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Abstract— Microgrid operators (MGOs) try to restore as much demand as possible when they are faced with electrical power outages
corre-sponding to extreme events. This work suggests an outage management strategy (OMS) to improve microgrid resilience by using
two optimal actions that are distribution feeder reconfiguration (DFR) and scheduling of the distributed energy resources (DERs). Later
happening a line fault, the radial network topology is determined by the proposed model using an evaluation of the inci-dence matrix. The
presented work handles the uncertain behavior of non-dispatchable DERs and the electrical loads which model by the robust optimization
approach. To expand the flexibility of the proposed model, the demand response program (DRP) is treated as the curtailed demand. The
aim of optimization is the minimization of the total cost for dispatchable DER operation and electrical load decrease. The recommended
robust linear problem (RLP) model is simulated by the CPLEX solver in GAMS software. Applying the suggested model in the 69-bus
unbalanced test system demonstrate that the proposed model averagely decreases total operation cost and execution time by 10.62% and
22.23% on all scenarios in comparison with the de-terministic model.
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1. INTRODUCTION

1.1. Motivation
Recently, the resilience concept has been introduced in the

electrical power system that shows the efficacy of an electrical
power systems to adjust and restore from important electrical
power outages corresponding to accidents, cautious attacks, or
natural catastrophes [1, 2]. In these years, major economic losses
have happened due to electrical power outages in DNs and MGs.
Ac-cording to statistical data, weather events are an important
reason for electrical power outages in the DNs of the U.S. [3].
Weather events and other extreme disturbances may lead to several
line outages and faults and crews need numerous hours and
even more than one day for repairing actions and restore faulted
equipment [4, 5]. During the outage period, minimization of the
energy not supplied and consequently minimization of the penalty
cost pertaining to load shedding is the desired goal for electric
utilities. The above-mentioned cost is an important quantity of DN
resilience [6].

According to the literature [1], resilience can be enhanced by
three significant approaches. The first approach is to increase the
strength of DN poles in main and vital lines so that their fracture
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probability decreases during severe climate events [7, 8]. The
second is DFR to restore the loads at islanded feeders by changing
the route of supplying electrical power during line outages faults
[9, 10]. The third is to use DERs that are dispatchable and
non-dispatchable generations as well as ESSs [11, 12]. This paper
presents a robust modeling for enhancing the DNs resilience
considering optimal management of DFR and DERs.

1.2. Literature review
Concerns about improving resilience have been addressed by

literature from a different point of view. [7] proposes a tri-level
model for minimizing energy not supplied and the cost of load
reduction under severe weather. Authors of [7] contin-ued their
work in [13] by proposing a stochastic model based on two
hardening actions that are to increase the strength of DN poles and
utilize backup DGs. Though, it can be noted that [7, 13] didn’t
take into account DFR. [8] introduces a model to optimize the
strengthening plan, but, the proposed model is too conservative
due to a small probability of a worst-case scenario that is used
in this paper. [14] uses an imperialist competitive algorithm to
reconfigure the DN with the goals of minimization of electrical
power loss and improving reliability. [9] presents an effective
model for the DFR of DNs. The objectives are to minimize real
electrical power losses, the deviation of voltage profile, the branch
current constraint violation, and switching operations number.
Though, the optimal operation of different technologies of DERs
is not involved in [9, 14].

[11] classifies the operation of a DN into two modes that are
self-healing and normal modes. In the self-restoration mode, the
faulted part of the DN is divided into self-supplied MGs to lessen
the number of impacted loads. [12] proposes an opti-mization
model for outage management to contribute DERs among MGs.
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[15] develops an outage management frame-work for minimizing
the loss of demand in emergency circumstances taking into outage
duration vagueness consideration. Though, this reference considers
active electrical power as the objective of optimization, and voltage
constraints are ignored. It can be noted that the DFR is not
considered in [12, 15]. [16] presents an algorithm that divides
the DN into numerous MGs after the occurrence of line faults.
The algorithm presented by this reference wants to maximize
the restored loads in each MG. [17] proposes a restoration
mechanism to find the post-restoration topology and schedule the
vital load. Also, [18] suggests an optimal switching operation to
restore the DN. In [19], a service restoration scheme via DFR
is formulated as a mixed-integer second-order cone programming
problem. [20] develops a resilience improvement model based on
the opti-mal sitting of remotely controlled switches for minimizing
load shedding in post-event duration. [21] suggests a methodolo-gy
based on complex network theory to assess the planning and
operational resilience of DNs under extreme events and deter-mines
the withstand competence of the electrical network. [22] proposes
a framework for resilience improvement in pre-attack and post-
detection stages using three techniques that are optimal allocation
of DERs, optimal intelligent electronic devic-es diversification,
and optimal DFR. [23] suggests day-ahead resilience evaluation is
based on a multi-stage approach that calculates the probabilities
of failure of each line and determines the most vulnerable ones
and then does the optimal DFR con-sidering non-dispatchable
RESs to minimize the loss of load during the windstorm. [24–26]
present joint optimal DFR and DER scheduling. The weakness
of these references is to be degraded the life of switches due
to the number of switching. To sum up briefly, the management
mechanisms in [11, 12, 15] and in [16–19] supply vital demands
by making suitable utilization of DERs. These references assume
that the capacity of DERs is uniformly sited in the DN and
the infiltration level of DERs is ade-quate to supply the adjacent
demand. Conversely, given a region of the DN has severely loaded
but a small to a modest infiltra-tion level of DERs has been
installed in it, it is challenging to form multiple self-supplied
MGs inside this region. To solve this weakness, [27] presents an
outage management strategy (OMS) to improve DN resilience for
a small to a modest infiltra-tion level of DERs. It can be noted that
[27] considers PDF of indeterminate parameters that are DERs
generation and loads and if there is no adequate information about
the PDF of indeterminate parameters, the proposed model will fail
to obtain optimal results.

1.3. Contributions and organization
Based on the formulation proposed by [27], an OMS is

proposed by this paper in order to improve the resilience of the
unbal-anced DN equipped with a small to a modest penetration
level of DERs. The proposed OMS comprises post-fault DFR and
op-timal arrangement of various technologies of DERs including
non-dispatchable or dispatchable in MG. Despite [27], this work
undertakes that there is no satisfactory information about the PDF
of indeterminate parameters including non-dispatchable generations
and demands. Therefore, it uses a robust optimization method to
model vagueness. The aims of the presented work are as follows:
• Reformulating the model proposed by [27] as a robust

optimization-based model,
• Sensitivity analysis of objective functions against variation of

the uncertainty parameter, and
• Applying the proposed model on unbalanced DNs.
The paper is continued as follows: Section 2 states the problem

formulation for the proposed OMS. At that time, Section 3
rede-velops the anticipated model handling the robust optimization
vagueness modeling. Next, the solution algorithm and flowchart
are stated in Section 4. Later, Section 5 precisely discusses
simulation outcomes and results. Last, Section 6 depicts the
paper’s conclusion.

