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ABSTRACT 
One of the significant strategies of the power systems is Economic Dispatch (ED) problem, which is defined as the 
optimal generation of power units to produce energy at the lowest cost by fulfilling the demand within several limits. 
The undeniable impacts of ramp rate limits, valve loading, prohibited operating zone, spinning reserve and multi-fuel 
option on the economic dispatch of practical power systems are scrutinized in this paper. Thus, the proposed nonlinear 
non-convex formulation is solved by a new modified version of bio-inspired bat algorithm. Due to the complexities 
associated with the large-scale optimization problem of economic dispatch, adaptive modifications are added to the 
original bat algorithm. The modification methods are applied at two separate stages and pledge augmentation in 
convergence rate of the algorithm as well as extricating the algorithm from local optima. Veracity of the proposed 
methodology are corroborated by performing simulations on three IEEE test systems. 
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1. INTRODUCTION 
 Scarcity of energy resources, increasing generation 
cost of the power systems, and ever-growing load 
demand for electric energy necessitate optimal 
Economic Dispatch (ED) in the current electric 
power systems. As power demand increases and 
considering that the fuel cost of the power 
generation is exorbitant, reducing the operation costs 
of power systems has turned to a significant topic 
[1]. Economic dispatch is an essential and significant 
optimization problems task for the operation of 
power systems. The main objective of ED in power 
systems is to economically distribute the total 
required generation between the generation units, 
while satisfying the load demand and system 
equality and inequality constraints [2]. 
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Improvements in the scheduling of the unit power 
outputs can contribute to significant cost savings. 
Furthermore, it offers information in forming 
market-clearing prices.  

Previously, different algorithms to find rate of 
optimum product for each power generation unit are 
proposed in the literature. Conventional algorithms 
such as gradient method, Lambda Iteration Method 
(LIM), Linear Programming (LP), Quadratic 
Programming (QP), Lagrangian multiplier method, 
and classical technique based on coordination 
equations can solve the ED problems. 

There are complex and nonlinear characteristics 
with equality and inequality constraints associated 
with the practical ED, which may be imposed to the 
problem to ensure the system operator of system 
reliability during disturbances and a secure 
operation. Many generating units are supplied with 
multiple fuel sources and should be scheduled by the 
most economic fuel to burn [3]. Taking everything 
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into account, the system operator must consider 
ramp rate limits, Prohibited Operating Zones 
(POZs), system spinning reserve, valve loading 
effects, and multiple fuel source options to solve a 
realistic ED problem, which makes hard the finding 
of the optimum solution difficult [4]. 

Recently, as an alternative for conventional 
mathematical approaches, the modern stochastic 
optimization algorithms based on operational 
research and artificial intelligence concepts,  such as 
Genetic Algorithms (GA), Tabu search, simulated 
annealing (SA) ,  differential evolution and Particle 
Swarm Optimization (PSO) are considered as 
realistic and powerful solution schemes for 
obtaining the global optimums in power system 
optimization problems and due to their ability to find 
an almost global optimal solution for ED problems 
with operating constraints. While each of the above 
studies has considered different parts of the practical 
ED problem, none of them have considered all the 
practical constraints simultaneously [5]. In addition, 
the utilized algorithms are not robust at all and have 
found different results for different runs. In response 
to these deficiencies, a practical formulation was 
devised for ED and then a new method is proposed 
as its solution in this paper. Thus, a modified version 
of bat algorithm (BA) as an evolutionary meta-
heuristic algorithm was employed to solve the 
proposed realistic ED problem. BA tries to 
formulate and simulate the journey of bats in search 
of nutritious resources or chasing preys. The 
algorithm is simple in concept; thus, it is easy to 
implement, since many adjusting parameters are not 
included in the formulation. However, the original 
algorithm suffers low convergence rate and it is 
destined to get trapped in local optima due to the 
lack of diversity in the population.  Thus, two 
modification stages are emplaced in the original 
algorithm to help increase the convergence rate of 
the algorithm and diversify the population. 
Interspersing the population to the entire search 
space improved the odds of finding the global 
optima. The robustness and capability of the 
proposed methodology is demonstrated by applying 
the procedure to two various IEEE standard test 
systems. In sum, the main contributions of this study 
can be summarized as follows: 

• Proposing a comprehensive model for ED 
problem to consider practical constraints in real 
systems. 

