
Journal of Operation and Automation in Power Engineering

vol. XX, no. XX, Dec. 2022, Pages: XXXX (Proofed)

http://joape.uma.ac.ir

Traffic Uncertainty Modeling and Energy Management of Smart
Distribution Networks with the Presence of Parking Lots
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Abstract— Energy management (EM) in smart distribution networks (SDN) is to schedule the power transaction between the SDN
and the existing distributed energy resources (DERs) e.g., distributed generations, especially renewable resources and electrical vehicles,
from an eco-technical viewpoint. Due to the dual role of electric vehicles (EVs) acting as a power source and load, they presented both
challenges and opportunities in EM. The complexity of EM increases as DERs become more prevalent in SDN. Moreover, the uncertainties
of renewable resources, price, and load besides the uncertainties related to the place, amount, and time of EV’s charging makes EM a more
intricate field. This supports the necessity of extensive tools and approaches to manage EM in SDNs. In this respect, this paper proposes
an optimum scenario-based stochastic energy management scheme for intelligent distribution networks. The proposed approach is modeled
as a MINLP problem and solved in GAMS software under the DICOPT solver. The test is conducted on a 33-bus SDN with and without
factoring in uncertainties.

Keywords—Energy management, distribution network, electrical vehicle, parking lot, traffic, uncertainty.

NOMENCLATURE

Binary Variables
bchv,t Decision variable for v-th EVs charging at t-th hour
bdiscv,t Decision variable for v-th EVs discharging at t-th hour
Sets and Indices
i DGs index
n, m Buses index
s Uncertainty scenarios index
t Time index (hour)
v EVs index
w Wind-Turbins index
Parameters
β Constant price coefficient for EVs charge/discharge
ηchv Charge efficiency
ηdiscv Discharge efficiency
γ Repair and maintenance cost of wind turbine
λPrice
t Electricity price at t-th hour
A,B,C Wind-Turbine characteristic‘s curve parameters
a, b, c DG’s characteristic curve’s parameters
Emax EVs maximum energy
Emin EVs minimum energy
P ch,max
v Maximum charging power of v-the vehicle
P disc,max
v Maximum discharging power of v-the vehicle
P rw Nominal power of wind-turbine
PDG,max Active power generation of DG
PSub,max Maximum active power purchased from the distribution

substation
QDG,max Maximum reactive power generation of DG
QSub,max Maximum reactive power purchased from distribution
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substation
V max
n Maximum voltage of n–th bus
V min
n Minimum voltage of n–th bus
vcin Cut-in speed of wind-turbine
vcout Cut-out speed of wind-turbine
vr Rated speed of wind-turbine
Variables
PLosst Active power loss at t-th hour
P subt Purchased power from distribution substation at t-th hour
PDemandn,t n-th bus active load at t-th hour
P chp,t Total charging power of parking lots at t-th hour
P discp,t Total discharging power of parking lots at t-th hour
PDGt,i Generated power of i-th DG at t-th hour
P cht,v Charging power of v-th vehicle at t-th hour
P dcht,v Discharging power of v-th vehicle at t-th hour
PWind
t,w Generated power of w-th wind-turbine at t-th hour
QLosst Distribution network power loss
QSubt Reactive power purchased from the distribution substation

at t-th hour
QDGi,t Reactive power generation of i-th DG at t-th hour
QDemandn,t n-th bus reactive load at t-th hour
V netn,t Network voltage at t-th hour
δn Voltage angle of n-th bus
CostEV EVs degradation cost
CostTotal Total operation cost
CostWind Wind-turbine power generation cost
θn,m Voltage angle between n-th and m-th buses
Pw The output power of wind-turbine
tarr Arrival time of EVs to parking lot
tdep Departure time of EVs from parking lot
vt Wind-turbine speed at t-th hour
Vn,t Voltage of n–th bus at t-th hour
Yn,m Admittance between n-th and m-th buses

1. INTRODUCTION

1.1. Motivation and background
Energy management (EM) system (EMS) is a tool to select

suitable energy sources and develop the power consumption pattern
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and energy efficiency. Implementing the EMS minimizes energy
costs, optimizes energy consumption, diminishes environmental
pollutants, and can supply the demanded energy at higher quality
and lowest possible costs. EM in the smart distribution network
(SDN) has attracted great attention, since SDN as the final stage
of power delivery to the end-user consumers substantially affects
the economics and power quality. The emergence of power market
added to the importance of the SDN and now its significance is
ever-increasing with the development of distributed energy sources
(DERs) e.g., distributed generations (DGs) and electrical vehicles
(EVs). In this regard, EMS tries to find the best-suited energy
resources and also schedule them to economically supply the
demanded load in the highest possible quality.