2. PROBLEM FORMULATION FOR PROPOSED OMS
This section elucidates the definition of optimal OMS and

assumptions as well as objective function as well as the restrictions
as follows:

2.1. Optimal OMS
It is clear that during severe weather events, line faults might

island one or multiple parts of the feeders of the MG. Of
course, crews of MGs can restore islanded loads by closing tie
switches and supplying these loads via another feeder [28]. This
new MG topology is kept for numerous hours till the faulted
lines are effectively mended. In this time slot, there are several
achievable DFRs that might guarantee the radiality of the MG.
Regarding new DFR can cause overloading of lines, consequently,
the dis-patchable DERs are turned on to feed the local demands
and some interruptible demands are disconnected. However, both
ar-rangements have an operating cost, including fuel costs and
incentive expenditures for consumers. Consequently, a practicable
topology that leads to minimal cost is considered the optimal
OMS.

2.2. Assumptions for the optimization model
Numerous assumptions are considered for the suggested

optimization model as follows:
• MGs have numerous SSs and TSs which can be remotely

controlled. Moreover, there are several fault detectors that
can effectively locate the faulted lines.

• The MG is supplied by the upstream grid within the normal
operation. Also, the upstream grid is not affected by ex-treme
weather and it normally works during events [27].

• For simplicity, the non-dispatchable DERs include PVs and
dispatchable DERs comprise MTs. It can be noted that the
electricity price of MTs is usually more than the upstream
grid. It is assumed that DERs have a unity power factor and
the operation cost of PVs is considered equal to zero.

2.3. Objective functions
The proposed OMS has an objective function as Eq. (1) that is

operating cost within the time slot of an electrical power outage.
The objective function includes two parts that are operation cost
of MTs and incentive expense for demand reduction. It is can be
noted that during extreme climate situations, supplying demands is
more significant than decreasing the operation cost. Never-theless,
the operation cost in Eq. (1) presents a measure of the unsupplied
electrical energy taking into account weighting factors of various
kinds of demands.

Cost(G(k)) = min
[∑

t∈T ∆t × (
∑

g∈NMT
CMT (g)×∑

ϕ∈Nph
PMT (g, t, ϕ)+∑

d∈NL
CL(d)×

∑
ϕ∈Nph

∆PL(d, t, ϕ)
] (1)

2.4. Topological limitations of the MG
Having a radial topology is one of the essential requirements

after DFR. This paper considers a rank-based constraint to choose
the radial topologies.

A) Requirements for the radial topology
Considering a model of directed graph G (Nbus, Nbr), a tree is

expressed as a connected graph without cycles. It can be noted
that the MG has a tree topology which is named a radial topology
in power system analysis. Equal to the number of all of the lines
and buses, the algorithm of the depth-first-searching is used [27].
In the normal operation of the MG, the positive direction of Nbr is
considered the power flow direction. The bus-line incident matrix
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E of the graph G can be formed. The elements of E that are eil
are considered as follows [27, 29]:

eil =

 1 if bus i is the "from bus" of line l
−1 if bus i is the "to bus" of line l
0 if bus i is not connected with line l

 (2)

Lastly, the matrix E is formed as E = [e1, e2, . . . , eNbr ],
where el is l_th column of matrix E. Regarding graph theory,
the essential and adequate conditions for guaranteeing the radial
topology of a MG are as follows [27, 29]:
• If E is a connected graph on Nbusbuses, then rank(E) =
Nbus − 1.

• The number of lines in a tree with Nbus buses is Nbus − 1.
On the contrary, a linked graph with Nbus buses and Nbus−1
lines is a tree.

While faults happen in lines, MGO should form an optimal
DFR such that the radial topology of MG is preserved. Of course,
under this new topology, the operation cost during electrical power
outage including the cost of MT output and cost of load re-duction
should be minimized. Consequently, the MGOs should close
numerous TSs and open numerous SSs until the discon-nected
feeder is linked to other feeders. Based on the analysis done in
[27], the essential and adequate conditions to preserve the radial
topology are written as follows [27]:

∑
l∈Nbr

sl = Nbus − 1 (3a)

sl = 0 ∀ l ∈ Nfault
br (3b)

él = el × sl ∀ l ∈ Nbr, ∀él ∈ É , ∀ el ∈ E (3c)

rank
(
É
)

= Nbus − 1 (3d)

Eq. (3a) guarantees that the total number of closed lines is
the same as the number of buses (without considering the slack
bus). It can be noted that sl equals 1 if line l either doesn’t have
remote-controlled switches or operates in normal conditions. Eq.
(3b) expresses that the protection relay opens the faulted line l.
Also, the matrix É = [é1, é2, . . . , éNbr ] is produced by Eq. (3c)
after the DFR. Finally, the under-study graph is a connected graph
if Eq. (3d) is met.

B) Pre-defined DFR structure
Regarding Eq. (3a), the MGO will close p TSs(p ≥ q) and

open p − q SSs if q lines are faulted. While the constraint Eq.
(3d) should be satisfied by the new topology. Within the process
of load restoration, the proposed OMS should prevent too many
numbers of switching actions. Consequently, it is assumed that
0 ≤ p− q ≤ 1 in this paper. Earlier executing the OMS, the MGO
should make a list of DFR structures for the expected fault in each
area. The set of DFR structures is represented by Eq. (4a) and
each topology is denoted by Eq. (4b) which is a vector of states
of line switching as follows [27]:

G = [G (1) , G (2) , . . . , G (NG)] (4a)
G (k) = (s1, s2, . . . , sNbr ) (4b)

To sum up briefly, the suggested DFR approach is expressed in
the following steps.

Step 1: Classifying the entire MG into numerous areas and
considering a number for each of them. To define an area, the
fol-lowing procedure is done: scan all buses from the substation or
slack bus to the bus that is in the end of feeder, if there is more
than one child bus for a bus, after that scan from each child bus
to the downstream side. To conclude, all of the buses from the
preceding child bus to the end bus are taken into account as an
area.

Step 2: Assuming that a single contingency happens in an area,
provide a list of all DFR structures by varying the TSs and SSs
states. It can be noted that each area of the real MG has one
or two remotely controlled SSs [24, 30]. Moreover, at least one
TS which is linked to the faulted area should be closed in each
topology G (k). Regarding this note that with closing two TSs for
a single-contingency line outage, a loop is made, consequently,
one SS should be opened in this loop.

Step 3: Assuming that a double contingency happens in any
two areas, a possible DFR topologies list should be generated by
succeeding in a way like Step 2. It is worthwhile to note that a
similar procedure is used for generating a list of configurations for
three-line faults.

