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Abstract— In this paper, a novel approach for detecting islanding events in distribution networks special for synchronous generator type is
presented. The proposed method leverages information derived from negative sequence voltage components, synchronous generator field
voltage, positive sequence impedance variation rate, voltage harmonic distortion factor, and features extracted through wavelet transform
applied to voltage waveforms. In order to establish a robust classification system without the necessity of explicit threshold determination,
a pattern recognition method is employed. The dataset derived from these characteristics undergoes training using multi-layer support
vector machines and a random forest optimization algorithm, resulting in five distinct classes. The study incorporates experimental samples
encompassing various scenarios such as symmetric and asymmetric fault occurrences, load variations at different points, capacitor bank
switching, variable load switching, nonlinear load switching, and islanding on a modified 34-bus IEEE network. The proposed islanding
detection method demonstrates its effectiveness in distinguishing electrical islanding from power quality phenomena such as voltage
oscillation, voltage sag, voltage swell, and dynamic voltage changes. Conducted simulations in MATLAB validate the efficacy of the
proposed method.

Keywords—Islanding detection, synchronous generator, support vector machines, rendom forest, power quality phenomena.

1. INTRODUCTION

With the increasing daily consumption of electrical energy,
achieving methods for rapid energy supply and ensuring consumer
satisfaction are the most important objectives for power network.
This trend has led to the design of power generation sources
with limited capacity capable of connecting to the distribution
network or consumers. One of the phenomena that constantly
encounters with the installation of distributed generation (DG) in
the distribution network is the islanding of distributed generation
sources. Given the high significance of this phenomenon, the IEEE
929 standard, published in 1988, addressed the need to disconnect
distributed generation. Recognizing the operational necessity in
the presence of islanding, the IEEE 1547 standard was introduced
in 2003, proposing a maximum time of 2 seconds for islanding
detection. The presence of electrical islanding consistently exerts
notable influences on the distribution network, with alterations
in protective measures standing out as one of the pivotal
consequences. Given the considerable expenses associated with
power network equipment, the primary measure in safeguarding the
distribution network against the influence of distributed generation
sources involves identifying electrical islands. Diverse techniques
have been suggested for islanding detection, broadly classified
into two groups: remote and local methods. Remote islanding
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detection methods rely on communication between the network and
distributed generation. Despite offering higher reliability compared
to local detection methods, the widespread adoption of this
approach has been hindered by its high cost and lack of economic
feasibility [1–5].

Local islanding detection methods operate based on measuring
network parameters at the DG location. This method is divided into
three categories: passive, active, and hybrid methods. The passive
method, which is also the focus of this article, operates based on
measuring network parameters and does not disturb the operation
of DG [6–9]. Voltage magnitude at the distributed generation
terminal, DG output power fluctuations, frequency monitoring
and impedance variation are some of the proposed methods for
passive islanding detection. Factors that pose challenges to passive
islanding detection include the use of parameter-based methods,
threshold determination for parameter detection, and the balance
between production and consumption in the islanding zone. The
threshold values will undergo changes due to variations in local
and remote loads, and many of the parameters used in detection
depend on the balance between load and generation. In case of an
imbalance, these parameters may not exceed their threshold values,
leading to incorrect islanding detection. In addition, events such
as capacitor bank switching, symmetric and asymmetric faults,
variable and nonlinear load switching may introduce variations
in detection parameters, similar to what occurs during islanding.
Such conditions can result in the failure of proper islanding
detection [10–16]. The local methods for islanding detection
can be categorized into three sets: passive (one-site), active,
and hybrid methods. Passive methods rely on measuring various
network parameters at the point of common coupling (PCC) [17],
including under-voltage, under-current protection, rate of change
of frequency (ROCOF) [18], rate of change of angle difference,
vector shift, rate of change of voltage, and voltage and current
harmonics [19, 20]. Active methods involve manipulating signals
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at the PCC, intentionally misaligning them to detect islanding
operation modes. These methods prove effective during islanded
operations due to significant changes in electrical parameters at the
PCC. However, they may compromise energy quality at distributed
generation and PCC buses in distribution networks [21, 22].
Certain active methods use signal impulse and high-frequency
signal injection, reactive-power control, current injection, harmonic
drifting, adaptive active current disturbance, active phase shift,
active frequency drift, and Sandia frequency shift. Hybrid methods
combine features of both active and passive approaches. Notably,
recent islanding-detection methods primarily leverage artificial
intelligence (AI) techniques such as artificial neural networks
(ANN), adaptive neuro-fuzzy inference system (ANFIS), and
decision trees. These noninvasive AI-based methods boast a quick
detection period of less than 60 ms without causing disturbances
or impacting power quality at the PCC [23, 24]. However, despite
their advantages, AI-based techniques require significant time for
learning and testing, making them time-consuming. Consequently,
these methods have yet to find applications in commercially
available numeric relays for hardware solutions, especially in DG
relays analyzed for anti-islanding protection. While some methods
align closely with previously presented approaches, there remains
a lack of integration into the market for numeric relays [25].