1.2. Literature review
As known, limited fossil fuel resources and high emissions

have led to the growing penetration of electric vehicles (EVs) in
transport fleets. The dual role of EVs acting as a power source
and load has introduced both challenges and opportunities in the
way of EM at SDN[1].

In addition, the connection of DGs at the distribution level,
if properly planned and operated, has positive effects on all
economic, technical, and environmental parameters. Anyway, as
the penetration of DERs in SDN increases, so does the complexity
of EM.

Combatively to the combustion engines, the fuel cost of EVs
is lower[2–4]. On average, the cost of traveling a certain distance
with an EV is less than half that of a traditional vehicle. Also,
the environmental pollutant and the maintenance cost of EVs are
lower. Therefore, nowadays, EVs play a vital role in EM[5].

However, if a large number of EVs are being charged
simultaneously in a small geographical area, especially at peak
load periods, the increment in demand for electricity will jeopardize
the reliability of the power supply. To overcome the mentioned
problem, there is a need for substantial investments in installing
new power generation sources. Moreover, DN must adapt to the
high penetration of EVs[6].

On the other hand, EVs with vehicle-to-grid capability can
supply their extra power, stored in their batteries, to the grid.
This technology helps to increase the flexibility of DN, improving
technical parameters of DN, providing auxiliary services, etc.
[7–12]. Traveling patterns and EV characteristics have a substantial
effect on the charging profile of the EV[3].

The primary aim of [4] is to study the main parameters
that EV owner considers when buying an EV. The proposed
coordinated approach optimizes the number of EVs that can be
charged simultaneously, without any reinforcement/expansion on
DN. Moreover, it determines the optimal charging profile of EVs
to flatten the voltage profile. In [13] a smart management model is
proposed for the optimal operation of the parking lot considering
the charging cost and the operational constraints e.g., battery
characteristics and aging. The proposed approach can guarantee
financial benefits for EV owners. Investigating the preferences of
EV owners in charging their vehicles can provide an accurate
estimation of Evs’ effects on DN’s technical parameters and also
provides a roadmap for future energy policy. Therefore, the effects
of consumers charging patterns and different EVs characteristics
are studied in [14]. It depicts that most of the EVs are charged
in the evenings. The flexibility of battery electric vehicles (BEVs)
as a DER is limited by their traveling patterns, their usage in
transportation fleets, and also the possibility of charging them at
a certain time/place. Accordingly, the availability of the BEVs
as a modern storage device is studied in [15]. In addition
to the environmentally friendly nature of EVs, they affect the
reliability of DNs. In [16] the reliability of DN is evaluated at
different levels of EV penetration. In modern DNs, EVs with
V2G capability are assumed as a reliable and flexible source
to provide a load-generation balance. In this evolving paradigm,

designing EM strategies for the economical and cost-effective use
of V2G is one of the several challenges faced by DN operators
and regulators. In this regard, an EM strategy to utilize the V2G
potential of EVs is proposed to overcome the energy imbalance in
a connected microgrid [17]. The proposed approaches can support
the economical use of V2G in a competitive power market when
the price variation is high. In [18] a practical approach is proposed
to overcome the challenges caused by higher integration of
renewable energies and EVs in DN considering the high variations
in generation side and inconsistency in energy consumption.
A multi-carrier energy system model by considering the traffic
patterns of EVs is proposed in [19]. Moreover, two kinds of
charging infrastructures e.g., household and parking lots have been
studied. Ever-increasing penetration of EVs in transportation fleets
connecting to the DN requires efficient and powerful tools and
approaches to manage the parking lots. Reference [20] proposed
a coordinated scheduling strategy for EV parking lots considering
the dependency of DNs and traffic. The challenges encountered
when charging EVs in a DN in the presence of renewable energies
and local storage devices are investigated in [21].

A review of the optimization of EV charging in the residual
section is provided in [22] to minimize the EV owners’ costs.
In [23] a fuzzy set theory-based cost-effective approach related
to EM in an AC microgrid connected to a residual network is
proposed. In [24] optimization of EV charging to minimize the
battery degradation costs by considering the battery characteristics
is studied. In [25], the effects of time of use-based (TOU)
demand response program and direct load control (DLC) demand
response program to reduce the operating costs of the microgrid
including intelligent parking lots and renewable energy resources
were studied. An optimal framework for the operation of integrated
energy systems using demand response programs is presented in
[26]. In [27], a new hybrid decomposition-based multi-objective
evolutionary algorithm (MOEA) is proposed for the optimal power
flow (OPF) problem including Wind, PV, and PEVs uncertainty
with four conflicting objectives. Monte Carlo simulations were
used to assess the uncertainty of Wind, PV, and PEV power.