The fault detector will send the necessary information to the
MGO if a line outage happens. Afterward, the faulted area is
de-termined by MGO who requests the list of the topologies in the
database presented in Fig. 1. Finally, the topologies that can meet
Eq. (3d) are chosen for optimal DER scheduling and operation
cost evaluation.
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2.5. Constraints of DERs and MG

The constraints formulated for the proposed model are outlined
as follows:

• Constraints of DERs
DERs are considered as PVs and MTs in this paper. The
restrictions of generation push MTs that run such that meet the
number of technical limitations. These boundaries encompass
smallest and highest capacity, and up/down ramping rates
[31, 32]. To assure that the planned electrical power in each
phase of MT considers its smallest and highest capacity
constraints, Eq. (5) is depicted as follows [31, 32]:
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Pmin (g) ≤ PMT (g, t, ϕ) ≤ Pmax (g)
∀g ∈ NMT , t ∈ T, ϕ ∈ Nph

(5a)

PMT (g, t, ϕ)− PMT (g, t− 1, ϕ) ≤ RPRU (g)
∀g ∈ NMT , t ∈ T, ϕ ∈ Nph

(5b)

PMT (g, t− 1, ϕ)− PMT (g, t, ϕ) ≤ RPRD(g)
∀g ∈ NMT , t ∈ T, ϕ ∈ Nph

(5c)

The detail of constraint Eq. (5) is as follows: Eq. (5a)
determines the maximum and minimum capacity of MTs.
Eqs. (5b) and Eq. (5c) clarify the boundaries of ramp-up and
ramp-down [32, 33].

• Constraints of DRP
For each phase of demand, the value of demand reduction
should not surpass the upper limit if this demand can be
delivered by the tie line. The DRP contract determines this
upper limit [30].

0 ≤ PDR (d, t, ϕ) ≤ PDRmax (d, t)
∀d ∈ NL, t ∈ T, ϕ ∈ Nph

(6)

The power factor of loads is considered a constant value.
Consequently, the reactive power variables can be substituted
by the active power variables as follows [27]:

QDR (d, t, ϕ) = λ(d, ϕ)× PDR (d, t, ϕ)
∀d ∈ NL, t ∈ T, ϕ ∈ Nph

(7)

• RER generation
The output power of each phase of RERs that are PVs in
this paper is limited as follows [33]:

0 ≤ PRER (r, t, ϕ) ≤ PRER,max (r, t)
∀r ∈ RE, t ∈ T, ϕ ∈ Nph

(8a)

It is assumed that PV panels operate at the maximum power
point tracking. It is clear that the output power of PV
panels is proportional to solar irradiance. Correspondingly,
datasheets of the manufacturers denote that if solar irradiance
of a PV cell equals 1000 w/m2, its maximum output power
will be happened. However, if the solar irradiance surpasses
this amount, the output of the PV cell still equals the rated
capacity [34].

PRER (r, t, ϕ) ={
Irr(t)× PRER,max (r, t) ifIrr(t) ≤ 1000

PRER,max (r, t) ifIrr(t) > 1000
∀r ∈ RE, t ∈ T, ϕ ∈ Nph

(8b)

• Network constraints
The electrical power in each phase of buses which is
connected to at least one line that has sl = 1 in MG is
balanced as [35]:

PRER (t, i, ϕ) + PMT (t, i, ϕ)−(
PL (t, i, ϕ)− PDR (t, i, ϕ)

)
=∑

∀j∈Nbus
[g (i, j, ϕ)× v (t, i, ϕ)× v (t, j, ϕ)]

∀t ∈ T, ∀ϕ ∈ Nph , ∀i ∈ Nbus , ∀(i, j) ∈ G(k)

(9a)

Qcap (t, i, ϕ)− (QL (t, i, ϕ)−QDR (t, i, ϕ)) =∑
∀j∈Nbus

[b (i, j, ϕ)× v (t, i, ϕ)× v (t, j, ϕ)]
∀t ∈ T, ∀ϕ ∈ Nph , ∀i ∈ Nbus, ∀(i, j) ∈ G(k)

(9b)

Where Qcap (t, i, ϕ) is calculated as follows:

Qcap (t, i, ϕ) = Qcap
rated (i, ϕ)× v2 (t, i, ϕ) ∼=

Qcap
rated (i, ϕ)× [2× v (t, i, ϕ)− 1]
∀t ∈ T, ∀ϕ ∈ Nph , ∀i ∈ Ncap

(9c)

To adjust the protection issues, the succeeding restrictions
are treated on feeder currents and bus voltages for the MG
operation [35]:

VMin ≤ v (t, i, ϕ) ≤ VMax

∀t ∈ T, ∀ϕ ∈ Nph , ∀i ∈ Nbus
(9d)

−fMax (i, j, ϕ) ≤ f (t, i, j, ϕ) ≤ fMax (i, j, ϕ)
∀t ∈ T, ∀i, j ∈ Nbus, ∀ϕ ∈ Nph, ∀(i, j) ∈ G(k)
f (t, i, j, ϕ) =
[v(t, i, ϕ)× (v (t, i, ϕ)− v (t, j, ϕ))× g(i, j, ϕ)] +
[v(t, i, ϕ)× (v (t, i, ϕ)− v (t, j, ϕ))× b(i, j, ϕ)]

(9e)

It is realized that the anticipated model is a non-
convex nonlinear model, because Eq. (9) is a non-affine
equality constraint. Thus, using conformist optimization
algorithms cannot certify harvesting globally optimal
solutions. Furthermore, for real-time appli-cations, a fast
and consistent algorithm is needed. To achieve this goal, it
is better to linearize power flow constraints. If equa-tions
are linearized, LPF-D will calculate the magnitude and phase
angle of bus voltages simultaneously with high accuracy
[36]. To conclude, all equations are linear or linearized by
the method proposed by [27] and the whole optimization is a
MILP problem.

2.6. Estimation of the probability of line fault
The aim of the proposed OMS is the minimization of the

operating cost within outages and energy not supplied N − K
contingencies due to extreme weather events, for example,
hurricanes. Evaluation of the probability of occurrence of N −K
contingencies is necessary until the maximum K considered by
MGO is determined. It is seen that for K > 3, N−K contingencies
have a probability of very small [27, 37]. Consequently, this paper
takes into N − 1, N − 2 , and N − 3 contingencies consideration
for the demonstration of the OMS.

3. ROBUST OPTIMIZATION METHOD

Different optimization methods can handle uncertainties. For
example, probabilistic optimization, stochastic programming,
interval optimization, and robust optimization [38]. It can be
noted that the latter is very well-known for scholars and planners
because of its prevailing risk management, high robustness, and
low computational load [38]. It can be noted that the most
im-portant advantage of robust optimization in comparison with
other approaches is the lack of need for PDF or membership
func-tions of the uncertain inputs [39].

