 1 when the algorithm converges to the
best solution. While stopopt = 0, the MCS-based DSSE algorithm
is run taking into account the binary state vector y. Indeed, this
algorithm is run by applying the binary state variables xi to the
node voltage measurement matrix as Eq. (17).

V acti, s =
(
1 + erandi, s

)
× V LFi ; ∀i ∈ ΩB , xi = 1 (17)

If there is a voltage meter at node i(i.e., yi = 1), the random
error erandi,s is used to model the uncertainty of the voltage
measurement i at Monte Carlo scenario s, which is either a
positive or negative coefficient taking into account the accuracy
of the voltage meters. The nodal voltages obtained from the load
flow algorithm

(
V LFi

)
are also used to generate uncertain values

as the actual voltage measurements
(
V acti,s

)
.

The observability of distribution system is investigated at each
iteration of NOMADS optimization algorithm. As can be modeled
by Eq. (18), if the gain matrix G is not singular, the WLS
algorithm can estimate the network state variables and thereby,
the system could be full-observable. Otherwise, another solution
should be generated by the NOMADS algorithm.

det {G(x)} ̸= 0 (18)

The probability of the voltage magnitude/phase angle estimation
error violation is calculated based on actual and estimated values
of nodal voltages, as given by Eq. (19). In this study, it is assumed
that εV = 1%, εδ = 5% [28], and PV = Pδ = 0.2.

Pmax
V = max

i∈ΩB

{
P
(∣∣∣V est

i −V act
i

V act
i

∣∣∣ ≥ εV
)}

≤ pV ,

Pmax
δ = max

i∈ΩB

{
P
(∣∣∣ δesti −δact

i

δact
i

∣∣∣ ≥ εδ
)}

≤ pδ
(19)

After running a large number of MCS (for example, 1000
scenarios), if both risk indices Pmax

V and Pmax
δ are less than a

predefined probability (here, 20%), this binary solution vector is
saved as a feasible meter placement scenario. Hence, the maximum
number of meters is updated as Eq. (20). Otherwise, if the
constraint Eq. (19) is not fulfilled, a feasible solution will not be
found and the minimum number of meters should be updated as
Eq. (21).

Nmax
VM = min

(
N

(iter)
VM ,

∑
i∈ΩB

yi

)
(20)

Nmin
VM = max

(
N

(iter)
VM , Nmin

VM

)
(21)

The number of meters is then updated using Eqs. (20) and (21),
as modeled in Eq. (22).

N
(iter+1)
VM = round

{
0.5×

(
Nmin
VM , N

max
VM

)}
(22)

If N (iter+1)
VM = N

(iter)
VM , the optimization algorithm is converged

to the best solution finding the minimum number of the voltage
measuring units, as stated in Eq. (22).

Objective function =
∑

i∈ΩB

yi (23)

3. ILLUSTRATIVE EXAMPLE, NUMERICAL RESULTS
AND DISCUSSIONS

In this section, the proposed meter placement algorithm,
illustrated through the owchart depicted in Fig. 1, is applied to
the IEEE unbalanced 25-node radial distribution test system. The
nominal voltage and base power of the benchmark feeder are
20kV and 1MVA, respectively. The single-line diagram of this
medium-voltage feeder is illustrated in Fig. 2 [38]. The active and
reactive loads are reported in Table 1. Five impedance matrices
shown in Fig. 2, are considered as below:

Z1 =

 0.0393 + 0.0730i 0.0018 + 0.0161i 0.0018 + 0.0161i
0.0018 + 0.0161i 0.04 + 0.0716i 0.002 + 0.03i
0.0018 + 0.0161i 0.002 + 0.03i 0.04 + 0.0723i



Z2 =

 0.1042 + 0.0930i 0.0018 + 0.0181i 0.0016 + 0.0135i
0.0018 + 0.0181i 0.1050 + 0.0922i 0.002 + 0.0242i
0.0016 + 0.0135i 0.002 + 0.0242i 0.1048 + 0.0922i



Z3 =

 0.2055 + 0.1513i 0.0016 + 0.0135i 0.0016 + 0.0135i
0.0016 + 0.0135i 0.2055 + 0.1513i 0.0016 + 0.0135i
0.0016 + 0.0135i 0.002 + 0.0242i 0.2055 + 0.1513i



Z4 =

 0.1042 + 0.093i 0.0016 + 0.0135i 0.0016 + 0.0135i
0.0016 + 0.0135i 0.1048 + 0.0922i 0.0016 + 0.0135i
0.0016 + 0.0135i 0.002 + 0.0242i 0.1048 + 0.0922i
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Fig. 1. The flowchart of the proposed meter placement algorithm.