• Modifying the original BA to enable it of 
seeking the search space faster and more 
precisely.  

 
2. PRACTICAL ED MATHEMATICAL 

DISCRIPTION  
The ED problem is a nonlinear optimization 
problem, the objective of which is to determine the 
optimal combination of power generations, which 
minimizes the cost function while satisfying an 
equality constraint and an inequality constraint. The 
mathematical representation of the classical ED 
problem and the proposed practical ED are 
described in this section. 
 
2.1. Classic ED  
 ED in its classical formulation aims to minimize the 
summing costs of thermal generating units which 
are generally considered as the second order 
polynomial function of the generation [2], as 
follows: 

(1) 1

( ) ( ) ( )
n n

2
i i i i i i

i i=1
if X Cost X = F P = (a )+b P +c P

=

= ∑ ∑
 

in which Pi denotes output power of the ith unit and n 
stands for the number of generators in the network. 
The polynomial coefficients of cost for the ith unit 
are represented by ai, bi, and ci as well. The 
conventional ED optimization problem is subjected 
to the following constraints forcing generators to 
produce power within specific limits so that their 
total generation equals to total power demand in the 
network (D). 

(2) 
1

n

i
i

P = D
=

∑  

(3) min max
i i iP P P≤ ≤  

In the above formulation, the lower and upper 
bounds of power generation for the ith unit are 
denoted by Pi

min and Pi
max , respectively.  
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2.2. Proposed practical ED formulation  
 Effects of valve-point loadings  

However, it is more practical to consider the effect 
of valve point loading for thermal power plants [6]. 
These effects, which occur as each steam admission 
valve in a turbine, create a rippling influence on the 
unit’s cost curve. Typically, as each steam valve 
starts to open, the valve point results in the ripples 
like in Fig. 1. Considering the valve-point effects, 
the fuel cost function of the ith thermal generating 
unit is expressed as the sum of a quadratic and a 
sinusoidal function in the following form: 

(4) 
min|( sin( () )) |i i i

2
i i i i i i iiF P = a + e fb c PP PP + + −

 
Costs of valve loading effect are represented by 

coefficients ei and fi in the sinusoidal term. 
 

 
Fig. 1. Input–output curve under valve point loading 

 
 Multiple fuels 

Since the dispatching units are practically provided 
with multi-fuel sources, each unit should be really 
represented by several piecewise quadratic functions 
reflecting the effects of fuel type changes and a 
generator must identify the economic fuel to burn. 
Thus, since different fuels possess various costs, the 
final generation cost of the units will depend on their 
choice of fuel, leading to divided cost function for 
generators as follows: 

(5) 
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By adding the term related to valve-loading effect, 
the above formulation is turns to the following form:   

(6) 
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The number of different fuel types that are 

provided is denoted by nf.  
Apart from the two previously mentioned conven-

tional constraints, the secure operation of network 
mandates respecting the following constraints: 

 Ramp rate limits 

(7) 0

0

;   If generation increases
;   If generation decreases

i i i

i i i

P P UR
P P DR

− ≤⎧
⎨ − ≤⎩

 

Ramp-up and ramp-down rate limits of the ith unit 
are denoted by URi and DRi, respectively.  Also, P0i 
is the active power output of the ith unit in the 
previous hour. It is an significant matter that, due to 
the consideration of ramp rates, the output power of 
each unit is now bounded by a new limit as follows:       

(8) 

min max
0 0max( , ) min( , )

1,2,..,
i ii i i i iP P DR P P P UR

i n

− ≤ ≤ +

=
 

 Prohibited Operating Zones (POZs) 

Each generator has its generation capacity limitation, 
which cannot be exceeded. The prohibited operating 
zones in the input-output performance curve, due to 
steam valve operating in shaft bearing, were 
considered in this paper in order to determine the 
optimum ED problem.  In practice, when adjusting 
the generation output of a unit, operation in the 
prohibited zones must be avoided. Thus, the shape 
of the input-output curve in the neighborhood of the 
prohibited zones is difficult to be determined and the 
best economical approach is achieved by avoiding 
the operation in these areas, as shown in Fig. 2. The 
POZ restrictions might be represented for the ith unit 
as follows: 

(9) 

min
,1

, 1 ,
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,
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NGP is the number of generators incorporating 
POZ and NPi is the number of POZs of the ith unit. 
Besides, Pi,j

LB and Pi,j
UB refer to the lower and upper 
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boundaries of the jth POZ of the ith generator 
respectively.  
 