The succeeding equations depict a typical LP optimization
model as [39]:

Min
∑

n∈N
d(n)× x(n) (10)

Subject to:

∑
n∈N

e(m,n)× x(n) ≤ f(m) ∀m ∈M (11a)

lx(n) ≤ x(n) ≤ ux(n) ∀n ∈ N (11b)

x (n) ∈ Z; ∀n = 1, 2, . . . , k and
x (n) ∈ R; ∀n = k + 1, k + 2, . . .

(11c)

This approach considers limited intervals to model the input
uncertainties. These intervals are determined concerning sets of
uncertainties. Thereby, d(n) and e(m,n) as the uncertain elements
are written as follows:
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d (n) =
[
d̄ (n)− d̂ (n) , d̄ (n) + d̂ (n)

]
∀n ∈ N (12a)

e (m,n) = [ē (m,n)− ê (m,n) , ē (m,n) + ê (m,n)]
∀n ∈ N, ∀m ∈M (12b)

The proposed RLP problem is formulated by introducing an
integer parameter β(m) which controls the conservation level and
it belongs to the interval [0, |J(m)|]. Surely, J(m) is set of
uncertain elements of not only the objective function (m = 0)
that is J(0) = {n |d(n) > 0} but also the restriction m that is
J (m) = {n |e(m,n) > 0} [40]. Considering that all the uncertain
elements cannot deviate from their nominal values at the same
time, this paper assumes that up to β (m) of these variables can
change within specified intervals defined by Eq. (12), although the
deviation of one of them is circumscribed by subsequent reduced
intervals [40]:

dt (0) =
[
dt (0)− (β (0)− β (0))× d̂t (0) ,

dt (0) + (β (0)− β (0))× d̂t (0)
]

∀dt (0) ∈ J (0) , m = 0

(13a)

et (m,n) =
[
et (m,n)− (β (m)− β (m))× êt (m,n) ,

et (m,n) + (β (m)− β (m))× êt (m,n)
]

∀et (m,n) ∈ J(m), ∀m ∈M
(13b)

It is clear that β(m) is a real number. For instance, if β(m)
is equal to 2.5, it can be deduced that uncertain elements of two
restrictions can change inside the complete range of the defined
limits, although, uncertain elements of one of the restrictions have
a disparity inside half range.

The RLP model of the suggested LP expressed as Eq. (1) is
assumed as [39]:

Min
∑

n∈N d̄(n)× x(n)+
max{Ψ(0)∪{Θ(0)}|Ψ(0)⊆J(0), Ψ(0)=Υ(0),Θ(0)∈J(0)/Ψ(0)}×{∑

n∈Ψ(0) d̂(n)× |x(n)| −Υ (0))× d̂t(0)× |xt (0)|
} (14)

Subjected to:

∑
n∈N ē (m,n)× x(n)+

max{Ψ(m)∪{Θ(m)}|Ψ(m)⊆J(m), Ψ(m)=Υ(m), ptΘ(m)∈J(m)/Ψ(m)}×{∑
n∈Ψ(0) ê(m,n)× |x(n)|+ (Υ (0)−Υ (0))×

êt (m,n)× |xt (m)|
}
∀m ∈M

(15)

Moreover, Eqs. (11b) and (11c)
The robust problem defined by Eqs. (14)- (15) and (11b) and

(11c) is a robust nonlinear problem which is linearized by duality
theory [33]. and consequently, the resulted RLP is written as [33]:

Min
∑

n∈N
d̄(n)× x(n) + z(0)× β (0) +

∑
n∈J(0)

p(0, n)

(16)

Subjected to:

∑
n∈N ē (m,n)× x(n) + z(m)× β (m) +∑
n∈J(m) p(m,n) ≤ f(m) ∀m ∈M (17a)

z (0) + p(0, n) ≥ d̂(n)× θ(n)
∀n ∈ J(0)

(17b)

z (m) + p(m,n) ≥ ê(m,n)× θ(n)
∀n ∈ J (m) , ∀m ∈M (17c)

−θ(n) ≤ x(n) ≤ θ(n) ∀n ∈ N (17d)

lx(n) ≤ x(n) ≤ ux(n) ∀n ∈ N (17e)

p (m,n) ≥ 0, ∀n ∈ J (m) , ∀m ∈M (17f)

θ(n) ≥ 0 ∀n ∈ N (17g)

z(m) ≥ 0 ∀m ∈M (17h)

x (n) ∈ Z; ∀n = 1, 2, . . . , k and
x (n) ∈ R; ∀n = k + 1, k + 2, . . .

(17i)

Thereby, Eqs. (1)- (9) in deterministic form can be reformulated
by Eqs. (16)- (17) as follows:

Min (Cost (G (k))) (18)

Subjected to:

0 ≤ P̄RER (r, t, ϕ) ≤ PRER,max (r, t)
∀r ∈ RE, t ∈ T, ϕ ∈ Nph

(19a)

P̄RER (t, i, ϕ) + PMT (t, i, ϕ)−(
P̄L (t, i, ϕ)− PDR (t, i, ϕ)

)
=∑

∀j∈Nbus
[g (i, j, ϕ)× v (t, i, ϕ)× v (t, j, ϕ)]

∀t ∈ T, ∀ϕ ∈ Nph, ∀i ∈ Nbus, ∀(i, j) ∈ G(k)
(19b)

(2)− (7) and (9b)− (9e) (19c)

zRER (r, t, ϕ) + pRER(r, t, ϕ) ≥
P̄RER (r, t, ϕ)× θRER(r, t, ϕ)
∀t ∈ T, r ∈ RE, ∀ϕ ∈ Nph

(19d)

zP
L

(d, t, ϕ) + pP
L

(d, t, ϕ) ≥
P̄L (d, t, ϕ)× θP

L

(d, t, ϕ)
∀t ∈ T, d ∈ D, ∀ϕ ∈ Nph

(19e)

zRER (r, t, ϕ) ≥ 0;
pRER (r, t, ϕ) ≥ 0;
θRER(r, t, ϕ) ≥ 1
∀t ∈ T, r ∈ RE, ∀ϕ ∈ Nph

(19f)

zP
L

(d, t, ϕ) ≥ 0;

pP
L

(d, t, ϕ) ≥ 0;

θP
L

(d, t, ϕ) ≥ 1
∀t ∈ T, d ∈ D, ∀ϕ ∈ Nph

(19g)

It can be noted that the non-linear terms in Eq. (19) will be
linear by the duality theory. The indeterminate inputs i.e. electrical
loads and renewable generations are demonstrated by symmetric
limited intervals as follows [39]:

pRER (r, t, ϕ) =[
PRER (r, t, ϕ)− P̄RER (r, t, ϕ) , PRER (r, t, ϕ) + P̄RER (r, t, ϕ)