1.3. Contributions
A review shows that there is a lot of research regarding EM in

DN in the presence of EVs. However, from the author’s knowledge,
in most of the reported works of literature, the traffic pattern of
EVs due to its complexity is neglected from the modeling, while
the amount of required charge and also the time of charging are
directly dependent on the traffic pattern.

Therefore, there is a substantial gap that the proposed approach
in this paper tries to fill.

The main novelties of this paper can be summarized as follows:
• Proposing a MINLP mathematical model for day-ahead

scheduling of EV parking lots in a Distribution Network.
• Considering the uncertainties of traffic patterns.
• Applying the uncertainties of renewable energies, load, and

price into the modeling.

1.4. Paper organization
The remainder of the paper is organized as follows: Mathematical

Model is provided in section 2. Section 3 is assigned to Simulations
and Results. Case Studies are explained in Section 4. And finally,
the Conclusion is provided in section 5.

2. MATHEMATICAL MODEL

As discussed earlier, the proposed approach aims to optimize the
day-ahead EM of DN in the presence of parking lots and renewable
energies considering the operational constraints of DN and battery
characteristics of different EV models from the distribution system
operator (DSO) viewpoints. The mathematical formulations of the
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proposed approach and the considered constraints are detailed in
the following.

The proposed cost-based objective function is as follows:

CostTotal = Costsub +CostDG +CostEV +CostWind (1)

As seen, the first term of the proposed objective function
(Costsub) is related to the cost of purchased power from the
upstream network, CostDG and CostWind are the cost of
purchased power from the installed dispatchable DGs and wind
turbines at DN, respectively, and CostEV is the degradation cost of
EVs which DSO pays to EV owners, since battery degradation is
the result of charging/discharging procedure. The aforementioned
terms in the cost function are calculated using the following
equations. The amount of constraint parameters used in these
formulas are borrowed from [28].

Costsub =
∑
s

ρs ×
∑
t

P subt,s × λPrice
t,s (2)

CostDG =
∑
s

ρs ×
∑
t

∑
i

a× PDG
2

t,i,s + b× PDGt,i,s + c (3)

CostEV =
∑
s

ρs ×
∑
t

∑
v

β ×
(
P cht,v,s + P dcht,v,s

)
(4)

CostWind =
∑
s

ρs ×
∑
t

∑
w

γ × PWind
t,w,s (5)

In Eq. (2) P subt,s is the purchased power from distribution
substation and λPrice

t,s is the electricity price at t-th hour. As seen
in Eq. (3), DG’s operation cost is a quadratic function with a, b
and c constants whose values are different for diverse DGs. PDGt,i,s

is the active power generated by i-th DG at t-th hour. In Eq. (4),
β is the constant value and P cht,v,s and P dcht,v,s are the amount of
active power charge/discharge of v-th EV at t-th hour, respectively.
In Eq. (5), γ is a constant value and PWind

t,w,s is the active power
generated by w-th wind turbine at t-th hour.

In the above-mentioned objective function, DSO tries to
minimize the cost of purchased energy from the upstream network
and all types of installed DGs at DN. Since the amount of
purchased power is the summation of the loads and power loss and
is calculated using AC power flow, there is no necessity to add
power loss cost to the objective function. As a notable point, DSO
is the owner of the parking lots, and charging/discharging of the
EVs has considerable effect on their financial statements, so the
charge/discharge cost is applied to the mentioned cost function.

As discussed previously, the proposed approach is to optimally
execute EM with considering the technical and operational
constraints. The considered constraints are detailed in the
following:

2.1. AC power flow
The modeling and mathematical formulation of the executed

load flow are borrowed from [29, 30]. Load flow analysis is based
on active and reactive power balance in any node at any hour. This
principle is summarized in Eqs. (6)-(7).

G∑
g

PSubn,g,t,s +
I∑
i

PDGn,i,t,s +
W∑
w

Pwindn,w,t,s

−PDemandn,t,s +
V∑
v=1

(
P discv,t,s − P chv,t,s

)
=

Vn,t,s
∑
m

Vm,t,sYn,mcos (θn,m,t − δn,t,s − δm,t,s) ∀n, s

(6)

G∑
g

QSubn,g,t,s +
I∑
i

QDGn,i,t,s −QDemandn,t,s =

Vn,t,s
∑
m

Vm,t,sYn,m sin (θn,m,t − δn,t,s − δm,t,s) ∀n, s
(7)

where PDemandn,t,s and QDemandn,t,s are the active and reactive
power of n-th node at t-th hour in s-th scenario, respectively.
Vn,t,s is the voltage amplitude of n-th bus at t-th hour and Yn,m
is the admittance between n–th and m–th nodes. Finally, θn,m,t is
the admittance angle between n–th and m–th nodes and δn,t,s is
the voltage angle of n-th node, at t-th hour in s-th scenario.