 
Fig. 2. The prohobited operating zones and generation limits for a 

generator 
 
 Spinning reserve 

Due to the inclusion of POZ in the formulation of 
ED problem, spinning reserve of the system should 
be written in the following form: 

(10) 

max maxmin{( ), }     ( )
  

0                                       
i i i

i
P P S i

S
i

⎧ − ∀ ∈ Ω − Θ
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(11) 
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=
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r i
i

S S
=
∑  

(12) r RS S≥  

in which, Si and Si
max refer to the spinning reserve of 

the ith unit and its maximum value, respectively. The 
set of operating units is denoted by Ω and the set of 
operating units with POZ is represented by Θ . SR 
refers to the total spinning reserve required by the 
system.      

 
3. OPTIMIZATION TECHNIQUE  

3.1. Original bat algorithm  
Bats locate the position of food or prey by 
echolocation. Echolocation is the process of figuring 
out the position of objects from their response to 
some sort of subsonic signals. Bats spreads a signal 
in the perimeter and waits to receive the reverberated 
signal from food or prey. This idea has been 
simulated to form a meta-heuristic evolutionary 
optimization algorithm called the (BA) [7]. The 
ruling ideas behind the BA are listed as bellow: 

1) Reverberated signals from various objects are 
different and thus bats are capable of distinguishing 
between food and prey; 
 2) The generated signal by a bat stationed in 
position Xi or flying at the velocity of Vi is specified 
by fi and Ai as signal frequency and amplitude, 
respectively; 
 3) Amplitude of the signal denoted by Ai is reduced 
gradually;  
4) Frequency of the signal denoted by fi and its rate 
denoted by ri are changed automatically. 

The algorithm is initiated by generating a 
preliminary population of bats which are randomly 
interspersed in the search space. The process of 
evolution is followed by updating the position of 
bats based on two separate steps. The first 
adjustment in the bat position is according to: 

(13) 
min max min

1

( ); 1, ,

; 1,...,

( ) ; 1,...,

new old
i i i G i Bat
new old new
i i i Bat

i i i i Bat

f X X i N

X X i N

f f f f i Nϕ

= + − = …

= + =

= + − =

V V

V  

Where, XG indicates the best global solution. The 
upper and lower frequency limits of the ith bat are 
represented by fimax and fimin , respectively. The 
population size is equal to the total number of bats 
denoted by NBat and φ1 is a randomly generated 
number between 0 and 1. 

The second movement in the bat position is 
simulated as follows: 

(14) ; 1, ,new old old
i i mean BatX X A i Nε= + = …  

where, ε is a random number in the range of [-1,1] 
and Amean

old  is the mean value of amplitude of all the 
bats. Once the position of bats is improved by the 
above adjustments, a new random individual Xi

new is 
generated in case the rate of its signal ri is greater 
than a random value β. This new solution will be 
inserted to the population in case the following 
constraint is respected: 

(15) [ ]&[ ( ) ( )]i iA f X f Gbestβ < <  
As mentioned formerly, the value of signal 

amplitudes generated by bats has a gradual decrease 
formulated by: 

(16) 1 0[1 ( )]

new old
i i
Iter

i i

A A

r r exp t

α

γ+

=

= − − ×
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Where t represents iteration number and α and γ 
are constant parameters. 

 
3.2. Modified BA 
The original BA suffers some drawbacks such as the 
possibility of getting trapped in local optima and low 
rate of convergence to the optimal solution. Two 
modifications are devised and added to the 
algorithm in order to improve its convergence rate 
and diversity as follows: 
 
 Modification method 1 

In the first modification step, it is attempted to 
diversify the bat population using Lévy flight, 
defined as a random walk with regular and dispersed 
step lengths according to heavy-tailed probability 
distribution [8]. The mathematical representation of 
the Lévy flight is formulated as: 

(17) ( ) ~    ;      (1< 3)Le vy t ωω τ ω−′ = ≤  

This idea is borrowed to generate a new 
individual in each iteration as follows:  

(18) 1 ( )
i i

new oldX X Le vyϕ ω′= + ⊕  

This new solution might replace the ith bat in the 
population in case it excels the objective function. 