]
∀t ∈ T, r ∈ RE, ∀ϕ ∈ Nph

(20a)

pP
L

(d, t, ϕ) =[
PL (d, t, ϕ)− P̄L (d, t, ϕ) , PL (d, t, ϕ) + P̄L (d, t, ϕ)

]
∀t ∈ T, d ∈ D, ∀ϕ ∈ Nph

(20b)

The Eqs. (18)- (20) represent the anticipated RLP.
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4. THE APPLICATION OF THE SOLUTION ALGORITHM
TO THE MATHEMATICAL MODEL

4.1. OMS considering DFR

In brief, the OMS wants to optimally determine the DFR to
restore as much demand as possible under N − K, ( K ≤ 3)
contingencies. Fig. 2 briefly shows the proposed OMS strategy.
During the occurrence of a line fault, the MGO carries out the
faulted line location and then determines the area which includes
this line. Afterward, the MGO looks up the related topology Eq.
(4a) in the provided database shown in Fig. 1. Then, the MGO
obtains the incidence matrix for each topology and computes its
rank. The LP pertaining to DER scheduling will be solved given
the rank is N − 1. For topologies that are isolated or that have
infeasible solutions, the proposed graph is ignored. Finally, the
MGO chooses the optimal topology after scanning all of the DFRs.
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Fig. 2. The proposed OMS strategy. 
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Fig. 2. The proposed OMS strategy.

The suggested model is solved by a GAMS-based solver that
is CPLEX 12.1 with a MIP gap of 0.1%. this solver has an
appro-priate efficacy to solve LP problems [41]. PC utilized for
running simulations has appropriate structures including Intel Core
i7, 2.5GHz CPU with 12 GB of RAM.

5. SIMULATION RESULTS

An outage may happen at any MG line when there is a severe
weather condition for example hurricanes. This section presents
simulation results on the modified IEEE 69-bus unbalanced test
system.

5.1. The under-study system

The modified 69-bus unbalanced MG illustrated in Fig. 3 is
treated as a test system that evaluates the efficacy of the advised
model. The test system has three MTs, seven PVs, three critical
SSs, four TSs, and four SCs. To increase the probability of volt-age
violation, each electrical demand of the original 69-bus test system
is multiplied by 2.0. This assumption makes an oppor-tunity that
the robustness of the proposed OMS to be checked. Also, to
make unbalance in feeders, it is assumed that in Fig. 3, Sections
24-25, 25-26, and 64-65 are two phases, and Sections 51-52, and
68-69 are single phases. Table 1 denotes the parame-ters of the
under-study system. Figs. 4 and 5 present forecasted electrical
demands together with solar irradiance of PVs, respectively.

Table 1. The characteristics of under study system [27].

Parameter Value Parameter Value
CMT ($/kWh) 0.25 CL ($/kWh)(for critical load) 12

λ 0.71 CL ($/kWh)(for non-critical load) 0.4
Qcap

rated(kVAr) 1400 PL(kW ) for peak 7.58
Pmax(kW) 1160 Pmin(kW) 0
RPRD(kW/h) 400 RPRU (kW/h) 400
PDRmax(kW) 0.3PL PRER,max(kW ) 1200
VMin(pu) 0.92 VMax(pu) 1.05
V sub(pu) 1.03 Sbase(kVA) 8000
V base(kV) 12.47

5.2. Sensitivity analysis
The sensitivity of the objective functions to the amount of

uncertainty of input parameters is analyzed in this subsection.
These studies have been illustrated in Fig. 6. To better evaluate,
two studies is treated as:
• Study 1: handling uncertainty of electrical loads,
• Study 2: handling uncertainty of PV generations.
The horizontal axis of Fig. 6 reflects the variation of the control

parameter of the uncertainty. It is seen, this parameter changes in
the range zero up to one by steps 0.1. The uncertainty parameter
is zero when the decisions are made without consid-ering risk i.e.,
risk-neutral and it is one when the decisions are made based on
risk-averse. Fig. 6 says to us, that if decisions of MGOs make
based on high risk-averse, the cost will rise for two studies. To put
it more simply, the more the uncertainty of pa-rameters, the more
the operating cost is. It can be noted that increasing uncertainty
of electrical loads is to increase electrical demands from the
anticipated values and increasing uncertainty of RER generations
is to decrease RER productions from the anticipated amounts.
With rising the uncertainty parameter from 0 to 1 in Study 1 and
2, the cost is rising by 38.39%, and 28.80%, respectively. As well,
Fig. 6 signifies that the effect of uncertainty in electrical demand
is more than uncertainty in RER generation on increasing cost.

5.3. Case studies
To measure the competence of the proposed model, the two

following case studies are considered. The stochastic behavior of
demands and RERs are modeled considering a moderate value for
the uncertainty parameter that is 0.5.

A) Case study of double contingencies
In this subsection, the paper deals with two following extreme

scenarios of N − 2 contingencies:
• Scenario 1: Lines 10–11 and 54–55 are faulted and faults

are cleared at 13:00.
• Scenario 2: Lines 12–13 and 47–48 are faulted and faults

are cleared at 13:00.
Table 2 shows the resulted topologies for the two above-

mentioned scenarios. It can be noted that the burden time of
Scenarios 1 and 2 are 188 and 215 seconds, respectively. Regarding
Table 2, ten and nine topologies are nominated for Scenarios 1 and
2, respectively. The optimal topologies in Scenarios 1 and 2 are
G (9) and G (7) that have minimum costs of 5734 ($) and 5945
($), respectively. However, some topologies in the first scenario
that are G (2), G (4), G (5), and G (6) cannot result in feasible
solutions and they should be ignored. Also, some topologies in
the second scenario that are G (1), G (4), G (5), G (6), and G (9)
are omitted by the rank constraint due to having non-connected
graphs. Fig. 7 shows the optimal DFR topologies of the two
studied scenarios.

Figs. 8 and 9 show the total MTs generation and the total
amount of load reduction at each hour. It is seen that although
total MT generations and the total amount of load reduction have
close patterns in both scenarios, the cost of Scenario 2 is 3.6%
more than Scenario 1. The cause of higher cost is to turn off



S. Panjeie et al.: Robust Scheduling of Unbalanced Microgrids for Enhancing Resilience by Outage Management Strategy 116

Page 15 

1

2 3

4

765 8 9 10

11

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

27

SS1 SS2

68 6951 52

36 37 38 39 40 41 42 43 44 45 46

TS1 TS2

66 67

53 54 55 56 57 58
59 60

61 62 63 64 65

TS4

47 48 49 50

SS3

TS3

28 29 30 31 32 33 34 35

PV PV

PV PV

PV

PV

PV

MT

MT

MT

SC

SC

SC

SC

 

Fig. 3. The modified 69-bus unbalanced test system. 
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𝑉𝑏𝑎𝑠𝑒(𝑘𝑉) 12.47   

Fig. 3. The modified 69-bus unbalanced test system.

