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ABSTRACT 
This paper proposes a novel decision making framework for an electricity retailer to procure its electric demand in a 
bilateral-pool market in presence of charging and discharging of electric vehicles (EVs). The operational framework 
is a two-stage programming model in which at the first stage, the retailer and EV aggregator do their medium-term 
planning. Determination of retailer's optimum selling price and the amount of energy that should be purchased from 
bilateral contracts are medium-term decisions that are made one month prior to real-time market. At the second stage, 
market agents deal with their activities in the short-term period. In this stage the retailer may modify its preliminary 
strategy by means of pool market option, interruptible loads (ILs), self-scheduling and EVs charging and discharging 
(V2G). Thus, a bi-level programming is introduced in which the upper sub-problem maximizes retailer profit, whereas 
the lower sub-problem minimizes the aggregated EVs charging and discharging costs. Final decision making is 
obtained in this stage that may be considered as a day-ahead market, keeping in mind the medium-term decisions. Due 
to the volatility of pool price and uncertainties associated with the consumers and EVs demand, the proposed 
framework is a mixed integer nonlinear stochastic optimization problem; therefore, Monte Carlo Simulation (MCS) is 
applied to solve it. Furthermore, a market quota curve is utilized to model the uncertainty of the rivals and obtaining 
retailer's actual market share. Finally, a case study is presented in order to show the capability and accuracy of the 
proposed framework. 
 
KEYWORDS: Aggregator, Bilateral, Decision making, Electric vehicle, Interruptible load, Retailer, Self-
production. 
 

1. INTRODUCTION 
 Role of retailer in electricity market is highlighted 
more, because a large number of consumers due to 
lack of familiarity with the market rules, cannot play 
active role in that. Retailers take part in power 
markets by procuring energy from the bilateral and 
the pool markets and by selling energy to their 
consumers at fixed prices during a specific medium-
term period. Because of volatility of pool price, the 
retailer is exposed to the uncertainties of the pool 
price and demand of consumers. On the other hand, 
the costs of multiple options at the medium-term 
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period are generally greater than the average pool 
price. Therefore, the retailer faces a trade-off betw-
een different purchasing options of electricity [1]. 

There are noticeable literatures describing retailer 
role in the electricity markets. In [2] a stochastic 
based decision-making framework for an electricity 
retailer is proposed in which the retailer determines 
the sale price of electricity to the consumers based 
on TOU rates. The proposed framework in [3] is 
modeled in the form of a multi-objective framework 
to simultaneously maximize retailers' profit and 
minimize selling prices to clients. The work 
addressed in [4] includes a stochastic medium-term 
planning for an electricity retailer considering 
objective functions of expected profit and downside 
risk for determining the selling price offered to the 
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consumers and the optimal quantity of forward 
contracts. Reference [5] provides a novel technique 
based on Information Gap Decision Theory (IGDT) 
to assess different strategies for a retailer under 
unstructured pool price uncertainty. All of above 
mentioned models in [3-6] have focused on retailers' 
medium-term planning that may be inaccurate. In 
[6], a Non-dominated Sorting Genetic Algorithm-II 
(NSGA-II) based approach is presented for 
conversion of multi-objective function into an 
equivalent single objective function; however 
impacts of bilateral contracts and pool price 
volatilities are not taken into account. A reliability 
assessment model in presence of micro grids is 
represented in [7]. Although the model considers 
distribution load uncertainties but it mostly 
investigates system reliability enhancement. 
Electricity procurement for a large consumer from 
the pool market and forward contracts is reported in 
[8,9] and [11]. Although, a mixed pool-forward 
market is represented in [8-10]; however the 
problem is discussed from electricity consumers and 
retailers’ perspectives are not considered. 

Recently due to environmental issues and 
customer preferences a great attention has been paid 
to electric vehicles (EVs). Thus, increasing deploy-
ment of the EVs in the power system needs an agent 
responsible for aggregating of large EV fleets and 
controlling their charging and discharging process. 
In the electricity market environment, this agent is 
popularly referred to as EV aggregation agent [11], 
or in short, EV aggregator. 

In this paper, a stochastic programming approach 
[11] is presented for an electricity retailer who 
procures its demand in a mixed bilateral-pool 
market. The retailer load consists of conventional 
loads and flexible EV loads. In fact, EV aggregator 
is in charge of controlling EVs charging and disch-
arging process and the retailer supplies its flexible 
demand as well as other conventional consumers. 
Accordingly, a two stage operational framework is 
presented in which at the first stage, the retailer and 
aggregator do their medium-term planning that is 
made one month prior to real-time market.  