In this article, a passive method for islanding detection
and its differentiation from power quality phenomena resulting
from symmetric and asymmetric faults, capacitor bank switching,
variable load, and nonlinear load for distributed synchronous
generator is proposed. This method is based on characteristics such
as negative sequence voltage component, synchronous generator
field voltage, positive sequence impedance rate variation, harmonic
distortion factor deviation, and features extracted from wavelet
transform of voltage waveforms. Pattern recognition techniques,
such as support vector machines (SVMs) and random forest (RF),
are employed to distinguish between islanding and non-islanding
states using data collected from the mentioned characteristics
in various experiments conducted on a modified 34-bus IEEE
distribution network. Multi-layer Support Vector Machines and
also random forest classification algorithm are utilized to classify
distribution network variation in five stages.

In the subsequent sections of the article, the network model
under investigation is presented, followed by the introduction of
the architecture of the multi-layer support vector machine and
random forest in Section 3. Parameters used in passive islanding
detection for synchronous generator productions are examined in
Section 4, and the proposed method is detailed in Section 5.
Simulation results are presented in Section 6, and the conclusions
are summarized in Section 7.

2. THE SYSTEM MODELING
In this article, the proposed islanding detection method is

evaluated using the modified 34-bus IEEE distribution network
operating at a frequency of 60Hz [4, 5]. Two distributed
synchronous generators, as illustrated in Fig. 1, are considered
for this network. These generators have production capacities of
DG1=5MVA and DG2=2.5MVA.

The base loads for each distributed generation are depicted in
the figure. To examine the impact of load changes at the terminal
of each distributed generation, loads LL-1 and LL-2 are varied.
Additionally, to investigate the effect of capacitor bank switching,
capacitors C1 and C2 are switched on in the subnetworks 1 and 2,
respectively. Moreover, external load EL will be switched at point
806. In this network, the nonlinear load, voltage notch (Notch)
generator, is connected at points 810 and 856. Also, the variable
load for generating voltage oscillations (Voltage Unbalance) is
connected to these points. To examine the effects of symmetric
and asymmetric faults, a lightning model is utilized at point 806
for a duration of 0.2 seconds. Islanding conditions in this network
are induced by opening the switches at points 806, 810, and 856,
and measurements will be taken at the terminals of both DGs.
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Fig.1: 34-Bus IEEE improved distribution system 
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are required. In this method, the training and testing process for three classification stages is 

Fig. 1. 34-Bus IEEE improved distribution system.

Table 1. The implemented parameters of the SVM.

Parameter Description Value
Train set size The size of the training set 60%

Validation set size The size of test set 40%
C Regularization parameter. The

strength of the regularization is
inversely proportional to C

1.5

Kernel Specifies the kernel type to be
used in the algorithm

Radial basis function

Gamma Kernel coefficient for ‘rbf’ Auto
Max iterint Hard limit on iterations within

solver
No limit

Random stateint Controls the pseudo random
number generation for shuffling
the data for probability estimates

True

Normalization Normalization of input data in the
range of -1 to 1

True

3. OPTIMIZATION ALGORITHM

3.1. Multi-layer support vector machine architecture

To separate N groups of information using a Multi SVM
classifier, N-1 stages of separation are required. In this method,
the training and testing process for three classification stages is
performed similarly, as shown in Fig. 2 [26]. Information from
the first category is separated from the total information using
SVM1, and SVM2 separates information from the second category
from the remaining information. The remaining information at
this stage represents the third category. Given the potential for
non-identification of data associated with a class at each stage
of data classification, the described approach will result in a
certain quantity of data in the final class remaining unallocated
throughout the SVM data classification procedure. To address this
issue and enhance classification reliability, preventing the impact
of uncategorized information on other classes, modifications have
been made to the architecture of the multi-layer Support Vector
Machine for both training data and test data [27]. Table 1
enumerates some of the implemented parameters of the SVM.
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Fig.2: The training and testing process for three classification stages 
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3.2. Random Forest Opmization Algorithm 