Z5 =

 0.1042 + 0.093i 0.0016 + 0.0135i 0.0016 + 0.0135i
0.0016 + 0.0135i 0.1042 + 0.093i 0.0016 + 0.0135i
0.0016 + 0.0135i 0.002 + 0.0242i 0.1048 + 0.0922i


The branch data of this system is also presented in Table 2.

In this study, the numerical results obtained from the forward-
backward sweep (FBS) load flow of radial distribution systems
are analyzed to assess the accuracy of the estimated states (i.e.,
nodal voltages). With this aim in mind, the load flow results
obtained for the node voltage magnitude and phase angle are also
used to generate the actual voltage measurements with a random
measurement error at each MCS. In other words, if the NOMADS
algorithm generates a meter placement solution indicating that there
is a voltage meter at node k, the actual voltage measurement of the
node k at each MCS is generated by applying a random variable
error on its voltage vector obtained from the FBS load flow. To
this end, the load flow results of the test distribution feeder are
reported in Tables 3 and 4 to be used for making the actual voltage
measurements at each MCS and investigating the robustness and
effectiveness of the optimum meter placement solution. It should
be noted that all simulations are coded in MATLAB R2020b and
run on a windows-based laptop with a processor clocking at 2.10
GHz and 4 GB of RAM. Maximum standard errors of actual
voltage measurements and pseudo measurements are considered as
1% and 50%, respectively [17]. It is also assumed that there are

two exiting voltage meters at nodes 1 and 5. Moreover, there is a
current meter at branch 1-2. Note also that the default parameters
used in NOMADS solver [39] are considered for simulations.

At each iteration of NOMADS algorithm, the DSSE algorithm
Eqs. (1)-(10) is run for 1000 MCS updating the nodal voltage
measurement matrix according to the generated meter placement
solution. The observability of distribution system is then evaluated
at each scenario using Eq. (18). If the violation probability of the
voltage magnitude/angle estimation error in 1000 MCS is less than
0.2 and the constraint Eq. (19) is satisfied for all full-observable
MCS, this solution will be marked as feasible for the meter
placement problem, which may be economic or not.

-1cm)
The proposed algorithm is applied to the 25-node test system

in a case study with maximum three voltage measuring units.
In other words, one additional meter should optimally be placed
in the test system considering the observability criterion in Eq.
(18) and the limitations of the nodal voltages relative errors
of Eq. (19) in 1000 MCS of each NOMADS iteration. Hence,
the binary decision variables related to the nodes 1 and 5 are
considered to be 1. In this case, the optimization algorithm is
not converged to a feasible solution. In fact, for more than 20%
MCS of each NOMADS scenario, the maximum relative errors
of the node voltage magnitude and angle are not less than 0.01
and 0.05, respectively. Hence, the minimum number of the voltage
measurements is updated to be four. Simulations are repeated
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Table 1. The active and reactive loads of the distribution test feeder.

Node number Active power (p.u.) Reactive power (p.u.) Node number Active power (p.u.) Reactive power (p.u.)
1 0 0 14 0.0035 0.0017
2 0 0 15 0.0355 0.017
3 0 0 16 0 0
4 0 0 17 0 0
5 0.0126 0.0061 18 0.01 0.0049
6 0 0 19 0.004 0.002
7 0 0 20 0.0054 0.0026
8 0.0083 0.004 21 0.0038 0.0018
9 0.0065 0.0032 22 0.0069 0.0033
10 0.0042 0.002 23 0.0063 0.0031
11 0.0044 0.002 24 0.0045 0.0022
12 0.0067 0.0032 25 0.0087 0.0042
13 0.0028 0.0014

Table 2. The line length of the 25-node radial distribution feeder.

Branch no. From node To node Length (m) Branch no. From node To node Length (m)
1 1 2 190 13 18 21 76
2 27 3 95 14 4 23 76
3 2 6 95 15 9 10 95
4 3 4 190 16 14 17 57
5 6 7 95 17 14 15 57
6 6 8 190 18 19 20 76
7 3 18 95 19 21 22 76
8 4 5 95 20 23 24 76
9 7 9 95 21 10 11 57

10 7 16 95 22 24 25 76
11 7 14 95 23 11 13 38
12 18 19 95 24 11 12 38

Table 3. Nodal voltages obtained from FBS load flow for 25-node test feeder.