At the second stage, the retailer and EV 
aggregator deal with their activities in the short-term 
period. In this stage, the retailer may modify its 

preliminary strategy by means of different sources 
such as pool market, interruptible loads, self-
scheduling and EVs charging and discharging 
(entitled, vehicle to grid (V2G)) strategies, keeping 
in mind the medium-term decisions. Subsequently, a 
bi-level programming approach is adopted to solve 
the decision-making problem in which the upper 
sub-problem maximizes retailer profit, whereas the 
lower sub-problem minimizes the aggregated EVs 
charging and discharging costs.  Due to the volatility 
of pool price and uncertainties associated with the 
consumers and EVs demand, the proposed 
framework is a mixed integer nonlinear stochastic 
optimization problem; therefore, Monte Carlo 
Simulation (MCS) is applied to solve it;. 
Furthermore, a market-quota curve is utilized to 
model the uncertainty of the rivals and obtaining 
retailer's actual market share. 

The rest of this paper is organized as follows: the 
proposed market framework in terms of retailer’s 
medium-term and short-term strategies in pool and 
bilateral markets as well as EV aggregator model are 
presented in Section 2. The case study is provided in 
Section 3 and finally Section 4 represents the 
conclusion. 

 
2. FORMULATION OF PROPOSED 

MARKET FRAMEWORK 
It is assumed the retailer buys electricity from the 
wholesale market and sells it back to conventional 
consumers and EV aggregator based on TOU rates 
for a specified period. Following, a detailed structure 
of the proposed multi-period decision making model 
is presented that allows a retailer and EV aggregator 
to determine the optimal strategy in the medium and 
short-term programming. 
 
2.1. Medium-term planning framework 
The medium-term program is a stochastic program 
in which uncertain parameters are modeled through 
scenario generation. The retailer's medium-term 
program is to determine the selling price and the 
quantity of power that should be purchased from 
bilateral contract as well as an approximate estimate 
of EVs aggregated demand. 
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2.1.1. Scenario generation 
As previously mentioned, the pool price and 
consumer’s demand are uncertainties in the medi-
um-term program. The pool price uncertainty is 
modeled by mean–variance model of historical data, 
and it is assumed that the pool price distribution 
around the expected value is normal. We assume 
that the retailer has a forecast of the expected 
demand of conventional consumers, P

t jλ . Also, we 

consider that the amount of load demand is highly 
dependent on pool prices; therefore, after generating 
each pool price scenario ( )P

t jλ ω , conventional load 

demands can be generated as a function of pool 
market prices that is calculated as below [12]: 

{ }

( )
( ) (1 )

, , , , 1, . . . , 7

P P
t j t j

t j t j P
t j

d d

t v s p j j jω

λ ω λ
ω ξ

λ

ω

−
= +

∀ ∈ Ω ∀ ∈ ∀ =

   (1) 

where, ξ is a parameter that depends on the relati-
onnship between the pool price and the demand of 
conventional consumers. In this paper, we assume 
ξ = -0.1. It is notable that advanced methods for 
forecasting such as scenario generation, scenario 
reduction and model building could be easily used 
for medium-term planning strategy. Afterwards, the 
retailer generates scenarios for EVs load demand as 
well. The most effective factors on the EVs load 
demand are home departure time, daily travelled 
distance and home arrival time. Besides, road traffic 
condition, driving habits, battery capacity and its 
charger efficiency should also be considered. In 
medium-term, in order to generate MCS random 
samples, some of EVs related data are used to obtain 
corresponding probability density functions (PDFs). 
Non-Gaussian PDFs are suggested to create EVs 
random variables due to the better approximation of 
these functions. The Weibull PDF has been selected 
as the most appropriate function for departure time 
(dk) of EVs as bellow: 

( )( 1)(h ) ( ) 0
h

h

d
hf e h

β
β αβ

α α
−−= >             (2) 

Also, to model daily travelled distance (trd) and 
arrival time (ak), a type III Generalized expected 
value (Gev) PDF is selected. These functions are 
presented in Eqs. (3) and (4): 

1
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Required power for full-charge of EV battery in 
each day, is equal to the difference between its 
battery capacity and initial state of charge, when EV 
comes back from its last daily trip. This statement 
can be expressed as follows: 

0
E V E V
j b a tc h a r g e C a p S O C= −                (5) 

The 0
EVSOC of EVs depends on several factors 

such as daily travelled distance and battery capacity. 
Hence, 0

EVSOC can be derived as: 

0 1 0 0 1 0 0E V d

e f f b a t

t rS O C
C C a p

= − ×
×

          (6) 

where, Ceff is the efficiency coefficient of the EV 
which depends on the traffic conditions and driving 
patterns as well as converter efficiency. 