RF represents a hybrid learning approach applicable to both classification and regression 

tasks, relying on a framework composed of numerous decision trees. Specifically, effective 

for decision trees prone to overfitting the training set, RF typically outperforms individual 

decision trees. However, the extent of performance enhancement varies depending on the data 

type. Instead of depending on a singular decision tree, a random forest predicts outcomes 

from each tree, aggregates the majority of votes, and deems the consolidated result as the 

output. Increased tree quantity in the forest enhances accuracy and mitigates overfitting [28]. 

Notably, this algorithm operates independently of specific parameters in machine learning. In 

constructing a random forest classifier, features are randomly selected for each tree, 

introducing variability in the decision mapping for each. Every decision tree involves a 

random subset of samples, chosen with replacement from the training dataset, allowing each 

Fig. 2. The training and testing process for three classification stages.
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Table 2. The characteristic of RF parameters.

Parameter Description Value
Number of estimators The number of trees in the forest 200

Criterion The function to measure the quality
of a split

Gini

Train set size The size of the training set 60%
Validation set size The size of test set 40%

Max depth The maximum depth of the tree 6
Min samples split The minimum number of samples

required to split an internal node
2

Min samples leaf The minimum number of samples
required to be at a leaf node

2

Features max The number of features to consider
when looking for the best split

None

3.2. Random forest opmization algorithm
RF represents a hybrid learning approach applicable to both

classification and regression tasks, relying on a framework
composed of numerous decision trees. Specifically, effective for
decision trees prone to overfitting the training set, RF typically
outperforms individual decision trees. However, the extent of
performance enhancement varies depending on the data type.
Instead of depending on a singular decision tree, a random forest
predicts outcomes from each tree, aggregates the majority of votes,
and deems the consolidated result as the output. Increased tree
quantity in the forest enhances accuracy and mitigates overfitting
[28]. Notably, this algorithm operates independently of specific
parameters in machine learning. In constructing a random forest
classifier, features are randomly selected for each tree, introducing
variability in the decision mapping for each. Every decision tree
involves a random subset of samples, chosen with replacement
from the training dataset, allowing each tree to potentially use an
entirely distinct set of data points. The characteristics of the RF
utilized in this manuscript are detailed in Table 2. In addition, the
RF flowchart has been shown in Fig. 3.
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Fig.3: The RF classifier flowchart 
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4. INVESTIGATION OF ISLANDING DETECTION
PARAMETERS

The distribution network experiences varying load levels
determined by the connected loads. Changes in the network, such
as load connections/disconnections, symmetric/asymmetric faults,
and islanding, occur based on the network loading, leading to
similar impacts on voltage and current. Consequently, developing a
reliable indicator capable of effectively discerning electrical islands
from other network changes proves challenging. Addressing this
requirement, the adoption of a multi-criteria passive method

becomes essential for establishing a dependable and efficient
approach.

4.1. Negative sequence voltage component

Due to the diverse changes introduced by the presence of
distributed generation sources, network symmetry is consistently
disrupted. The occurrence of asymmetric faults, capacitor bank
switching, variable load switching, islanding, and other factors
result in changes to voltage magnitude and phase, depending
on the size of the equipment being switched. This phenomenon
contributes to the creation of voltage imbalance, which, in turn,
is the cause of the appearance of the negative sequence voltage
component.

According to Fig. 4, the occurrence of an electrical island
takes place at a specific moment. As illustrated in Fig. 4, the
magnitude and phase of the voltage waveform has been changed
during islanding. The magnitude of negative sequence voltage
during islanding is highly dependent on the balance between load
and dependent generation; thus, it is not a suitable parameter
for detection. However, the modulation of this parameter during
islanding has been utilized as a detection factor in this paper.
In reference [9], for achieving a fast islanding detection method
for distributed generation based on the inverter, injecting negative
sequence current and examining the modulation trend of negative
sequence voltage have been employed.
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Fig.4: The variation of amplitude and phase angle of Voltage during islanding 
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Fig. 4. The variation of amplitude and phase angle of voltage during
islanding.