Node number Voltage of phase a
(
×104V

)
Voltage of phase b

(
×104V

)
Voltage of phase c

(
×104V

)
1 1.1547 + 0.0000i -0.5774- 1.0000i -0.5774 + 1.0000i
2 1.1403 - 0.0084i -0.5738 - 0.9834i -0.5650 + 0.9945i
3 1.1372 - 0.0102i -0.5730 - 0.9798i -0.5624 + 0.9933i
4 1.1342 - 0.0119i -0.5723 - 0.9763i -0.5598 + 0.9921i
5 1.1329 - 0.0121i -0.5718 - 0.9751i -0.5590 + 0.9912i
6 1.1314 - 0.0098i -0.5703 - 0.9752i -0.5596 + 0.9884i
7 1.1238 - 0.0111i -0.5674 - 0.9682i -0.5550 + 0.9832i
8 1.1287 - 0.0103i -0.5693 - 0.9727i -0.5580 + 0.9865i
9 1.1211 - 0.0116i -0.5663 - 0.9657i -0.5534 + 0.9813i

10 1.1191 - 0.0119i -0.5655 - 0.9638i -0.5521 + 0.9800i
11 1.1181 - 0.0121i -0.5652 - 0.9630i -0.5515 + 0.9793i
12 1.1176 - 0.0121i -0.5650 - 0.9625i -0.5512 + 0.9789i
13 1.1178 - 0.0121i -0.5651 - 0.9626i -0.5513 + 0.9790i
14 1.1188 - 0.0119i -0.5654 - 0.9636i -0.5520 + 0.9798i
15 1.1161 - 0.0124i -0.5644 - 0.9611i -0.5504 + 0.9780i
16 1.1238 - 0.0111i -0.5674 - 0.9682i -0.5550 + 0.9832i
17 1.1188 - 0.0119i -0.5654 - 0.9636i -0.5520 + 0.9798i
18 1.1337 - 0.0108i -0.5717 - 0.9765i -0.5602 + 0.9909i
19 1.1326 - 0.0110i -0.5713 - 0.9755i -0.5595 + 0.9900i
20 1.1316 - 0.0111i -0.5709 - 0.9746i -0.5589 + 0.9892i
21 1.1320 - 0.0110i -0.5710 - 0.9750i -0.5592 + 0.9895i
22 1.1310 - 0.0111i -0.5707 - 0.9740i -0.5586 + 0.9887i
23 1.1326 - 0.0122i -0.5717 - 0.9748i -0.5588 + 0.9910i
24 1.1315 - 0.0124i -0.5713 - 0.9738i -0.5581 + 0.9902i
25 1.1302 - 0.0126i -0.5708 - 0.9726i -0.5573 + 0.9891i
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Table 4. Branch currents for 25-node distribution feeder.

Branch no. Current of phase a (A) Current of phase b (A) Current of phase c (A)
1 11.4835 - 5.7018i -10.6720 - 7.1453i -0.8039 +12.7357i
2 4.9827 - 2.4716i -4.6300 - 3.1030i -0.3524 + 5.5274i
3 6.5008 - 3.2302i -6.0421 - 4.0424i -0.4515 + 7.2083i
4 2.4121 - 1.1990i -2.2435 - 1.5017i -0.1686 + 2.6764i
5 5.5324 - 2.7509i -5.1433 - 3.4395i -0.3824 + 6.1344i
6 0.9684 - 0.4793i -0.8987 - 0.6028i -0.0691 + 1.0739i
7 2.5706 - 1.2726i -2.3864 - 1.6013i -0.1838 + 2.8510i
8 0.9641 - 0.4791i -0.8966 - 0.6003i -0.0675 + 1.0697i
9 1.9484 - 0.9660i -1.8090 - 1.2126i -0.1372 + 2.1595i
10 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i
11 3.5840 - 1.7850i -3.3343 - 2.2269i -0.2451 + 3.9750i
12 0.8031 - 0.3974i -0.7454 - 0.5003i -0.0576 + 0.8906i
13 0.8035 - 0.3976i -0.7458 - 0.5006i -0.0576 + 0.8911i
14 1.4480 - 0.7199i -1.3470 - 0.9014i -0.1010 + 1.6067i
15 1.4612 - 0.7241i -1.3564 - 0.9096i -0.1032 + 1.6192i
16 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i
17 3.2599 - 1.6247i -3.0337 - 2.0250i -0.2220 + 3.6160i
18 0.4828 - 0.2394i -0.4485 - 0.3006i -0.0342 + 0.5356i
19 0.4831 - 0.2395i -0.4488 - 0.3007i -0.0342 + 0.5359i
20 0.9658 - 0.4803i -0.8985 - 0.6012i -0.0673 + 1.0717i
21 1.1372 - 0.5638i -1.0559 - 0.7077i -0.0800 + 1.2603i
22 0.6454 - 0.3217i -0.6011 - 0.4014i -0.0443 + 0.7166i
23 0.3243 - 0.1605i -0.3009 - 0.2020i -0.0231 + 0.3593i
24 0.4886 - 0.2429i -0.4542 - 0.3038i -0.0339 + 0.5418i