Here, EV aggregator generates total EVs demand 
scenarios. Subsequently, it estimates EVs aggrega-
ted power in the valley, shoulder and peak hours of 
EVs fleet using the following model: 

,
1
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s.t. 
,EV

,
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h j EV
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P EV h j
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= ∀ ∀ ∀ ∀   (8)

,EV 0( ( )) ( ) , , , (9)
h

h

d
EV

h j bat
h a

CH SOC Cap EV h jω ω ω
=

+ = ∀ ∀ ∀ ∀∑

, 1, ,EV( ) ( ) ( ) , , , (10)EV EV
h j h j h jSOC SOC CH EV h jω ω ω ω−= + ∀ ∀ ∀ ∀

min ,EV max( ) , , , (11)h jCH CH CH EV h jω ω≤ ≤ ∀ ∀ ∀ ∀

min , max( ) , , , (12)EV
h jSOC SOC SOC EV h jω ω≤ ≤ ∀ ∀ ∀ ∀

, ,( ) ( ) , , , (13)P
h j EV h j EVP P EV h jω ω ω= ∀ ∀ ∀ ∀

 
In which, Eq. (8) represents the amount of 

required power for charging EVs battery in ωth 
scenario during hour h in day j. Based on Eq. (9) 
EVs battery should be fully charged within charging 
time [ak dk]. The charging state of the battery at the 
end of interval h considering charging power at that 
interval is given in Eq. (10). Moreover, constraints 
associated with variables of optimization problem 
are represented in the Eqs. (11)- (12). The power 
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balance for each EV in ωth scenario during hour h in 
day j can be expressed as Eq. (13).  
After implementation of the above mentioned 
optimization problem, the aggregated EVs fleet 
required power during valley, shoulder and peak 
hours can be derived as follows: 

{ },
1

( ) P ( ) , , , ,
EVN

Fleet
t j h j EV

EV h t
d t v s p jω ω ω

= ∈

= ∀ ∀ ∈ ∀∑ ∑ (14) 

By means of market-quote curve which will be 
explained in the next subsection, retailer's selling 
price and the percentage of consumers demand 
supplied by the retailer can be obtained. 

 
2.1.2. Formulation of medium-term strategy 
The profit objective function of the retailer in this 
stage can be formulated as follows: 
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where, the first term is the retailer’s revenue from 
selling to the consumers while the second and third 
terms are the cost of purchasing from bilateral 
contract and pool market, respectively. The 
individual parts of the above function can be 
explained as follows: 

 
2.1.2.1. Setting retailer selling price 
The relationship between the actual demand 
supplied to the consumers and the price offered by 
the retailer is proposed through a step wise market-
quota curve. This curve represents retailer's market 
share among its other rivals. 

A market-quota curve with three blocks is shown 
in Fig. 1. From mathematical perspective, the 
market-quota curve for consumers during period t in 
day j and ωth scenario of MCS can be formulated as 
follows: 
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Where, ,i ( )
D
t jD ω  and ,i ( )

Fleet
t jD ω  are percentage of ( )t jd ω

and ( )Fleet
t jd ω , respectively. 

The revenue obtained from selling to the 
consumers (conventional consumers and EVs loads) 
is equal to the product of the selling price and power 
supplied by the retailer. 
 
 
 
 
 
 
 
 
 

 
Fig. 1.  Retailer market-quota curve [13]. 

 
Due to the stochastic behavior of consumer 

demands, the retailer’s obtained revenue would be a 
random variable; Thus, the corresponding medium-
term revenue from selling to the consumers during 
period t in day j and in ωth scenario can be 
formulated as: 
Rev ( ) ( ) , ,mid term R

t j t j tD t jω ω λ ω− = ∀ ∀ ∀  (20) 
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2.1.2.2. The cost of bilateral contracts 
In bilateral contracts a maximum and a minimum 
bound of the purchased power is defined for each 
period. In the maturity period, if consumed power 
violates from these bounds, the retailer incurs a 
penalty. In the medium-term program, the quantity 
of power that is procured from bilateral contract 
during valley, shoulder and peak hours for a week is 
defined. Accordingly, the cost of bilateral contract 
throughout the time horizon of one week in ωth 
scenario during period t in day j is given as: 

B,mid term ( ) ( ) , ,B B
t j t j t jCOST P t jω ω λ ω− = ∀ ∀ ∀       (22) 

 
2.1.2.3. The cost of pool market 
Besides the bilateral contract, the retailer may also 
procure its demand from the pool market. Due to the 
volatility of pool prices, the retailer faces uncertainty 
while offering in the medium-term market. In order 
to consider this uncertainty, a stochastic 
programming should be considered for retailer's 
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medium-term planning. Therefore, purchasing cost 
from the pool market in ωth scenario can be 
formulated as: 

, ( ) ( ) ( ) , ,P mid term P P
t j t j t jCOST P t jω ω λ ω ω− = ∀ ∀ ∀       (23) 

The medium-term model is a stochastic mixed 
integer non-linear problem (MINLP) due to the 
randomness of pool prices and consumer demands. 