 
 Modification method 2 

The second modification step is devised to inters-
perse randomly generate solutions in the population 
based on conventional GA operators of crossover 
and mutation. To do so, three bats Xb1, Xb2 and Xb3 

are chosen randomly such that b1 ≠ b2 ≠ b3 ≠ i are 
related for ith bat in the population and two test 
solutions are generated as follows: 

(19) 1 2 3,1 1 ( )Test b b bX X X Xϕ= + × −  

(20) ,2 2 3 ( )Test G G iX X X Xϕ ϕ= × + × −  
The above individuals are compared to the ith bat 

and the one which enhances the objective function 
replaces Xi. 

 
4. SOLUTION PROCEDURE 

In order to apply MBA to solve the ED problem, the 
following steps should be implemented: 
Step 1: Defining the input data. Here, all data 
including the network data, algorithm data (such as 
number of bats, initial positions, constant 

coefficients, etc.), objective function parameters, 
constraints parameters, and etc. are defined compl-
etely. 
Step 2: Formation of the fitness function. It is noted 
that the fitness function includes the objective 
function and the penalty values related to the prob-
lem constraints.  
Step 3: Generation of the initial population based on 
the information given in the previous section.  
Step 4: Evaluation of the objective functions for 
each bat separately and finding the best solution. 
Step 5: Movement of the bat population to the new 
improved positions. 
Step 6: Application of the proposed modification 
methods according to Eqs. (17)-(20). 
Step 7: Updating the value of the best individual.  
Step 8: Checking the termination criterion. If the 
termination criterion is satisfied, then the algorithm 
is finished and the results are printed; else, step 5 and 
the rest of the steps of repeated. 

 
5. SIMULATION RESULTS 

Effectiveness of the proposed approach in solving 
the proposed realistic ED problem is illustrated by 
applying the method to two test systems. It is worth 
noting that the adjusting parameters of MBA are all 
determined experimentally by several running of the 
algorithm. But, the significant point is that the 
algorithm is not much dependent on the values of 
the setting parameters and the output results is 
robust. The first example included ten generating 
units considering fuels valve loading effects of 
multiple fuels simultaneously [13]. The optimization 
problem is solved 100 times to generate the results 
according to Table 1. For comparison, the obtained 
results from several recently published ED solution 
methods (with similar trial runs) are also represented 
in this Table. It should be noticed that the results of 
the other reported methods are directly quoted from 
their respective references. According to the results, 
the best, average, and worst solutions of the 
proposed MBA are better than the best, average, and 
worst results of all other methods in the first ED test 
systems (IEEE 10-unit system), respectively. In 
addition, the optimal operating points of the units are 
given in Table 2. 
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The impact of the modifications on the convergence 
rate of the BA is illustrated in Fig. 3. 

Table 1. Cost function optimization using the proposed method 
on the IEEE 10-unit test system  

Worst Average Best Method 
633.8652 627.6093 624.7193 CGA-MU [13] 
630.8705 625.8692 624.5178 IGA-MU [13] 
624.5458 624.5246 624.5146 DE [14] 
624.5088 624.5079 624.5081 RGA [14] 
624.5074 624.5074 624.5074 PSO [14] 
628.3214 624.7887 624.2297 PSO-LRS [15] 
627.4237 625.2180 624.1624 NPSO[15] 
626.9981 625.9985 624.1273 NPSO-LRS [15] 
626.8660 625.8636 624.1763 BA 
623.9964 623. 9883 623.8963 Proposed MBA 

Table 2. Optimal operating point for the generators on the IEEE 
10-unit test system 

Optimal Generation Unit 
216.0512 1 
211.9071 2 
280.6641 3 
240.7613 4 
279.6584 5 
239.7952 6 
292.2220 7 
240.4925 8 
424.2443 9 
274.2036 10 

It is obvious that the proposed MBA was effecti-
vely successful in approaching the global optimal 
solution in less than 100 iterations. 