Table 2. The resulted topologies for Scenarios 1 and 2.

G(k) Scenario 1 Scenario 2
Actions Total cost ($) Actions Total cost ($)

G(1) Closing TS3 and TS1 6410 Closing TS3 and TS1 Non-connected
G(2) Closing TS4 and TS1 Non-feasible Closing TS3 and TS2 7689
G(3) Closing TS3 and TS2 6407 Closing TS4 and TS3 8879
G(4) Closing TS4 and TS2 Non-feasible Closing TS4, TS1, and TS3, Opening SS1 Non-connected
G(5) Closing TS4 and TS3 Non-feasible Closing TS4, TS1, and TS3, Opening SS2 Non-connected
G(6) Closing TS4, TS1 and TS3, Opening SS1 Non-feasible Closing TS4, TS1, and TS3, Opening SS3 Non-connected
G(7) Closing TS4, TS1 and TS3, Opening SS2 5823 Closing TS4, TS2, and TS3, Opening SS2 5945
G(8) Closing TS4, TS1 and TS3, Opening SS3 7894 Closing TS4, TS2, and TS3, Opening SS3 6987
G(9) Closing TS4, TS2 and TS3, Opening SS2 5734 Closing TS3, TS1, and TS2, Opening SS1 Non-connected
G(10) Closing TS4, TS2 and TS3, Opening SS3 7409
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Fig. 4. The prophesied electrical loads for each hour in the day ahead [42].

more critical demands in Scenario 2. Fig. 8 shows that the load
re-ductions in each phase are maximized at hour 19. The load
reduction of Scenario 1 for phases a, b, and c at hour 19 is 1.95
MW, 1.17 MW, and 0.78 M, respectively. Simulation results of
Scenario 2 depict that if the islanded loads are only supplied by
MTs and PVs with considering DFR, the amount of total load
decrease for phases a, b, and c at the same hour will be 2 MW,
1.2 MW, and 0.8 MW, respectively that it totally is 2.5% more
than scenario 1.

Fig. 10 shows the minimum voltage of all buses in each phase
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and at each hour. It is seen that some buses are faced with
unac-ceptable voltage drops during peak hours in Scenario 2. This
problem is triggered by heavy loading of lines 57–58, 60–61, and
63–64 that have high impedance. It is worthwhile to note that
during normal operation, there is a voltage drop problem when the
MG tolerates the heavy loading. It can be noted that keeping the
bus voltages between admissible thresholds is not vital for MGO
during the outage period, while the highest priority for MGO
is to serve more loads during this period. Thereby, the voltage
constraints of the proposed model can be relaxed to serve more
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A. Case study of double contingencies 267 

In this subsection, the paper deals with two following extreme scenarios of 𝑁 − 2 contingencies: 268 

 Scenario 1: Lines 10–11 and 54–55 are faulted and faults are cleared at 13:00.  269 

 Scenario 2: Lines 12–13 and 47–48 are faulted and faults are cleared at 13:00. 270 

Table 2 shows the resulted topologies for the two above-mentioned scenarios. It can be noted that the burden time of Scenarios 1 271 

and 2 are 188 and 215 seconds, respectively. Regarding Table 2, ten and nine topologies are nominated for Scenarios 1 and 2, 272 

respectively. The optimal topologies in Scenarios 1 and 2 are 𝐺(9) and 𝐺(7) that have minimum costs of 5734 ($) and 5945 ($), 273 

respectively. However, some topologies in the first scenario that are 𝐺(2), 𝐺(4), 𝐺(5), and 𝐺(6) cannot result in feasible solutions 274 

and they should be ignored. Also, some topologies in the second scenario that are 𝐺(1), 𝐺(4), 𝐺(5), 𝐺(6), and 𝐺(9) are omitted 275 

by the rank constraint due to having non-connected graphs. Fig. 7 shows the optimal DFR topologies of the two studied scenarios.  276 

Table 2. The resulted topologies for Scenarios 1 and 2. 277 

𝐺(𝑘) 
Scenario 1 Scenario 2 

Actions Total cost ($) Actions Total cost ($) 

𝐺(1) Closing TS3 and TS1 6410 Closing TS3 and TS1 Non-connected 

𝐺(2) Closing TS4 and TS1 Non-feasible Closing TS3 and TS2 7689 

𝐺(3) Closing TS3 and TS2 6407 Closing TS4 and TS3 8879 

𝐺(4) Closing TS4 and TS2 Non-feasible Closing TS4, TS1, and TS3, Opening SS1 Non-connected 

𝐺(5) Closing TS4 and TS3 Non-feasible Closing TS4, TS1, and TS3, Opening SS2 Non-connected 

𝐺(6) Closing TS4, TS1 and TS3, Opening SS1 Non-feasible Closing TS4, TS1, and TS3, Opening SS3 Non-connected 

𝐺(7) Closing TS4, TS1 and TS3, Opening SS2 5823 Closing TS4, TS2, and TS3, Opening SS2 5945 

𝐺(8) Closing TS4, TS1 and TS3, Opening SS3 7894 Closing TS4, TS2, and TS3, Opening SS3 6987 

𝑮(𝟗) Closing TS4, TS2 and TS3, Opening SS2 5734 Closing TS3, TS1, and TS2, Opening SS1 Non-connected 

𝐺(10) Closing TS4, TS2 and TS3, Opening SS3 7409   
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(b) Scenario 2 

Fig. 7. Optimal DFR topologies  
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Figs. 8 and 9 show the total MTs generation and the total amount of load reduction at each hour. It is seen that although total MT 280 

generations and the total amount of load reduction have close patterns in both scenarios, the cost of Scenario 2 is 3.6% more than 281 

Scenario 1. The cause of higher cost is to turn off more critical demands in Scenario 2. Fig. 8 shows that the load reductions in 282 

each phase are maximized at hour 19. The load reduction of Scenario 1 for phases a, b, and c at hour 19 is 1.95 MW, 1.17 MW, 283 

and 0.78 M, respectively. Simulation results of Scenario 2 depict that if the islanded loads are only supplied by MTs and PVs with 284 

considering DFR, the amount of total load decrease for phases a, b, and c at the same hour will be 2 MW, 1.2 MW, and 0.8 MW, 285 

respectively that it totally is 2.5% more than scenario 1. 286 

  

Fig. 8. The total MTs generation. Fig. 9. The total load reduction. 
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demands. As well, the shunt capacitors may be installed by MGO
adjacent to the large demands to enhance voltage profiles. To
sum up briefly, the bus voltage constraints should be re-laxed to
decrease or even reject the load reduction because of voltage drop
during doing DFR.