 
2.2. Short-term planning framework 
A bi-level programming approach is proposed to 
solve the decision making problem faced by the 
retailer and EV aggregator in the short-term 
problem; the upper sub-problem maximizes retailer 
profit whereas the lower sub-problem minimizes 
aggregator charging cost. On the other hand, in the 
lower level, the EV aggregator agent is responsible 
for optimal scheduling of its EVs battery charging 
and discharging process. In this way EV owners 
would pay less and also the retailer can adhere its 
plan thereby reduces its imbalance costs. Following 
the lower and upper levels of short-term 
optimization problem are addressed. 
 
2.2.1. EVs aggregator model in the lower sub-
problem 
In this stage, aggregator should supply EVs charging 
loads. Furthermore, aggregator may set up bilateral 
contracts with retailer in order to supply a part of its 
required demand through V2G concept, when the 
price of pool market and other options are high. It is 
assumed that the EVs demand is responsive to the 
selling price offered by the retailer and is scheduled 
by the aggregator. In the lower level of short-term 
optimization problem, the objective function of the 
aggregator is to minimize the total cost over the 
scheduling time horizon. Mathematically, this 
objective function in day j can be formulated as: 
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min , max , ,EV
h jsoc soc soc EV h j≤ ≤ ∀ ∀ ∀  (31) 

Where all mentioned constraints are previously 
described except for Eq. (26) that shows useful 
power for discharging EV batteries. 

 
2.2.2. Retailer profit model in the upper sub-
problem 
In the upper level of short-term optimization 
problem, the retailer seeks to maximize its short-
term profit during each day keeping in mind the 
medium-term decisions. The complete formulation 
of the upper level is given as: 

B,short term

B,penalty ,

: Re Re ReSelling Fleet IL
j j j j
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j j hj j
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COST COST COST COST

−

−

+ + −

− − − −
     (32) 

This objective function consists of two main parts, 
the revenue obtained by the retailer from selling to 
both consumers and the pool market as well as the 
cost of buying from various options. Different parts 
of the objective function can be explained as 
follows: 

 
2.2.2.1. Cost of bilateral contract  
It is assumed that in the medium-term a Contract for 
Difference (CFD) agreement is signed between 
wholesale market and the retailer in such a way that 
the difference between the bilateral contract price 
and actual pool price is equally split between two 
sides. The proportion of the difference could be 
changed by negotiating between two sides. Based on 
CFD, in the short-term program the bilateral contract 
cost can be formulated as: 

B,short term

24
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On the other hand, in the short-term period, 
retailer should pay penalties due to under or over-
consumption of bilateral contracts that are signed in 
the medium-term. The total power consumed from 
bilateral contract during period t in day j is: 

5

m,t
1

,B
hj j

h t m
p x t j

∈ =

= ∀ ∀∑ ∑    (34) 

where, Xm,tj is an auxiliary variable for penalty 
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calculations of bilateral contracts in the short-term 
stage. Fig. 2 shows the penalties that are incurred for 
under or over-consumption of a bilateral contract 
related to period t in day j. 

The penalty constraints can be expressed mathe-
matically as: 

B
1,t0 0.8 ,j t jx P t j≤ ≤ ∀ ∀  (35) 

B
2,0 0.1 ,t j t jx P t j≤ ≤ ∀ ∀  (36) 

B
3,0 0.2 ,t j t jx P t j≤ ≤ ∀ ∀  (37) 

B
4,0 0.1 ,t j t jx P t j≤ ≤ ∀ ∀  (38) 

5,0 ,t jx M t j≤ ≤ ∀ ∀   (39) 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Penalty function for under or over-consumption of 
bilateral contracts. 

 
In the above constraints, Xm,tj (m=1 … 5) is a 

variable representing the power consumed within 
block m. With this approach under or over-
consumption penalties can be expressed in cumul-
ative blocks and formulated as follows: 
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  (40) 

Note that, B
t jP is computed in the medium-term 

program and is a sufficiently large constant, e.g. 2 B
t jP . 