 
Fig. 3. Convergence speed of the proposed MBA on the IEEE 

10-unit test system 

For the sake of better demonstrating the robus-
tness of the proposed methodology, the procedure is 
applied to the 40-unit IEEE power system and the 
second test case was fully introduced in [15]. Similar 
to the first case, 100 trials are done to the IEEE-40 
unit system and the optimization results and the unit 
allotted outputs are illustrated in Table 3 and Table 
4, respectively. 

Investigation of the results revealed the 
dominance of the proposed MBA in terms of finding 
the optimal solution compared to other methods. 

Table 3. Cost function optimization using the proposed method 
on the IEEE 40-unit test system  

Worst Average Best Method 
NA 126,074.40 124,350.40 SPSO [16] 
NA 124,154.49 123,930.45 PSO [17] 

126,902.89 124,793.48 123,488.29 CEP [17] 

NA 124,575.70 122,780.00 HGAPSO 
[16] 

127,245.59 124,119.37 122,679.71 FEP [16] 
125,740.6300 123,382.0000 122,624.3500 IFEP [16] 

NA NA 122,252.2650 MPSO [18] 
123,143.0700 122,558.4565 122,122.1600 ESO [19] 

123,461.794 122,558.4565 122,035.7946 PSO-LRS 
[18] 

123,334.0000 122,811.4100 121,915.9300 Improved 
GA [20] 

NA 122,844.4 121,915.3000 HPSOWM[
21] 

NA NA 121,819.2521 IGAMU[22
] 

122,995.0976 122,221.3697 121,704.7391 NPSO [18] 
NA 122,304.3000 121,698.5100 HDE[23] 

122,981.5913 122,209.3185 121,664.4308 NPSO-LRS 
[18] 

121,756.9473 121,721.0043 121,694.5938 KH [24] 
122,867.8832 122,218.8773 121,678.7742 BA 

121,601.0001 121,583.3029 121,578.4832 Proposed 
MBA 

The improvements were obvious in all average 
and the worst and best solutions. The convergence 
behavior of the proposed MBA is depicted in Fig. 4 
and it can be seen that the modifications enhanced 
convergence rate of the algorithm. 
Table 4. Optimal operating point of the generators on the IEEE 

40-unit test system  
Optimal Generation Unit Optimal Generation Unit 

523.2798 21 112.2460 1 
523.2793 22 112.3141 2 
523.2804 23 97.8202 3 
523.2796 24 179.7331 4 
523.2796 25 91.7458 5 
523.2798 26 140.0000 6 
10.0000 27 259.6055 7 
10.0001 28 284.6495 8 
10.0002 29 284.6061 9 
92.3796 30 130.0000 10 
190.0000 31 243.5996 11 
190.0000 32 168.7997 12 
190.0000 33 125.0000 13 
200.0000 34 304.5195 14 
192.1066 35 394.2796 15 
200.0000 36 304.5196 16 
109.9999 37 489.2798 17 
109.9996 38 489.2794 18 
109.9999 39 511.2794 19 
511.2794 40 511.2792 20 
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Fig. 4. Convergence speed of the proposed MBA on the IEEE 

40-unit test system 

Table 5. Optimal operating point of the generators on the IEEE 
10-unit test system optimizing both cost and emission functions  

Worst Average Best Optimal 
Generation Unit 

NA 1 057 323 1 054 685 EP [27] 

Cost 
Function 

NA 1 053 771 1 052 668 EP-SQP [27] 
NA 1 048 154 1 046 275 IPSO [28] 

1 048 4311 047 050 1 045 715 AIS [29] 

1 043 6251 042 118 1 041 066 TVAC-IPSO 
[30] 

1 039 2721 039 188 1 038 915 EBSO [31] 
1 043 4671 041 091 1 040 203 BA 
1038031 1037862 1037571 Proposed MBA 
289 413 289 367 289 309 BA Emission 

Function 289246 289229 289208 Proposed MBA 

According to the following results, the proposed 
MBA could achieve better results from both cost 
and emission targets.   

Finally, Table 6 shows the optimal generation 
values of the power units associated with the best 
result found by MBA. It is worth noting that these 
results belonged to the cost function optimization 
and the emission results were not shown to avoid 
repetition. 