The utilization of this parameter stems from the inherent ability
of the synchronous generator to generate negative sequence current.
The fluctuations in negative sequence voltage, as illustrated in Fig.
5 for islanded, load connection, and capacitor bank connection
scenarios, are demonstrated. It is noticeable that, owing to
islanding, the value of this parameter consistently surpasses the
threshold level.
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4.2. Generator field voltage
Symmetric and asymmetric faults in the network produces

alterations in the proposed detection parameters, surpassing the
defined islanding threshold. The capability to identify network
faults and differentiate them from other factors impacting detection
parameters aids in the passive method of islanding detection.
To realize this objective, the field voltage of the synchronous
generator is employed. The control system for generator excitation,
developed in MATLAB software, follows the IEEE 421.5 standard
from 1992.

The fundamental elements in the excitation system are the
voltage regulator and the exciter. The exciter establishes a
relationship between the exciter field voltage (Vfd) and the output
of the voltage regulator (ef ) using the transformation function
provided in Eq. (1).

Vfd

ef
=

1

Ke + sTe
. (1)

Since the generator field is supplied by the excitation field
voltage, the generator field voltage is utilized to distinguish
faults from other network variations. In the event of a fault in
the network, the generator terminal voltage (Vt) experiences a
significant drop, causing a sudden increase in the fault voltage
according to Eq. (2).

Verror = Vref − Vt. (2)

In this relation, Vref is considered 1 perunit. The fault voltage
signal is sent to the exciter to compensate for the generator’s
output voltage. Given the high gain of the voltage regulator,
it increases its input. The signal ef from the regulator output,
according to Eq. (1), will abruptly increase the excitation field
voltage. Such abrupt variations lead to an instantaneous increase
in the excitation current, but due to the inductive property of
the system, the instantaneous change in excitation current is not
feasible. Fig. 6 illustrates the effect of network changes such as
switching of load LL-1 at 1s and 2s, load EL switching at the time
3s and 4s, capacitor bank switching at 5s and 6s, and three-phase
fault at the time equal to 7s on the excitation field voltage. As
seen in the figure, the proposed parameter achieves satisfactory
performance during the fault occurrence.

As long as a fault exists in the network, Vfd remains upper
than the threshold. With fault clearance, in contrast to the previous
condition, Vfd suddenly increases, leading to a reduction, and
proportionally, a decrease in the excitation current.

4.3. Positive sequence impedance variation rate
As depicted in Fig. 7, one of the most significant changes that

follows the deviation trend of negative sequence voltage, similar to
the occurrence of an island, is the connection of a variable load.
For variable load simulation the variable load block in MATLAb
software has been implemented. Since the voltage exhibits
oscillatory behavior, the negative sequence voltage component
arises due to voltage oscillation. Consequently, separating these
conditions from islanding is crucial. To distinguish the variable
load connection from other network changes, the positive sequence
impedance rate of change has been utilized. Given the variable
nature of the voltage magnitude, the positive sequence impedance
rate of change achieves the most significant impact.

4.4. Harmonic distortion factor
Distributed generation outputs play a significant role in

generating voltage harmonics, depending on their technology.
Distributed generation sources connected to the grid through
power electronic converters have garnered much attention among
other distributed generation technologies due to the switching
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Fig.7: The variation of the negative sequence voltage and the positive sequence impedance of variable load 

4.4. Harmonic Distortion Factor 

Distributed generation outputs play a significant role in generating voltage harmonics,

depending on their technology. Distributed generation sources connected to the grid through

power electronic converters have garnered much attention among other distributed generation

technologies due to the switching actions performed in these converters. Synchronous

generators also produce voltage harmonics due to the nonsinusoidal distribution of flux in

their windings. Additionally, the flux resulting from the creation of negative sequence current

in this type of distributed generation produces third-order harmonic. 

Several measurement methods exist to illustrate the magnitude and size of harmonics in a

waveform by a single number. One of the most common methods is the Total Harmonic

Distortion (THD), which can be obtained for voltage or current according to equation (3). 