Finally, total penalty cost considering all bilateral 
contracts throughout the time horizon of day j is: 

B,penalty ,B penalty
j t j

t
COST COST j= ∀∑    (41) 

 
2.2.2.2. Retailer self-production 
Some retailers hedge against risk of pool market by 
owning some self-production utilities such as 
distributed generators. It is considered that self-
production facility can only supply a part of the 
retailer’s demand, which is a realistic assumption. 
Thus, the retailers face a trade-off between the cost 

of self-production and the cost of other options. In 
the short-term program the self-produced power at 
hour h of day j, G

h jP is given as: 

G,min
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,
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G
h j h j f h j
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P u P P h j
=

= + ∀ ∀∑   (42) 

max0 , ,f h j hj fP u P h j f≤ ≤ ∀ ∀ ∀   (43) 
The retailer production cost may be implemented 

using an approximate piecewise linear function 
curve as shown in Fig. 3. Considering DG 
corresponding costs, the aggregated self-production 
cost during hour h in day j is thus obtained as: 

1
,

F
G fix su shd

h j h j h j h j f f h j
f

COST u C y C z C P

h j
=

= + + +

∀ ∀

∑           (44) 

 
 
 
 
 
 
 
 
 
Fig. 3.  Piecewise linear convex production cost using four blocks 

[9]. 
 

Subsequently, self-production constraints in terms 
of minimum up time and down time as well as 
ramp-up and ramp-down constraints are expressed 
as Eqs. (45)- (48): 

(h 1) (h 1) j h. 0 ,on on
jX T u u h j− −⎡ ⎤ ⎡ ⎤− − ≥ ∀ ∀⎣ ⎦⎣ ⎦      (45) 
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The relationship between binary variables used to 

model the ON and OFF status of the self-production 
facility should meet the following constraints to 
avoid conflicting situations: 

( 1) , y 1 ,hj h j hj hj hj hju u y z z h j−− = − + ≤ ∀ ∀      (49) 
On the other hand, self-produced power can be 

locally consumed or sold to the pool in the short-
term program during hour h in day j as shown in Eq. 
(50): 
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power during hour h in day j at an identical price, the 
following constraints can be used in the content of 
short-term program: 

{ }, 0,1 ,P
h j h j h j h jp k L k h j≤ ∈ ∀ ∀      (51) 

,max(1 ) ,Sell G
h j h jP k P h j≤ − ∀ ∀     (52) 

Where Lk,j is total load of consumers during hour h 
in day j with interrupted load. It is notable that based 
on Eq. (51), retailer can consume the obtaining 
power of self-production facility, but the output 
power should be less than or equal to the actual 
demand of consumers. On the other hand, based on 
Eq. (52) retailer can sell the obtaining power of self-
production facility to the pool, however, the output 
power should be less than or equal to the maximum 
power output of the self-production. 
 
2.2.2.3. Retailer strategy with EV aggregator 
agent 
In the short-term program, the revenue of retailer 
from selling to EVs fleet during hours h of type t in 
day j is: 

,EV
1

Re
EVN

Fleet S R
j h j t

EV h t
v p jλ

= ∈

= ∀∑ ∑        (53) 

On the other hand, the cost of purchasing from the 
EVs fleet through V2G capability can be formulated 
as:

 
,EV

1

EVN
Fleet P Pei
j h j t

EV h t
COST p jλ

= ∈

= ∀∑ ∑         (54) 

where, ,
S
h j EVp  and ,EV

P
h jp  are obtained by EV 

aggregator through short-term lower sub-problem. 
 
2.2.2.4. Participating in the pool market 
As the medium-term stage, in the short-term 
program the retailer may also procure its residual 
demand from the pool market. Thus, purchasing cost 
from the pool in the short-term program for each day 
j is computed as: 

24
, ,

1

P short term P P est
j h j h j

h
COST p jλ−

=

= ∀∑         (55) 

Also, it is assumed that the retailer can sell back 
its excess self-produced power to the pool market. 
Therefore, selling revenue from the pool for each 
day j is computed as: 

24
,

1
Re Selling P est Sell

j h j h j
h

v P jλ
=

= ∀∑          (56) 

 

2.2.2.5. Presence of IL contracts 
In addition to the self-production and V2G 
capabilities of EVs, ILs can be utilized by retailers as 
a risk management tool against volatility of pool 
prices. In this paper, two types of IL contracts are 
considered. In the first case the consumers pay R

tλ  

for their loads; but if in case of emergency, the 
retailer is forced to interrupt the consumers loads, a 
penalty Fine

tλ  ( Fine R
t tλ λ〉 ) should be paid to the 

consumers. In the second case, an IL contract has 
been signed between two sides and consumers pay a 
reduced price for their loads, Re duce

tλ but do not 

receive any additional pecuniary compensation in 
case of interruption. For this type of consumers 

0Fine
tλ = [13]. Mathematically, the revenue of retailer 

from selling to the conventional consumers 
considering IL contract in the short-term program 
can be formulated as: 

1, 1,

Re
2, 2,

1,

( ) .