Fig. 2. The single-line diagram of the 25-node distribution test system.

considering four voltage measuring units resulting in an optimum
solution vector indicating the nodes 16 and 21 as the best places
for installing two additional voltage meters. Accordingly, the
voltage profile under Monte Carlo scenarios corresponding to the
best solution of meter places are illustrated in Figs. 3 and 4. In
addition, the relative errors of the voltage magnitude and angle of
the estimated states under MCS scenarios and optimal allocation
of meters to nodes 1, 5, 16 and 21, are shown in Figs. 5 and 6,
respectively. It is obvious from Figs. 3 and 5 that the maximum
relative error between the nodal voltage magnitudes estimated by
the WLS based DSSE algorithm and the actual voltage magnitude
values in all MCS is less than the predefined threshold 0.01.

As seen in Fig. 6, it should be noted that the maximum relative
errors of voltage angle estimates do not violate from 1% and

5% for phases b, and c, respectively, and thus Pmax
δ |b,c = 0 .

However, the relative error of the node voltage angle estimates for
phase a in 18% of MCS is higher than 0.05. This indicates that
the constraint (19) is violated with the probability risk index of
Pmax
δ = 0.18, which is less than the threshold value pδ = 0.2.

In the preliminary analysis, the computation time of the proposed
algorithm for the placement of two additional voltage meters is
about 6 minutes. However, based on the minimum number of
voltage meters

(
Nmin
VM = 4

)
, if DSO intends to have 7 meters in

this feeder (which is equipped now with two measuring devices
at nodes 1 and 5), the maximum number of meters must be set
to 7 and the lower and upper bounds of the binary decision
variables 1 and 5 are considered to be 1. To achieve this aim,
the mixed-integer nonlinear problem (Eqs. (1)-(23)) can be run to
find the best locations of the 5 additional meters. In the light of
the above conditions, the MCS and WLS-DSSE hybrid NOMADS
algorithm are converged to four optimum solution vectors, as
presented in Table 5.

As discussed in Section 2 and according to Eqs. (20) and
(21), the proposed algorithm is able to update the maximum and
minimum number of meters required for satisfying the observability
constraint Eq. (18) and fulfilling the probability of estimation error
violation limit (Eq. (19)). Thus, to provide different case studies, it
is supposed that DSO aims to add five meters to the radial feeder
at iteration 1, as presented in Table 5. The proposed algorithm
converges to a good solution vector at less than 35 minutes. The
best locations for allocation of these meters are the nodes 8, 9, 16,
21 and 25. By generating 1000 Monte Carlo scenarios for nodal
voltages 1, 5, 8, 9, 16, 21 and 25 (based on their reported load
flow results in Table 3), the DSSE algorithm is run to estimate the
voltage states under the loads with 50% variance and simulated
actual measurements (Eq. (17)). It is noteworthy here that both
risk indices Pmax

V and Pmax
δ are zero and thus, the binary solution

vector is saved as global optimal meter placement solution. It
is obvious that when the DSSE algorithm converges to good
estimates with lower voltage estimation errors, the distribution
system will be full observable in all Monte Carlo scenarios of the
best solution found in iteration 1 (iter=1) and non-singularity of the
gain matrix is fulfilled in each MCS. It should be noted that each
iteration of the proposed algorithm (i.e., iter) consists of an inner
loop for running the NOMADS method with iterations denoted
by k. To ensure the global optimality of the obtained solution at
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Table 5. Optimal scenario of meter places considering Nmin
VM = 4 and Nmax