Regarding Eq. (8), the safe operation of DN needs voltage
amplitude to be preserved in a predefined standard range.

V min
n ≤ V netn,t,s ≤ V max

n ∀n, t, s (8)

where V min
n and QSub,max are the minimum and maximum

allowable voltage amplitude and the is voltage amplitude of n-th
node at t-th hour in s-th scenario.

Moreover, the amount of active and reactive powers purchased
from the distribution substation must be preserved in the allowable
range, which is considered in Eqs. (9)-(10), respectively.

0 ≤ PSubn,g,t,s ≤ PSub,max ∀n, g, t, s (9)

0 ≤ QSubn,g,t,s ≤ QSub,max ∀n, g, t, s (10)

where PSub,max and QDG,max are the maximum active and
reactive power that can be purchased from the distribution
substation.

2.2. Dispatchable DG
The active and reactive power generation of DGs is limited

by their nominal capacity[28], which are represented by Eqs.
(11)-(12), respectively.

0 ≤ PDGi,t,s ≤ PDG,max ∀i, t, s (11)

0 ≤ QDGi,t,s ≤ QDG,max ∀i, t, s (12)

where PDG,max and QDG,max are the nominal capacity of i-th
DG.

2.3. Power loss
Power loss in DN is calculated using the following equations.

PLosst,s =
G∑
g

PSubn,g,t,s +
I∑
i

PDGi,t,s +
W∑
w

Pwindw,t,s −
N∑
n

PDemandn,t,s

+
V∑
v

(
P discv,t,s − P chv,t,s

)
∀t, s

(13)

QLosst,s =
G∑
g

QSubn,g,t,s +
I∑
i

QDGi,t,s

−
N∑
n

QDemandn,t,s ∀t, s
(14)

It is evident that PSubn,g,t,s, PDGi,t,s, P
wind
w,t,s and P discv,t,s are considered

to be positive since they produce power, whilst PDemandn,t,s and
P chv,t,s consume power. Hence, they are in negative form.
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2.4. Electrical vehicle

Charging and discharging of EVs are done considering the
technical constraints related to the battery characteristics [27].
Charging/Discharging power is limited by their maximum allowable
values, as Eq. (15).

{
0 ≤ P chv,t,s ≤ bchv,t,sP ch,max

v ∀v, t, s ,tarr ≤ t ≤ tdep
0 ≤ P discv,t,s ≤ bdiscv,t,sP

disc,max
v ∀v, t, s ,tarr ≤ t ≤ tdep

(15)

where tarr and tdep are the arrival/departure time of the EVs
to/from parking lots, respectively. As known, an EV must be in
one of these modes, charging, discharging and idle. Therefore, the
following equation is used to determine the EV’s mode.

{
bchv,t,s + bdiscv,t,s ≤ 1 ∀v, t, s , tarr ≤ t ≤ tdep
bchv,t,s, b

disc
v,t,s ∈ {1, 0} ∀v, t, s , tarr ≤ t ≤ tdep (16)

For this purpose, binary variables are needed to be defined,
bchv,t,s and bdiscv,t,s. The amount of stored energy at EV battery is
calculated using the following equations.

Ev,t,s = Einiv,s +

(
ηchv .P

ch
v,t,s −

P discv,t,s

ηdiscv

)
∀v, s , t = tarr

(17)

Ev,t,s = Ev,t−1,s+(
ηchv .P

ch
v,t,s −

Pdisc
v,t,s

ηdiscv

)
∀v, t, s , tarr ≤ t < tdep

(18)

where Einiv,s is the initial stored energy of an EV when it arrives
at the parking lot. The efficiency of the charging/discharging of
EVs is shown by ηchv and ηdiscv , respectively.

It is assumed that the stored energy of the EVs at departure
time must be above the predefined value, as represented in Eq.
(19).

0.8Emax ≤ Ev,t,s ∀v, s , t = tdep (19)

The amount of stored energy at EVs battery at any hour must
be preserved within the minimum (Emin) and maximum (Emax)
values.

Emin ≤ Ev,t,s ≤ Emax ∀v, t, s , tarr ≤ t ,t = tdep (20)

The total amount of charging/discharging power of all EVs
parked in a parking lot can be calculated using Eqs. (21)-(22).