Re ( ) .

.

IL R
h j h j t

h t

IL IL duce
j h j h j t

h t
IL Fine

h j t
h t

D p

v D p j

p

λ

λ

λ

∈

∈

∈

⎛ ⎞−⎜ ⎟
⎜ ⎟
⎜ ⎟= + − ∀
⎜ ⎟
⎜ ⎟

−⎜ ⎟
⎝ ⎠

∑

∑

∑

      (57) 

where, the first and second terms are associated with 
the net revenue of retailer from selling to consumers 
of type 1 and 2, respectively. Also, the cost of 
interrupting consumers of type 1 is given in the third 
term. Eventually, the short-term power balance at 
hour h in day j can be expressed as: 

, , 1,
1 1

2, 1, 2,

, (58)

EV EVN N
P consume S
h j EV h j h j EV h j

EV EV
P B IL IL
h j h j h j h j h j

p P p D
h j

p p D p p
= =

⎛ ⎞ ⎛ ⎞
+ +⎜ ⎟ ⎜ ⎟

= ∀ ∀⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟+ + + − −⎝ ⎠ ⎝ ⎠

∑ ∑

 
     It is notable that, self-production facility, V2G 

and IL options, not only meet a part of the retailer’s 
demand, but also their implementation in the short-
term program is more realistic. The short-term 
framework is a bi-level optimization problem. EMP 
(Extended Mathematical Programming) solver in 
the GAMS software is used to solve this model. 
Here, in order to simulate the uncertainty of the 
mathematical model a large number of parameters 
related to uncertainties of the spot market price

( )P
t jλ ω , the conventional consumers demand ( )t jd ω  

and EVs fleet demand ( )Fleet
t jd ω are randomly 
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produced by MCS. Subsequently, for each of these 
uncertainties, the optimization problem is solved to 
get ( ) , ( )B P R

t j t j tP P andω ω λ . Finally, the expected values 

of all allocation schemes are computed for the 
decision variables. These decisions are imposed as 
boundary constraints in the short-term program. 

  
3. CASE STUDY 

To show the efficiency of the proposed framework, a 
case study is performed based on a typical electricity 
retailer data in Nord Pool Market [14]. Decision 
making time horizon is one month prior to real-time 
market for medium-term and one day prior to real-
time market for short-term. In this paper, one week 
time horizon is considered for numerical analysis.  
According to employed TOU pricing, the valley 
period is defined at hours 1-7, hours 11-13 and 17-
21 are peak periods and the remaining hours are 
considered as shoulder period. It is assumed that the 
selling price at   each hour is fixed. Moreover, the 
retailer pays a fine 1.15Fine R

t tλ λ= per unit of 

interruption to conventional consumers of type 1 and 
offers a 7% discount in the selling price,

Re 0.93duce R
t tλ λ= for consumers of type 2. Also, it is 

supposed that, 80% and 20% of consumers are type 
1 and type 2, respectively, and the retailer can 
interrupt maximum 30% of each customer’s load. 
Fig. 4 shows expected demand data of conventional 
consumers, t jd , for valley, shoulder and peak hours 

of a sample week days. Subsequently, Fig. 5 
illustrates retailer’s market-quota curve with 100 
points (100 steps) for each valley, shoulder and peak 
periods.  

 
Fig. 4.  Expected demand data during each hour of period t (MW) 

 
Fig. 5. Market-quota curves data with 100 intervals 

 

Table 1, provides the mean and standard deviation 
of existing pool prices for one week time horizon that 
are obtained from historical data of Nord Pool spot 
market. Penalty data of bilateral contracts for under-
consumption and over-consumption is given in Table 
2. 

Table 1.  Mean and standard deviation of pool price data 
 valley shoulder peak 

Mean ( µ ) 40.86 44.68 48.08 
Standard deviation ( δ ) 1.20 4.33 6.68 

 
Data associated with self-production unit in terms 

of unit technical data and cost coefficients is also 
represented in Tables 3-5.  

 
Table 2.  Penalty data of bilateral contracts( 3,t 0ϒ = ) $/MWh 

Penalty slope Valley Shoulder Peak 
1, tϒ  3 4 5 

2, tϒ  1.5 2 3 

4, tϒ  1.5 2 3 

5, tϒ  3 4 5 
 

Table 3. Technical characteristics of the self-production 
facility 

G,min

(MW)
P

 

G,max

(MW)
P  

Ramp-up 
limit, 

(MW/h) 

Ramp-
down limit 
(MW/h) 

Minimum 
up/down 
time (h) 

3 12 3 3 2 
 

Table 4. Fixed, shut-down and start-up costs ($). 