Fig. 6. The Effect of fault on detection parameter (a) Load connection in
micro-grid 1 (b) Load disconnection in micro-grid 1 (c) Load disconnection
in micro-grid 2 (d) Capacitor bank connection in micro-grid 1 (e) Capacitor
bank disconnection in micro-grid 1 (f) 3phases fault.
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4.4. Harmonic Distortion Factor 

Distributed generation outputs play a significant role in generating voltage harmonics,

depending on their technology. Distributed generation sources connected to the grid through

power electronic converters have garnered much attention among other distributed generation

technologies due to the switching actions performed in these converters. Synchronous

generators also produce voltage harmonics due to the nonsinusoidal distribution of flux in

their windings. Additionally, the flux resulting from the creation of negative sequence current

in this type of distributed generation produces third-order harmonic. 

Several measurement methods exist to illustrate the magnitude and size of harmonics in a

waveform by a single number. One of the most common methods is the Total Harmonic

Distortion (THD), which can be obtained for voltage or current according to equation (3). 

Fig. 7. The variation of the negative sequence voltage and the positive
sequence impedance of variable load.

actions performed in these converters. Synchronous generators also
produce voltage harmonics due to the nonsinusoidal distribution
of flux in their windings. Additionally, the flux resulting from the
creation of negative sequence current in this type of distributed
generation produces third-order harmonic.

Several measurement methods exist to illustrate the magnitude
and size of harmonics in a waveform by a single number. One
of the most common methods is the Total Harmonic Distortion
(THD), which can be obtained for voltage or current according to
Eq. (3).

THDv =


√√√√ N∑

h=2

V 2
h

/
V 1

× 100. (3)

To calculate THD, it is necessary that the voltage waveform
to be in a stable state. This is challenging as any change in the
network alters the fundamental frequency. Therefore, calculating
THD seems impractical. To examine the harmonic variations
resulting from islanding and other factors affecting the voltage
waveform, it is assumed that the fundamental frequency component
remains constant with any frequency variation.

In the case of connecting DG to the network, voltage quality
control at the common point of connection between DG and
the network is the responsibility of the network. Additionally,
under normal conditions when DG is connected to the network,
the equivalent impedance from the DG terminal is very small.
Given that harmonic components always exist in a very small
range compared to the main component in terms of amplitude,
the current drawn by the load for these components will also be
negligible. Therefore, the harmonic distortion factor of the voltage
will allocate a small amount.

In the event of islanding, the synchronous generator generates
low-order harmonics, causing a delay in the damping of harmonic
components. Simultaneously, the creation of an island results in
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Table 3. The test numbers and variation for collecting dataset.

Variation Type Test numbers Test Percent
Load connection and disconnection in DG-1,2 648 40

Capacitive bank connection and disconnection in DG-1,2 324 20
Linear load connection and disconnection in G-1,2 54 3/33

Non-Linear load connection and disconnection in G-1,2 54 3/13
Fault in 806 135 8/33

Islanding 405 25

a sudden increase in the equivalent impedance from the DG
terminal. Observing the changes in impedance and current trends,
the amplitude of voltage harmonic components rises, consequently
elevating the Total Harmonic Distortion. Fig. 8 depicts the trend of
THD variation of three scenarios: islanding, connecting a capacitor
bank, and load connecting.

2

2

1 100

N

h

h

THDv V V

=

 
 

=  
 
 

  

(3) 

To calculate THD, it is necessary that the voltage waveform to be in a stable state. This is 

challenging as any change in the network alters the fundamental frequency. Therefore, 

calculating THD seems impractical. To examine the harmonic variations resulting from 

islanding and other factors affecting the voltage waveform, it is assumed that the fundamental 

frequency component remains constant with any frequency variation. 

In the case of connecting DG to the network, voltage quality control at the common point of 

connection between DG and the network is the responsibility of the network. Additionally, 

under normal conditions when DG is connected to the network, the equivalent impedance 

from the DG terminal is very small. Given that harmonic components always exist in a very 

small range compared to the main component in terms of amplitude, the current drawn by the 

load for these components will also be negligible. Therefore, the harmonic distortion factor of 

the voltage will allocate a small amount. 