VM = 7 to allocate five additional meters in the test feeder.

iter 1 2 3 4
Max. meters number 7 6 5 4

Is the observability constraint Eq. (17) satisfied? Yes Yes Yes Yes
Meters optimal locations (node numbers) 1, 5, 8, 9, 16,

21, 25
1, 5, 9, 16,
21, 25

1, 5, 9, 16,
21

1, 5, 16, 21

Max. relative percentage error in voltage magnitudes (%)
Phase a 0.62 0.59 0.58 0.64
Phase b 0.69 0.62 0.58 0.66
Phase c 0.6 0.6 0.59 0.66

Max. relative percentage error in voltage phase angles (%)
Phase a 4.25 7.07 7.21 8.21
Phase b 0.03 0.03 0.07 0.068
Phase c 0.04 0.03 0.03 0.035

PmaxV 0 0 0 0
Pmax
δ 0 6.7% 9.1% 18%

Computation time (min) 35 24 15 6

Fig. 3. Comparison between actual and estimated voltage magnitudes under
MCS for optimal scenario (Nodes 1, 5, 16, 21).

iter=1, the proposed algorithm as well as the MCS-based DSSE
method are run for several times. Due to the large number of
MCS, the same results presented in Table 5 are achieved with
the maximum voltage magnitude and angle estimation errors of
(0.62, 0.69, 0.6)% and (4.25, 0.03, 0.04)% for phases (a, b,
c), respectively. These values are less than the predefined values
εv = 1% and εδ = 5% assumed for the nodal voltage magnitude
and angle, respectively. According to the step (12) of Fig. 1, the

Fig. 4. Comparison between actual and estimated voltage angles under
MCS for optimal scenario (Nodes 1, 5, 16, 21).

number of meters is updated to 6 using Eq. (22) (Nmin
VM = 4 and

Nmax
VM = 7). The 2nd iteration of the meter placement algorithm

(i.e., Eqs. (1)-(23)) is also run to find the best locations of the



F. Jabari et al.: A Novel Meter Placement Algorithm Based on Monte Carlo Coupled State Estimation and Iterative Nonlinear Mesh Adaptive Direct Search 10

Fig. 5. Relative errors of nodal voltage magnitudes.

Fig. 6. Relative errors of voltage angle estimates under MCS for the
optimum solution (Nodes 1, 5, 16, 21).

four additional metering devices in the radial feeder. The optimum
binary decision vector demonstrates the nodes 9, 16, 21 and 25

are good candidates for measuring the voltage. The maximum
voltage estimation errors are calculated for MCS and obtained
respectively for each phase as (0.59, 0.62, 0.6)% and (7.07, 0.03,
0.03)%. The obtained errors are less than 1% and 5% threshold
values of voltage magnitude and angle estimation relative errors,
respectively. The risk indices PmaxV and PmaxV are also obtained
as 0 and 6.7%, respectively. Note that in 6.7% of MCS (67 out of
1000 scenarios), the voltage angle estimation errors are higher than
5%, which is less than the probability threshold pV = 0.2. Hence,
the number of meters is updated similar to the iteration 2 and the
algorithm is repeated with the maximum meters number of five
to allocate 3 remaining measuring units in the feeder. In the 3rd
iteration, the optimization model also reaches to the best locations
with the acceptable risk indices. The voltage angle estimation error
violates in 9.1% of MCS, which is less than 0.2. For the sake
of clarity, in Table 6, the CPU time of the proposed algorithm is
compared with other methods such as branch and bound (B&B)
[29, 40, 41], ordinal optimization (OO) [42], multi-objective biased
random-key genetic algorithm (MOBRKGA) [43], and convex
relaxation of mixed-integer semi-definite programming (MISDP)
[29]. The study case discussed in this paper clearly demonstrates
that the proposed method in finding the optimal meter places
outperforms those recently introduced methods in the literature in
terms of the accuracy and computational tractability.