Fixed Shut-down Start-up 
200 100 150 

 
Table 5.  Piecewise linear cost for self-production unit. 

Block Block size (MW) Cost ($/MWh) 
1 2.5 29 
2 2.5 38 
3 2.5 45 
4 1.5 55 

1 2 3 4 5 6 7
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In this paper considering 10% penetration level an 
introduction of 6000 EVs has been estimated in the 
retailer area. The parameters of the non-Gaussian 
fitted PDFs associated with EVs random parameters 
are given in Table 6. 

 
Table 6.  Parameters of the fitted PDFs. 

Datasets The suggested PDF 

td  α = 7.67           β = 21.38 

dtr  
dtrk = − 0.05      

dtrµ = 17.65      
dNtrσ = 7.12 

ta  
dtrk = − 0.06      

dtrµ = 17.27      
dNtrσ = 0.84 

EV battery parameters such as Capbat , η and Ceff are 
24 kW, 90% and 2km/kWh, respectively. Also, it is 
assumed that, maximum charging and discharging 
power in each hour is equal to the 10% of EV 
battery capacity. Price and conventional demand 
forecasting data during the time horizon of one week 
are given in [15]. 

In the medium-term problem MCS with 200 
iterations is employed to obtain the expected values 
of pool and bilateral procurement levels, as well as 
optimal selling prices. Based on the market-quota 
curve the percentage of total demand supplied by the 
retailer for both conventional and aggregated EVs 
load in the valley, shoulder and peak hours are 34%, 
38% and 40%, respectively. Consequently, expected 
retail selling prices for valley, shoulder and peak 
hours are 50.732, 52.899 and 55.673 ($/MWh), 
respectively. 

Expected weekly power procurement from 
bilateral contract, B

t jP  (MW), is represented in Table 

7. Also, in Fig. 6 the probability distribution function 
of expected profit in the medium-term problem is 
shown that is obtained from 200 MCS scenarios. As 
shown in Fig. 6, the expected value and standard 
deviation of the profit in the medium-term problem 
are 28364.5 $ and 2078.27 $, respectively. As it is 
obvious from Fig. 6, the probability density function 
of expected profit is approximately close to the 
normal distribution function. 
To analyze the impact of each option on the retailer’s 
optimal bidding strategy in the short-term problem, 
five cases are considered as follows: 

• Case 1: The retailer procures its demand only 

from pool market. 
• Case 2: The retailer procures its demand from 

both pool market and bilateral contract. Also, in 
this case retailer will sign IL contracts with 
conventional consumers. 

• Case 3: Same as case 2; however, in this case a 
contract is signed between retailer and EV 
aggregator for buying its own V2G contribution. 

• Case 4: Same as case 3; however, in this case the 
retailer utilizes its self-production unit just for 
self-consumption. 

• Case 5: Same as case 4; however, in this case the 
retailer can also sell its excess self-production 
power to the pool market. 
 
 

Table 7. Expected power procurement from bilateral 
contract B

t jP (MW). 
Day Valley Shoulder Peak 
j1 51.61 61.75 63.56 
j2 59.36 73.19 79.01 
j3 54.93 69.84 72.78 
j4 58.93 65.58 70.41 
j5 61.49 76.70 64.48 
j6 59.00 69.14 76.26 
j7 57.79 84.95 67.94 

 
Fig. 6. The probability distribution function of expected profit in 

the medium-term program 
 

Retailer’s profits in individual days of the week 
are represented in Table 8. As shown increases in 
pool prices in seventh day, causes a profound 
reduction in all cases and as indicated in the first 
case it is noticeable due to its force to buy just from 
the pool market. However, in other cases the 
considered options will prevent loss of reduction, 
nevertheless, the total profit is drastically reduced. In 
cases 3, 4 and 5, the retailer hedges against the risk 
of pool market with self-production facility and uses 
a part of its self-production power for self-
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ω  Index for scenarios of MCS 
ωΩ  Set of scenarios in MCS 

EV  Index for each EV 

EVN ′  Total number of EVs in the aggregator’s area

EVN  Number of EVs supplied by EV aggregator

f  Number of blocks in the self-production 
function 

i  Index of blocks in market-quote curve
iN  Number of blocks in market-quote curve