P chp,t,s =

V∑
v

P chv,t,s ∀v, p, t, s (21)

P discp,t,s =

V∑
v

P discv,t,s ∀v, p, t, s (22)

where P chv,t,s and P discv,t,s are the charging and discharging power
of v-th EV at t-th hour, respectively.

2.5. Wind turbine
As detailed in Eq. (23), the power generation of wind turbines

is dependent on the wind speed.

Pw,t,s =

 0 vt,s ≤ vcin,vt,s ≥ vcout
P rw,s

(
A+Bvt + Cv2t

)
vcin ≤ vt,s ≤ vr

P rw,s vr ≤ vt,s ≤ vcout
(23)

here vr , vcin and vcout are the nominal, cut-in, and cut-out speed,
respectively and P rw, s is the nominal power of the installed wind
turbine. Moreover, the A, B and C are the parameters of the wind
turbine characteristic’s curve and are constant values.

2.6. Uncertainty model
Scenario-based stochastic modeling is an appropriate tool to

model such uncertain parameters as load, price, and renewable
energies, all of which are considered in the mentioned problem.
Since many uncertainties are impacting the real-life network, it is
proper to point out the limitation of assumptions.

Commonly, Weibull distribution or Rayleigh probability
distribution function (PDF) are used to model the wind speed
uncertainty [31]. Rayleigh PDF is represented in Eq. (24).

PDF (v) =
( v
c2

)
exp

[
−
(
v2

2c2

)]
(24)

Also, normal PDF is used for uncertainty modeling of load and
price[31]. Moreover, to model the uncertainty of traffic patterns
including the arrival/departure time of EVs to/from the parking lot
and the initial stored energy of EVs, the normal PDF is used.

PDF (d) =
1√

2πσ2
d

exp

[
− (d− µd)2

2σ2
d

]
(25)

2.7. Scenario reduction
The number of defined scenarios in scenario-based stochastic

problems has a considerable effect on the speed of the optimization
process and the accuracy of the attained results. So, the SCENRED
algorithm (applied to GAMS software) is used for scenario
reduction purposes.

3. SIMULATIONS AND RESULTS

As noted, the main aim of this paper is to propose a new method
for EM in DN in the presence of parking lots and renewable
energies considering the uncertainties. The proposed approach is
tested on an IEEE 33-bus DN. The complete view of the studied
DN besides the sites where wind turbines, dispatchable DGs, and
parking lots are installed, is shown in Fig. 1 [32].

Fig. 1. IEEE 33 bus DN in the presence of DGs and parking lots.

The hourly profiles of the total active and reactive load of DN
[36] are represented in Fig. 2.

As seen from Fig. 1, a couple of 1MW Dispatchable DGs are
installed at the 11th and 33rd buses of DN. Also, there are four
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Fig. 2. The hourly active and reactive load profile of DN.

Table 1. Wind turbine characteristics.

Parameter Unit Value
P rw kW 300
vcin m/s 4
vcout m/s 22
vr m/s 10
A - 0.0311
B - -0.0776
C - 0.0174

Cost $ 5

parking lots in DN for buses 8, 18, 25, and 30. Each one has
a capacity of 100 EVs. Two 300 kW wind turbines are installed
at the 1st and 28th buses of DN. The hourly profile of wind
speed [33] is given in Fig. 3. According to the detailed wind
turbine characteristics [34], in Table 1, and previously described
wind turbine modeling, the hourly profile of wind turbine power
generation is depicted in Fig. 4.

Fig. 3. Hourly profile of wind speed.

Fig. 4. Hourly profile of wind turbine power generation.

The values of different parameters used to model dispatchable

Table 2. The characteristics of dispatchable DGs.

Parameter Unit Values
DG1 DG2

PDG,max MW 1 1
QDG,max MVAr 0.5 0.5

a $
(MWh)2

0.0075 0.0075

b $
MW

36 40
c $ 28.5 22

Table 3. The characteristics of EVs.

Parameter Unit Value
Emax
v MWh 0.025
Emin
v MWh 0.001

P ch,max
v MW 0.0125

P disc,max
v MW 0.0125
ηchv - 0.90
ηdiscv - 0.93
Cost $ 5

DGs [28] and EVs [35] can be found in Tables 2 and 3,
respectively.

As known, EM in DN is to find the eco-technical solution for
the operation of DN and the installed power source in it. Therefore,
one of the parameters, considerably affecting the solution is the
electricity price, the hourly profile of which [36] is represented in
Fig. 5.

Fig. 5. The hourly price.