 
6. CONCLUSION 

This paper addressed the impacts and constrains 
imposed to the ED formulation of practical power 
systems in order to optimally solve it. In a practical 
system the existence of limitations such as multiple 
fuel option, valve loading effects, power generation 
limits, spinning reserve, ramp rate limits, and POZs 
made solving the ED problem complicated. The 
system operator faced a complicated nonlinear non-
convex optimization problem mandating the use of 
power full optimization techniques. 

As a result, the MBA was proposed to add 
diversity to the algorithm and ensure fast 
convergence to the global optimal solution. Contrib-
utions of the proposed methodology were corro-
borated through the numerical analysis of two 
various test systems. In order to see the effect of 
power units on the emission function, this target was 
also considered in the paper. Simulation results 

Table 6. Optimal operating point of the generators on the IEEE 10-unit with 24 periods and considering power losses 
Ploss(MW) P10(MW) P9(MW) P8(MW)P7(MW)P6(MW)P5(MW)P4(MW)P3(MW)P2(MW) P1(MW) Load Unit 
12.1370 55 20.0000 47.0000129.5905122.4500122.866660.0000206.2299135.0000 150.0000 1036 1 
14.6988 55 20.0000 47.0000129.5904122.4503122.866660.0000282.7915135.0000 150.0000 1110 2 
17.9054 55 20.0000 47.0000129.5905122.4596172.750460.0000307.4811135.0000 226.6238 1258 3 
23.4000 55 20.0000 47.0000129.5906122.4605172.733760.0000304.3687215.0000 303.2465 1406 4 
26.3076 55 20.0000 47.0000129.5902122.4495172.732960.0000297.3988222.2664 379.8698 1480 5 
32.7493 55 20.0000 47.0000129.5904122.8118222.641972.4387308.4565226.3025 456.5075 1628 6 
36.1326 55 20.0358 47.0000129.5905122.3960172.7468121.3848307.1318306.3025 456.5444 1702 7 
36.6542 55 20.0000 77.0000129.5906122.4498172.7428171.3705298.4469309.5562 456.4974 1776 8 
46.0026 55 20.0000 85.2939129.5907122.4640222.6014192.1576296.8421389.5562 456.4967 1924 9 
49.0500 55 20.0000 115.2939129.5905160.0000222.6067242.1576323.0990396.7990 456.5033 2072 10 
50.9349 55 20.2852 120.0000129.5907160.0000225.9023292.1576340.0000396.7997 457.1994 2146 11 
58.7808 55 50.2501 120.0000129.5909160.0000222.5994300.0000324.8436460.0000 456.4968 2220 12 
49.0644 55 20.2504 120.0000129.5904122.4516222.6005291.2521306.6229396.7995 456.4970 2072 13 
41.0571 55 20.0000 90.0000129.5904122.4469222.6085241.2521310.8607316.8009 456.4976 1924 14 
35.4767 55 20.0000 85.3111129.5905122.4639222.5823191.2536296.1432309.2594 379.8727 1776 15 
24.4208 55 20.0000 85.3106129.5902122.4453172.7089179.7180281.1420229.2594 303.2464 1554 16 
26.0380 55 20.0000 85.3116129.5951122.5016122.8699129.7337305.1282309.2594 226.6385 1480 17 
29.8851 55 20.0000 85.3094129.5903122.4489172.7322163.0457296.9850309.5331 303.2405 1628 18 
35.8269 55 20.0000 85.3138129.5906122.4680222.6179181.0377299.8847316.0412 379.8730 1776 19 
50.8676 55 50.0000 85.3105129.5945160.0000222.5993231.0377336.7905396.0411 456.4940 2072 20 
45.8024 55 20.0000 85.3119129.5914122.5375222.6025181.0377307.6317389.5926 456.4971 1924 21 
32.4591 55 20.0000 55.3122129.5904122.4478172.7304131.0377284.8721309.5926 379.8759 1628 22 
21.2280 55 20.0000 47.0000129.5900122.4423122.8462118.6365204.8721229.5926 303.2483 1332 23 
16.9596 55 20.0000 47.0000129.5903122.449473.0000120.3965184.6396222.2665 226.6173 1184 24 
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showed high capability of the algorithm for solving 
this target as well. 
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