Parameters: 
( )P

t jλ ω  Pool price in ωth scenario during period t 
in day j 

P
t jλ  Mean value of pool prices during period t 

in day j 
( )P

h jλ ω  Hourly pool price in ωth scenario during 
hour h in day j 

,
R
t iλ  Selling price associated with ith block of 

market-quote curve in period t 
,
R
t iλ  Upper bound of the ith interval of market-

quote curve in period t 
B
t jλ  Bilateral contract price during period t in 

day j 
B
h jλ  Hourly bilateral contract price during hour 

h in day j 
Pei
tλ  Payment price to the EV aggregator by the 

retailer due to V2G capability during 
period t 

,P est
h jλ  Short-term pool market price forecast 

during hour h in day j 
f  Price of fth block of self-production 

function 
( )t jd ω  Consumer’s demand in ωth scenario 

during period t in day j 
t jd  Expected demand of consumers during 

period t in day j 
0SOC ( )EV ω  Initial state of charge of EV battery in ωth 

scenario 
0
EVsoc  Initial state of charge of EV battery

G,min G,max,P P  Minimum and maximum output power of 
self-production unit 

max
fP  Maximum output power of fth block of 

self-production function 
,tmϒ  Slope of mth block during period t 

associated with penalty function of bilateral 
contract 

, ,fix su shdC C C  Fixed start-up and shut-down costs of self-
production facility 

,on offT T  Up-time and down-time of the self-
production facility 

,UP DNR R  Ramp-up and ramp-down rates of self-
production facility 

1, 2,,h j h jD D  Short-term forecasted demands of 
consumer types 1 and 2 during hour h in 
day j 

Variables: 

, ( )P
h j EVP ω  Required power of EV that would be 

traded in the pool market in ωth scenario 
during hour h in day j 

, ( )h j EVP ω  Required power for charging EVs 
batteries in ωth scenario during hour h in 
day j 

,EV ( )h jCH ω  Useful charging power for each EV in 
ωth scenario during hour h in day j

,SOC ( )EV
h j ω  State of charge of EV battery at the end 

of interval h in day j in ωth scenario
( )Fleet

t jd ω  Total EVs fleet required power in ωth 
scenario during period t in day j

( )t jD ω  Total demand supplied by the retailer to 
the consumers in ωth scenario during 
period t in day j 

,i ,i( ) , ( )
D Fleet
t j t jD Dω ω  Power associated with ith block of the 

market-quote curve during period t in 
day j and in ωth scenario for 
conventional consumers and EVs fleet, 
respectively 

( )B
t jP ω  Medium-term power purchased from 

bilateral contracts during period t in day j 
and in ωth scenario 

( )P
t jP ω  Medium-term power purchased from the 

pool market during period t in day j and 
in ωth scenario 

,
S
h j EVp  Short-term EVs required charging power 

during hour h of type t in day j 
,EV

P
h jp  Short-term power purchased from the 

EVs during hour h in day j 
,EVh jch  Short-term useful charging power of 

EVs batteries during hour h in day j
,EVh jdch  Short-term discharging power of EVs 

batteries during hour h in day j 
,

EV
h jsoc  State of charge of EV battery at the end 

of interval h in day j 
B
h jp  Short-term power purchased from 

bilateral contract during hour h in day j 
P
h jp  Short-term power purchased from pool 

market during hour h in day j 
B

t jP  The expected value of purchasing power 
from bilateral contract during period tin 
day j 

G
h jP  Power self-produced at hour h of day j

f h jP  Self-produced power associated with fth 
block of self-production function during 
hour h in day j 

Sell
h jP  Power self-produced and sold to the pool 

during hour h in day j 
consume

h jP  Power self-produced and locally 
consumed at hour h in day j 

1, 2,,IL IL
h j h jp p  Interrupted load from consumer types 1 

and 2 in the short-term stage during hour 
h in day j 

R
tλ  Selling price offered by the retailer to the 

conventional consumers and EV 
aggregator in period t 

t,iν  Binary variable that is equal to 1 if the 
selling price offered by the retailer to 
consumers belongs to block i of the 
market-quota curve, and 0 otherwise

h ju  Binary variable that is equal to 1 if unit is 
committed during hour h and 0 otherwise

h jy  Binary variable that is equal to 1 if the 
unit starts up at the beginning of hour h 
in day j and 0 otherwise 

h jz  Binary variable that is equal to 1 if the 
unit shuts down at the beginning of hour 
h in day j and 0 otherwise 

h jk  Binary variable that is equal to 1 if power 
is bought from the pool and 0 if it is sold 
to the pool during hour h in day j 

,on off
h hX X  Number of continuously on (off) time 
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hours of self-production unit up to the 
hour h 
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