In case of allocating one voltage meter in test feeder with two
existing meter in buses 1 and 5, the maximum relative errors of
the node voltage magnitude and angle are not respectively less
than 0.01 and 0.05 for more than 20% MCS of each NOMADS
scenario. The minimum number of the voltage measurements
is updated to be four while allocating two additional meters.
Numerical results indicate that the nodes 16 and 21 as the best
places for installing two additional voltage meters. The voltage
profile under Monte Carlo scenarios corresponding to the best
solution of meter places reveals that the relative errors of the
voltage magnitude and angle of the estimated states in 80% of
MCS is lower than the predefined values. In other words, two
additional voltage measurement units are required to be installed
for observing test distribution system with maximum relative
percentage error of 1% for voltage magnitude and 5% for voltage
angle in 80% of MCS. Table 6 demonstrates that the runtime
of the proposed algorithm for allocating the minimum required
meters in test distribution system is 6 min, which is less than those
of other algorithms.

4. CONCLUDING REMARKS AND FUTURE TRENDS

In this paper, a novel meter placement approach was proposed
based on Monte Carlo simulations, WLS-based branch currents
state estimator, and an iterative nonlinear mesh adaptive direct
search algorithm. For the accurate representation of the various
uncertainty sources, the variability of active and reactive loads as
well as the uncertainty of measured nodal voltages were considered
in the optimization process. From a mathematical point of view,
in this research, the minimum number of voltage meters was
considered as the objective function, while the observability of
the radial distribution network as well as the voltage magnitude
and angle relative errors were modeled as inequality constraints.
For implementation purposes, the proposed iterative NOMADS
method was applied to an unbalanced radial distribution system
to assess the accuracy and computational burden of the proposed
method under different levels of measurement data uncertainty.
From a computational viewpoint, the numerical results revealed
that the proposed method technically outperforms other heuristic
algorithms in the literature which are usually computationally
intractable or more demanding in finding the optimal meter places
under uncertainty. In addition, the iterative NOMADS enables
the distribution operator to be noticed whether there are other
more accurate and economic solutions than that of primitive
maximum number of meters suggested. It is found that the
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Table 6. The comparison between the proposed algorithm and other meter placement methods from the computational viewpoint.

Additional meter Number 2 3 4 5
Branch and Bound (B&B)
[29, 40, 41]

36 min 6 h and 53 min 21 h and 51 min > 1 day

Ordinal Optimization
(OO) [42]

- 4 h and 31 min 4 h and 27 min 5 h and 49 min

Multi-Objective Biased
Random-Key Genetic Al-
gorithm (MOBRKGA)
[43]

- 45 min 1 h and 50 min 3 h and 13 min

Convex relaxation of
Mixed-Integer Semi-
Definite Programming
(MISDP) [29]

2 min 13 min 28 min 37 min

Proposed algorithm 6 min 15 min 23 min 35 min

proposed NOMADS-MCS coupled meter placement algorithm is
able to allocate a limited number of meters in unobservable radial
distribution systems within a relatively low runtime.

Moreover, if an optimal solution is found for a given number
of meters, it then searches solutions with fewer meters until
an infeasible measurement allocation scenario been found. In
all scenarios, the observability of distribution feeders is also
checked by the gain matrix of the DSSE algorithm in such
a way that if this matrix is nonsingular, the system will be
full-observable. The probability of the voltage magnitude/phase
angle estimation error violation is calculated based on actual and
estimated values of nodal voltages, and should be less than the
predefined values. One of the main advantages of the proposed
approach is the time saving and accuracy of the estimated states,
which makes it possible to monitor the near real-time status of the
radial distribution feeders. As future works, the researchers and
practitioners should consider the lack of information in distribution
feeders (e.g., GIS data) in their placement strategies, especially at
low voltage levels. Moreover, there is still a need that the effects of
pseudo-measurements on state estimation algorithms are alleviated
by introducing some other novel approaches. Additionally, for
the accurate representation of the various uncertainty sources,
it is suggested to take into account uncertainties relevant to
unforeseen disturbances occurring in real-time (e.g., the outage
of DGs, branches, and metering device), sudden variations of the
system load, or daily changes of network topology due to the
connection of new customers. Last but not least, more attention
needs to be paid on simultaneously allocation of different types of
measurements with different time resolutions in power distribution
networks. The cyber-physical security of the smart distribution
feeders should be assessed using the DSSE and point estimation
method based false data injection or intrusion detection techniques.
In addition, large normalized residuals of actual measurements can
be used as key indices to detect bad data.
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