In the event of islanding, the synchronous generator generates low-order harmonics, causing a 

delay in the damping of harmonic components. Simultaneously, the creation of an island 
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changes in impedance and current trends, the amplitude of voltage harmonic components 

rises, consequently elevating the Total Harmonic Distortion. Fig.8 depicts the trend of THD 
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Fig.8: THD changes due to islanding, load connection and capacitor bank connection 

4.5. Extracted Wavelet Transform Indices 

In order to utilize wavelet transform for islanding detection, the second-level decomposition 

has been employed. Under various network loading conditions, each parameter provides a 

wide range of variations. For certain changes, especially load interruptions, the obtained 

results and islanding scenarios will be very similar. By examining the 2−Detail results from 

2db , conditions for circuit breaker (CB) disconnecting can be determined for each type of 

network change using the domain value. Since islanding occurs due to CB disconnects, the 

electrical islanding will be distinguished from all separate CB connection conditions using 

this parameter [29]. Another extracted index is the energy and the amplitude of the wavelet 

transform. 

Fig. 8. THD changes due to islanding, load connection and capacitor bank
connection.

4.5. Extracted wavelet transform indices
In order to utilize wavelet transform for islanding detection,

the second-level decomposition has been employed. Under various
network loading conditions, each parameter provides a wide range
of variations. For certain changes, especially load interruptions,
the obtained results and islanding scenarios will be very similar.
By examining the Detail − 2 results from db2, conditions for
circuit breaker (CB) disconnecting can be determined for each
type of network change using the domain value. Since islanding
occurs due to CB disconnects, the electrical islanding will be
distinguished from all separate CB connection conditions using
this parameter [29]. Another extracted index is the energy and the
amplitude of the wavelet transform.

5. PROPOSED METHOD

The separation of electrical islanding from power quality
phenomena in this article is based on examining the effects of
network variations on voltage and current and determining an
index that distinctly identifies these changes from islanding. The
possible network-induced changes and their influential effects are
presented in Table 3.

The use of pattern recognition methods requires data for
training. To obtain the necessary information in this article,
numerous experiments have been conducted on the examined
network. Table 1 shows the number of these experiments for each
network variation.

Baseline loads of (0.5 MW, 0.5 MVAr), (1 MW, 1 MVAr),
and (1.5 MW, 1.5 MVAr) have been defined for each distributed
generation (DG). Consequently, the combination of possible
conditions for two DGs results in 9 different base loading states for
the network. To investigate the effect of the CB -switching angle
on the parameters of interest, three angles (0, 45, and 90 degrees)

have been considered for both open and closed CB states for each
experiment. The examination of the CB -switching angle under CB
disconnecting conditions, considering the CB closing at the zero
current crossing point, is crucial due to the calculations performed
in the wavelet transform. Since, as a result of disconnecting one
phase, the other phase may reach its zero current crossing point
sooner and disconnect, various transient states occur, leading to
changes in the output of the wavelet transform.

In the context of load switching at the terminal of each DG, six
loads of different magnitudes have been considered. These loads
correspond to %30, %50, %70, %90, %100, %120, and %150 of
the baseline load (1 MW, 1 MVAr). This range of load variations
has been utilized to examine various conditions of balance between
load and generation for islanding scenarios. The obtained data
for islanding scenarios are derived from creating islands at three
points: 806, 856, and 810. In the analysis of each distributed
generation, the data related to islanding include the DG itself and
the islanding of DG-1,2. Fig. 9 illustrates the algorithm of the
proposed method.

Determining the threshold values for inactive detection
parameters, which are among the most important and challenging
parts of the configuration of these methods, has given way to
a classification-based approach. The nine parameters have been
defined as inputs to the Multi SVM. These parameters include the
synchronous generator field voltage, the magnitude and phase of the
negative sequence voltage, the magnitude and phase of the positive
sequence impedance rate, the deviation of the voltage harmonic
distortion factor, magnitude and energy. A total of 1620 training
data are obtained. The indices used in the proposed method are
divided into two categories: transient and super-transient indices.

The synchronous generator field voltage (a), the negative
sequence voltage magnitude (b), the positive sequence impedance
rate magnitude (c), the Detail − 2 magnitude (d), and the
Detail−2 energy (e), which utilize information from the transient
cycle for calculations, are referred to as transient indices. The
negative sequence voltage magnitude (f), the positive sequence
impedance rate magnitude (g), and the harmonic distortion factor
deviation (h), which utilize information from two cycles after the
transient cycle, are recognized as super-transient indices in this
article. Fig. 10 illustrates the positions of three parameters, the
Detail−2 voltage waveform, synchronous generator field voltage,
and positive sequence impedance rate magnitude, versus on the
magnitude of the negative sequence voltage as an example for two
islanding and non-islanding states.
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Table 4. SVM classification results accuracy.