3.1. Traffic pattern modeling
The commercial parking lots are studied in this simulation.

The arrival and departure times of EVs to/from Parking Lots are
summarized in Table 4. It is assumed that when EVs arrive at the
Parking Lot, there is a certain amount of stored energy in their
batteries. Also, EM must guarantee that the stored energy at EVs
battery must be upper than 80% of its capacity at departure time.

4. CASE STUDIES
As noted earlier, the proposed approach is modeled as a MINLP

problem and solved using GAMS software under the DICOPT
solver.

Table 4. The details related to the arrival and departure times of EVs.

Parking Lot No. Arrival time Departure time
1 8 16
3 11 21
4 12 24
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The proposed approach is studied in two cases:
1) Optimization of EM in DN in the presence of parking lots

without considering the uncertainties of the traffic pattern,
price, load, and initial stored energy at EV batteries

2) Optimization of EM in DN in the presence of parking lots
with considering the uncertainties of the traffic pattern, price,
load, and initial stored energy at EV batteries

The outcomes of each case study and finally the comparison
study are given in the following.

4.1. First case study
First Case Study regards the optimization of EM in DN in the

presence of Parking Lots without considering the uncertainties of
the traffic pattern, price, load, and initial stored energy at EV
batteries. The required data for this study are provided in the
above sections.

The hourly profile of purchased power from the upstream
network is depicted in Fig. 6. Moreover, the power generation of
DGs at different hours of the day is represented in Fig. 7.

Fig. 6. The hourly profile of purchased power from the upstream network
in case 1.

Fig. 7. Hourly profile of DG’s power generation in case1.

The amount of purchased power and power generation of DGs
varies at different hours of the day both dependent on electricity
price. Considering Fig. 1, DN prefers to purchase a higher amount
of power at times with lower prices. As seen, the amount of
purchased power is lower at 8-12 and 17-22, while they purchase
higher amounts of power in low price times, 1-7, 13-15, and
21-24. Also, it is validated that DGs generate higher amounts of
power in times when the market price of electricity is higher.
Comparing Fig. 6 and 7 signify that when the power purchased
from the upstream network lessens due to the higher prices, to
provide the load, DGs generate power up to their full capacity.
Moreover, when the hourly price profile reaches its peak at 18, the
purchased power from the upstream network descends to zero.

The charging/discharging profiles of different parking lots are
represented in Figs. 8 and 9, respectively.

Fig. 8. Charging profile of different parking lots in case 1.

Fig. 9. Discharging profile of different parking lots in case 1.

Charging and discharging of EVs is dependent on the electricity
price and technical issues like DN’s load and bus voltages. As
seen from Fig. 8, at 13-18 and 21-24, EVs are charged on account
of lower prices. Also, at times when DN’s load is lower than peak,
EVs can be charged.

Since there is no EV in parking lots after midnight, there would
not be any charging and discharging despite the low electricity
price between 2 and 5, which is evident in the given figures.
As seen in Fig.1, peak load occurs at 18-19, during which EVs
are discharged. The injected power from EVs to DN aids DN in
supplying the loads. Therefore, it is concluded that DSO prefers
to charge EVs in off-peak periods accompanied by lower prices
while discharging them at higher prices.

The hourly profile of power loss is presented in Fig. 10.

Fig. 10. Hourly profile of power loss.

As it is acknowledged, the imbalance between demand generation
leads to power transaction which inevitably is accompanied by
power loss. Network optimization should be planned to take the
edge off that loss. It is observed that the least power loss occurs
when the amount of power proceedings from the upstream network
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Table 5. The probability of each scenario.

Scenario No. Probability (%)
1 0.088
2 0.102
3 0.103
4 0.119
5 0.095
6 0.089
7 0.128
8 0.089
9 0.096

10 0.091

has been scaled down following augmentation of the electricity
price. In this regard, by optimizing the performance of DGs, WTs,
and smart planning of PLs, EM can moderate the loss.

4.2. Second case study
In Second Case Study, the optimization of EM in DN in the

presence of parking lots considering the uncertainties of the traffic
pattern, price, load, and initial stored energy at EV batteries is
done. The required data are previously provided.

The uncertainties of traffic patterns include the arrival and
departure times of EVs to/from Parking Lots. As said before,
several scenarios are used to model the uncertainties of the
mentioned parameters. Each scenario is a set of values for
uncertain parameters and the probability of each scenario is given
(Table 5).

The hourly profile of load and price in different scenarios are
detailed in Figs. 11 and 12, respectively.

Fig. 11. Hourly profile of active load in defined scenarios.

Fig. 12. Hourly profile of electricity price in defined scenarios.

Moreover, the arrival time, departure time, and the initial stored
energy of EVs at arrival time in different scenarios are represented
in Figs. 13, 14, and 15.