B) Case study of triple contingencies
In this subsection, the paper considers two succeeding drastic

scenarios of N − 3 contingencies:
• Scenario 3: Lines 12–13, 38–39, and 4–47 are faulted and

faults are cleared at 13:00.
• Scenario 4: Lines 36–37, 47–48, and 62–63 are faulted and

faults are cleared at 13:00.
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Fig. 10. The voltage profile.

Table 3 shows the final topologies for the two aforementioned
scenarios. It can be noted that the computation time of Scenarios
3 and 4 are 145 and 177 seconds, respectively. Regarding Table
3, four and five topologies are selected for Scenarios 3 and 4,
respectively. The optimal topologies in Scenarios 3 and 4 are
G (4) and G (1) that have minimum costs of 8679 ($) and 6789
($), respectively. Nevertheless, one topology in the first scenario
that is G (3) and two topologies in the second scenario that
are G (4), and G (5) are lost by the rank restriction because of
having non-connected graphs. Fig. 11 displays the optimal DFR
topologies of Scenarios 3 and 4.

Figs. 12 and 13 display the total MTs generation and the total
amount of load reduction at each hour. It can be observed while
total MTs generation and the total amount of load reduction have
similar variations in both scenarios, the cost of Scenario 3 is
27.8% more than Scenario 4. The reason for the higher cost is
to turn off more critical demands in Scenario 3. Fig. 12 shows
that the load reductions in each phase are the highest value at
hour 19. The load reduction for phases a, b, and c at hour 19
is 1.9 MW, 1.14 MW, and 0.76, respectively. Simulation results
represent that if the isolated demands are only served by MTs and
PVs barring DFR, the amount of total load reduction for phases
a, b, and c at the same hour will be 2.05 MW, 1.23 MW, and
0.82, respectively that it totally is 7.8% more than scenario 3.
Consequently, DFR has significantly decreased the load reduction
even when the penetration of the DER is relatively low.
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Table 3. The resulted topologies for Scenarios 3 and 4.

G(k) Scenario 3 Scenario 4
Actions Total cost ($) Actions Total cost ($)

G(1) Closing TS4, TS1, and TS3 9567 Closing TS4, TS1, and TS3 6789
G(2) Closing TS4, TS2, and TS3 9879 Closing TS4, TS2, and TS3 6834
G(3) Closing TS3, TS1, TS2, and TS4, Opening SS1 Non-connected Closing TS3, TS1, TS2, and TS4, Opening SS1 7345
G(4) Closing TS3, TS1, TS2, and TS4, Opening SS2 8679 Closing TS3, TS1, TS2, and TS4, Opening SS2 Non-connected
G(5) Closing TS3, TS1, TS2, and TS4, Opening SS3 Non-connected

Table 4. Assessment of outcomes of proposed and deterministic model for different scenarios.

Scenario 1 ($) Scenario 2 ($) Scenario 3 ($) Scenario 4 ($)
Model Objective func-

tion ($)
Time of conver-
gence (sec)

Objective func-
tion ($)

Time of conver-
gence (sec)

Objective func-
tion ($)

Time of con-
vergence (sec)

Objective func-
tion ($)

Time of con-
vergence (sec)

Proposed 5734 184 5945 467 8679 203 6789 588
Deterministic 5134 135 5356 380 8143 178 5981 507
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Fig. 14 shows the average of three phase voltages in each bus
and at each hour. Like Scenario 2, the outcomes of Scenario 3
also specify that some demands are interrupted due to voltage
restrictions. In addition, the bus voltage bounds should be re-laxed,
if is desirable, to decrease or even reject the load decrease because
of voltage violation.

5.4. Comparison between models
A comparison between the proposed model and the deterministic

model is done in this subsection for four scenarios. The objec-tive
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function for four scenarios is derived from the proposed and the
deterministic model (Table 4). Regarding this table, the proposed
model has a final objective function of 11.6% more than the
deterministic model and an execution time of 36.2% more than
the deterministic model in Scenario 1. In addition, in Scenario 2,
the final objective function and execution time in the proposed
model are 10.9% and 22.8% more than the deterministic model,
respectively. The above-mentioned values are 6.5% and 14.04% in
Scenario 3 and 13.5% and 15.90% in Scenario 4.
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6. CONCLUSION AND FUTURE WORK
A resilient DN means supplying as much demand as possible

after N −K contingencies respond to natural disasters. A robust
OMS for the post-fault restoration of DN is developed by this paper
with considering the stochastic behavior of electrical demands and
solar irradiance. The proposed OMS includes both DFR and DER
scheduling. Unlike MG-based restoration methods that need a high
DER penetration level, the proposed model is appropriate to be
applied to those DNs that have numerous TSs and low DER
penetration level. This paper has two key contributions. Firstly,
the selection of an optimal topology to minimize the total cost
of the outage based on rank-based restrictions to guarantee the
radial structure. Secondly, proposing an optimal DER scheduling
model with taking into account DERs including dispatchable MTs,
non-dispatchable PVs, SCs, and DRP. The presented model is
tested by the different scenarios which study the severe electrical
power outage and low solar irradiance. The simulation results
specify that the suggested approach can preserve a high proportion
of demands in service in storm days which N − 2 and N − 3
contingencies are very common. To conclude, using the proposed
model averagely increases total operation cost and execution
time by 10.62% and 22.23% on all scenarios compared to the
deterministic model. It is observed that even though the proposed
model is not a less expensive and quick method to work out
optimal OM in comparison to deterministic ones, the proposed
model solutions are more realistic for the real world. Modeling
solar irradiance pattern as dissimilar in the DN, modeling PV
operating cost, and operating the MTs and PVs under the non-unity
power factors for supporting voltage and reactive power can be
considered future works.

REFERENCES
[1] A. Dehghani, M. Sedighizadeh, and F. Haghjoo, “An overview

of the assessment metrics of the concept of resilience in
electrical grids,” Int. Trans. Electr. Energy Syst., vol. 31,
no. 12, p. e13159, 2021.

[2] S. Behzadi, A. Bagheri, and A. Rabiee, “Resilience-oriented
operation of micro-grids in both grid-connected and isolated
conditions within sustainable active distribution networks,” J.
Oper. Autom. Power Eng., 2023.

[3] M. Abdelmalak and M. Benidris, “Proactive generation
redispatch to enhance power system resilience during
hurricanes considering unavailability of renewable energy
sources,” IEEE Trans. Ind. Appl., vol. 58, no. 3, pp. 3044–
3053, 2022.

[4] N. Afsari, S. SeyedShenava, and H. Shayeghi, “A milp model
incorporated with the risk management tool for self-healing
oriented service restoration,” J. Oper. Autom. Power Eng.,
vol. 12, no. 1, pp. 1–13, 2024.

[5] F. Jabari, M. Zeraati, M. Sheibani, and H. Arasteh, “Robust
self-scheduling of pvs-wind-diesel power generation units in
a standalone microgrid under uncertain electricity prices,” J.
Oper. Autom. Power Eng., vol. 12, no. 2, pp. 152–162, 2024.