SVM1 SVM2

Non-linear
Polynomial 82.8 82.2

MLP 85.9 81.5
RBF 89.1 87.4

Linear 87.6 86.3

into two categories: training and testing samples. The SVM used
in this simulation for distinguishing five islanding states, voltage
sag, voltage fluctuation, voltage dynamic increase, and decrease,
is composed of five layers according to the proposed architecture
pattern in [27]. In the training process of SVM1, as shown in
Fig. 2, this network learns from the entire information for the
separation of the first group from the rest.

Based on this, SVM2, SVM3, SVM4, and SVM5 are trained
separately for the second, third, fourth, and fifth groups,
respectively, using all the data. To perform experiments on the
trained networks, the remaining 40% of the data will be used. In
the first stage of separation, testing samples related to voltage sag
will be separated from other samples. In the second stage, SVM2
isolates voltage fluctuation as another power quality phenomenon
from the testing data. In the third stage, the separation of voltage
dynamic increase will be considered, and based on this, SVM3
performs this task. If the pattern in [27] is used in this simulation,
SVM4 is considered the last step, which separates voltage dynamic
decrease and islanding from each other. However, the samples that
have not obtained their desired class in the three previous stages
will be placed in the islanding class, reducing the accuracy of
islanding data classification. To increase the reliability of the data
separation method, SVM5 is used. Thus, conditions are provided
to eliminate samples that have been transferred from the first layer
to the final layer. Table 4 shows the information obtained from
the classification of data into five desired classes for linear and
nonlinear support vector machines with RBF, MLP, and polynomial
kernel functions. As seen, the RBF support vector machine is
capable of effectively distinguishing islanding from other power
quality phenomena.

In this condition, the accuracy of the RF was 93.21% which
shawn that this classifier was able to diagnose the islanding
condition better than the SVM.

For a more in-depth examination of the proposed criteria,
an extensive analysis has been conducted using various metrics,
including recall, precision, and F1-score, across different considered
classifiers. Recall assesses the model’s capability to correctly
identify true positives, also referred to as the true positive rate. It

Table 5. The performance of classifiers with various feature combinations
with proposed criteria.

Classifier Accuracy(%) Precision(%) Recall(%) F1(%)
RF 93.21 92.15 90.25 91.19

SVM-RBF 89.1 89.85 88.35 89.09

is computed by dividing true positives by the sum of true positives
and false negatives. Conversely, precision represents the ratio of
true positives to all points classified as positives, requiring positive
and negative numbers from the confusion matrix for its calculation.
The F1-score serves as the harmonic mean of precision and recall.
The computation of these indices is outlined below:

Precision = TP
TP+FP

Recall = TP
TP+FN

F1 = 2 ∗ Recall∗Precision
Recall+Precision

.

(4)

where TP is the true positive, FP is the false positive, and
FN is the false negative.

The results of incorporating these feature combinations into
various classification models have been represented in Table 5.

7. CONCLUSION
This article introduces a novel method aimed at distinguishing

islanding from power quality phenomena, including voltage sag,
fluctuation, dynamic increase, and decrease, within a distribution
network. The classification of test data is achieved using SVM
and RF classifiers. Information essential for the method is derived
from the negative sequence component of voltage, synchronous
generator field voltage, positive sequence impedance ratevariation,
voltage harmonic distortion coefficient, and features extracted from
the wavelet transform of voltage waveform. A comprehensive
dataset comprising 1620 different scenarios is tested on the 34-bus
IEEE network for data collection. The training and testing data,
processed by the multilayer support vector machine, are segregated
into five stages. The proposed parameters demonstrate satisfactory
performance in islanding conditions, encompassing various load-
switching scenarios, capacitor bank switching, three-phase faults,
two-phase faults, single-phase faults, and variable and nonlinear
load switching. The obtained results are:

• The RBF kernel accurately distinguishes the islanding state
from power quality phenomena with high precision compared
to the MLP and linear SVM. The accuracy of the RBF was
89.1% whereas the accuracy of linear and MLP were 87.6%
and 85.9%, respectively.

• Comparing the RF and SVM algorithms shown thet the RF
efficiency is higher than the SVM for islanding detection.
The accuracy of RF was 93.21%.

• The recall and F1 score of the RF optimizer were 90.25%
and 91.19% and these values for SVM were 88.35% and
89.09%, respectively.
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