Fig. 13. Arrival time of EVs to parking lots in different scenarios.

Fig. 14. Departure time of EVs from parking lots in different scenarios.

Fig. 15. The initial stored energy of EVs at arrival time to parking lots in
different scenarios.

Comparing the attained solution of executing the proposed
approach to the defined EM problem in case 2, with the obtained
solution from case 1, shows substantial differences. It is seen from
Table 6; the total cost of DSO is higher when considering the
uncertainties.

For more details, the share of each scenario in total cost is
provided in Table 7.

Table 6. A comparison study on total costs in both cases.

Total Cost Case 1 Total Cost Case 2
5003.639 5169.511
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Table 7. Cost of each scenario in case 2.

Scenario No. Total Cost
1 4921.2501
2 5157.0511
3 6128.6772
4 4748.9307
5 5178.6345
6 4751.438
7 4780.6879
8 5084.0721
9 5717.4444
10 5339.6938

According to this table, executing EM based on Scenario 4 has
the lowest cost for DSO, while Scenario 3 will cost them the
highest.

The following figures demonstrate the energy level of the EV
during its stay at the PL and charged and discharged power by EV
in case 2. Data from Scenario 10 for EV 4 in PL1 is represented
in Fig. 16. This EV has a realistic behavior in the mentioned
scenario, arriving at PL at 8 and departing at 16.

Fig. 16. Energy, charging, and discharging power by EV 4 in PL1 in
Scenario 10, viewpoints.

Moreover, the behavior of EV354 in PL4, data from Scenario 2
is studied in Fig. 17. This EV has a nonrealistic behavior in this
scenario, arriving at PL at 6 and departing at 24.

Fig. 17. Energy, charging, and discharging power by EV 354 in PL4 in
Scenario 2, viewpoints.

The energy status of the EV from Arrival time to Departure
Time is represented by dashed lines. It is evident that the energy
level of the EV changes each time charge and discharge happens.
According to Fig. 17, charging EVs at 6 and 7 in the morning,
results in a boost in EV’s energy reaching 25 kWh (Defined
E-max). The energy remains constant at this value until it drops
to 11.55 kWh and then to 2.5kWh when the EV is discharged
consecutively at 9 and 14. Then, by charging the EV at 15 and 16,
it shifts back to 25 kWh. Fulfilling the energy capacity of the EV
means that it can participate in the electricity market and power
the grid, again. So, at 18 and 20, the EV discharges fully and the

energy level descends to 1 kWh (Defined E-min). By recharging
at 21, part of that energy is compensated. Until it charges again
and leaves the PL at 24, with an estimated energy of 20 kWh. The
amount of power charged and discharged at each step is limited
by the minimum and maximum of both charging and discharging
power. In the course of the procedure, the energy remained in its
defined range between minimum and maximum value, evincing
that all constraints are satisfied.

The depiction below attests to hourly price, data from Scenario
2.

Fig. 18. Hourly Price in Scenario 2, viewpoints.

Comparing Fig.17 and 18, all discharges took place immediately
upon the peak price; At 9, 14, 18 and 20. The charging process
was carried out at low prices; Notably at 16, 21, and 24.
These numerical results are corroboration that the simulation
was implemented to satisfy all constraints designated in the
Mathematical Modeling.

4.3. Comparison study
In this section, a comprehensive comparison is provided between

different scenarios of case 2 and the final solution obtained from
case 1. Different scenarios are appointed to manifest the feasibility
of the proposed approach dealing with the uncertainty and also
the accuracy of the attained results. As defined in the objective
function, the cost of purchased power from the upstream network,
DG’s power generation, and charging/discharging of EVs have a
vital effect on DSO’s final costs.

A comparison study is delivered between case 1 and 3rd

scenario of case 2 from the purchased power from upstream
network, viewpoints.

Fig. 19. A comparison study between case 1, and 3rd scenario of case 2,
from the purchased power from the upstream network, viewpoints.

Obtained from this collation, appealing the uncertainties to the
modeling has revamped the purchase.

In Fig. 20 and 21, the hourly profile of installed DGs’ power
generation is compared.
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Fig. 20. A comparison study between case 1 and the 10th scenario of case
2 from the installed DG1 power generation, viewpoints.

Fig. 21. A comparison study between case 1 and the 10th scenario of case
2 from the installed DG2 power generation, viewpoints.

The comparison shows that the duration of power generation by
dispatchable DGs is higher in case 2, stating an improvement in
the DG function in DN after considering the Uncertainties.

Moreover, the two identical wind turbines were placed in the
respective distribution network to upgrade the performance of the
network, meet the demand and thus reduce the total cost of the
operation. The power generation of the wind turbine at different
hours of the day is investigated in both defined cases.

Fig. 22. A comparison study between case 1 and 1st scenario of case 2
from the installed Wind turbine1 power generation, viewpoints.

As it is evident from Fig. 22, the power generation of Wind
turbines slightly changes after applying the uncertainties to the
modeling. Two critical variables that play a role in the quantity
of the generated power, are demonstrated in Fig. 23. While high
electricity prices would require more generation from the WT,
Wind speed can limit it at any time.

In Figs. 24 and 25 the charging and discharging profiles of
different parking lots are provided and a comparison study is done
between the defined cases.

Fig. 23. Electricity price and wind speed in scenario 1, viewpoints.

Fig. 24. Charging profile of parking lots in 4th scenario of case 2.

Fig. 25. Discharging profile of parking lots in 4th scenario of case 2.

As it was stated earlier in case 1, charging and discharging of
EVs are dependent on the electricity price and technical issues;
Applying uncertainties does not alter its nature. Moreover, as load,
price, arrival and departure time, and EV initial energy change in
case 2 (Figs. 11, 12), so does the charge/discharge profile.

As known, EM in DN is an optimization problem considering
the technical and economic issues. Voltage amplitude is the main
operational parameter of DN which affects power loss, etc. In this
regard, voltage amplitude is considered a constraint that must be
preserved in a suitable range. To validate the fact that the proposed
approach can maintain the voltage in the preferable limit, the
voltage of DN nodes with installed parking lots is represented. In
this regard, Figs. 26-29 are provided.

It is concluded that the Voltage profile of buses is escalated
up to the defined maximum value which prevents voltage drop.
Voltage drop can become a safety concern as it results in harmful
consequences. Therefore, the technical parameters of the DN are
enhanced in case 2.

A comparison study between case 1 and the 7th scenario of
case 2 from the power loss, viewpoints, is represented in Fig. 30,
indicating a high-profile diminution in power loss comparatively
in case 2.

As discussed before, considering uncertainties results in a rise in
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Fig. 26. A comparison study between case 1 and the 10th scenario of case
2 from the voltage profile of the 8th bus connected to PL1, viewpoints.

Fig. 27. A comparison study between case 1 and the 10th scenario of case
2 from the voltage profile of the 18th bus connected to PL2, viewpoints.

Fig. 28. A comparison study between case 1 and the 10th scenario of case
2 from the voltage profile of the 25th bus connected to PL3, viewpoints.

cost, however, evidently, the general circumstances are ameliorated
in case 2 when DGs and WTs are manipulated smartly, and Parking
Lots are wielded to subdue the hindrance of the uncertainties in
their charging/discharging planning caused by traffic, the network
beholds momentous changes in power loss.

5. CONCLUSIONS

In this study, a new eco-technical scheme for energy management
in modern distribution networks in the presence of parking lots
considering the uncertainties of load, price, renewable energies, and
traffic patterns is proposed. This method is employed to model the
uncertainties mentioned earlier using the scenario-based stochastic
approach. Notably, the uncertainties related to traffic patterns
lead to different scenarios in which the arrival/departure time of

Fig. 29. A comparison study between case 1 and the 10th scenario of case
2 from the voltage profile of the 30th bus connected to PL4, viewpoints.

Fig. 30. A comparison study between case 1 and the 7th scenario of case
2 from the power loss, viewpoints.

EVs to/from parking lots and EVs’ initial stored energy in their
batteries would be different. The mentioned problem is modeled
as a MINLP problem and is solved using the DICOPT solver
in GAMS software. Two different cases are defined to validate
the feasibility of the proposed approach and the accuracy of the
attained results. Uncertain parameters are treated as deterministic
ones in case 1, whereas in case 2 the uncertainties are applied to
the modeling.

In both cases, the number of different parameters including
purchased power from the upstream network, power generation
of DGs, and charging/discharging of parking lots are dependent
mainly on the electricity price and also the load demand of the
network. In off-peak periods with lower prices, distribution system
operators often opt to purchase a larger amount of power from
the upstream network, while at peak periods, DGs work near their
nominal capacity and generate a higher amount of power.

In the parking lots, charging is mainly done at lower prices,
and discharging happens at peak loads. The discharge allows
the distribution system to provide the required loads. It must be
mentioned that each parking lot has its own charging/discharging
profile on account of the price of electricity, demand, hours of
electric vehicle presence in the parking lot, the EVs characteristics,
and also due to the technical issues of the node where the parking
lot is installed.

A comparison of the two cases reveals that the total cost
of a distribution system operator increases in case 2 where the
uncertainties are accounted for in EM in the distribution system.
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