[6] Q. Shi, W. Liu, B. Zeng, H. Hui, and F. Li, “Enhancing
distribution system resilience against extreme weather events:
Concept review, algorithm summary, and future vision,” Int.
J. Electr. Power Energy Syst., vol. 138, p. 107860, 2022.

[7] S. Ma, B. Chen, and Z. Wang, “Resilience enhancement
strategy for distribution systems under extreme weather
events,” IEEE Trans. Smart Grid, vol. 9, no. 2, pp. 1442–
1451, 2016.

[8] Y. Lin and Z. Bie, “Tri-level optimal hardening plan for a
resilient distribution system considering reconfiguration and
dg islanding,” Appl. Energy, vol. 210, pp. 1266–1279, 2018.

[9] M. Sedighizadeh, M. Ghalambor, and A. Rezazadeh,
“Reconfiguration of radial distribution systems with fuzzy
multi-objective approach using modified big bang-big crunch
algorithm,” Arabian J. Sci. Eng., vol. 39, pp. 6287–6296,
2014.

[10] M. Sedighizadeh, G. Shaghaghi-shahr, M. Esmaili, and
M. R. Aghamohammadi, “Optimal distribution feeder
reconfiguration and generation scheduling for microgrid
day-ahead operation in the presence of electric vehicles
considering uncertainties,” J. Energy Storage, vol. 21,
pp. 58–71, 2019.

[11] Z. Wang and J. Wang, “Self-healing resilient distribution
systems based on sectionalization into microgrids,” IEEE
Trans. Power Syst., vol. 30, no. 6, pp. 3139–3149, 2015.

[12] H. Farzin, M. Fotuhi-Firuzabad, and M. Moeini-Aghtaie,
“Enhancing power system resilience through hierarchical
outage management in multi-microgrids,” IEEE Trans. Smart
Grid, vol. 7, no. 6, pp. 2869–2879, 2016.

[13] S. Ma, L. Su, Z. Wang, F. Qiu, and G. Guo, “Resilience
enhancement of distribution grids against extreme weather
events,” IEEE Trans. Power Syst., vol. 33, no. 5, pp. 4842–
4853, 2018.

[14] M. Sedighizadeh, M. Esmaili, and M. Mahmoodi,
“Reconfiguration of distribution systems to improve re-
liability and reduce power losses using imperialist com-
petitive algorithm,” Iran. J. Electr. Electron. Eng., vol. 13,
no. 3, p. 287, 2017.

[15] H. Farzin, M. Fotuhi-Firuzabad, and M. Moeini-Aghtaie,
“Role of outage management strategy in reliability
performance of multi-microgrid distribution systems,” IEEE
Trans. Power Syst., vol. 33, no. 3, pp. 2359–2369, 2017.

[16] C. Chen, J. Wang, F. Qiu, and D. Zhao, “Resilient distribution
system by microgrids formation after natural disasters,” IEEE
Trans. Smart Grid, vol. 7, no. 2, pp. 958–966, 2015.

[17] Y. Wang, Y. Xu, J. He, C.-C. Liu, K. P. Schneider, M. Hong,
and D. T. Ton, “Coordinating multiple sources for service
restoration to enhance resilience of distribution systems,”
IEEE Trans. Smart Grid, vol. 10, no. 5, pp. 5781–5793,
2019.

[18] B. Chen, Z. Ye, C. Chen, and J. Wang, “Toward a milp
modeling framework for distribution system restoration,”
IEEE Trans. Power Syst., vol. 34, no. 3, pp. 1749–1760,
2018.

[19] S. Yao, T. Zhao, P. Wang, and H. Zhang, “Resilience-oriented
distribution system reconfiguration for service restoration
considering distributed generations,” in 2017 IEEE Power
Energy Soc. Gen Meet., pp. 1–5, IEEE, 2017.

[20] J. Liu, C. Qin, and Y. Yu, “Enhancing distribution system
resilience with proactive islanding and rcs-based fast fault
isolation and service restoration,” IEEE Trans. Smart Grid,
vol. 11, no. 3, pp. 2381–2395, 2019.

[21] D. Dwivedi, P. K. Yemula, and M. Pal, “Evaluating the
planning and operational resilience of electrical distribution
systems with distributed energy resources using complex
network theory,” Renewable Energy Focus, 2023.

[22] A. Rahiminejad, M. Ghafouri, R. Atallah, W. Lucia,
M. Debbabi, and A. Mohammadi, “Resilience enhancement
of islanded microgrid by diversification, reconfiguration, and
der placement/sizing,” Int. J. Electr. Power Energy Syst.,
vol. 147, p. 108817, 2023.

[23] A. Serrano-Fontova, Z. Liao, H. Li, and C. Booth, “A
novel resilience assessment for active distribution networks
including a der voltage regulation scheme considering
windstorms,” Int. J. Electr. Power Energy Syst., vol. 153,
p. 109310, 2023.

[24] E. Kianmehr, S. Nikkhah, V. Vahidinasab, D. Giaouris,
and P. C. Taylor, “A resilience-based architecture for joint
distributed energy resources allocation and hourly network
reconfiguration,” IEEE Trans. Ind. Inf., vol. 15, no. 10,
pp. 5444–5455, 2019.

[25] M. Sedighizadeh, G. Shaghaghi-shahr, M. R. Aghamoham-
madi, and M. Esmaili, “A new optimal operation framework
for balanced microgrids considering reconfiguration and



S. Panjeie et al.: Robust Scheduling of Unbalanced Microgrids for Enhancing Resilience by Outage Management Strategy 120

generation scheduling simultaneously,” Int. Trans. Electr.
Energy Syst., vol. 30, no. 4, p. e12302, 2020.

[26] G. Shaghaghi-shahr, M. Sedighizadeh, M. Aghamohammadi,
and M. Esmaili, “Optimal generation scheduling in microgrids
using mixed-integer second-order cone programming,” Eng.
Optim., vol. 52, no. 12, pp. 2164–2192, 2020.

[27] Q. Shi, F. Li, M. Olama, J. Dong, Y. Xue, M. Starke,
C. Winstead, and T. Kuruganti, “Network reconfiguration
and distributed energy resource scheduling for improved
distribution system resilience,” Int. J. Electr. Power Energy
Syst., vol. 124, p. 106355, 2021.

[28] M. Sedighizadeh, S. S. Fazlhashemi, H. Javadi, and
M. Taghvaei, “Multi-objective day-ahead energy management
of a microgrid considering responsive loads and uncertainty of
the electric vehicles,” J. Cleaner Prod., vol. 267, p. 121562,
2020.

[29] S. S. Fazlhashemi, M. Sedighizadeh, and M. E. Khodayar,
“Day-ahead energy management and feeder reconfiguration
for microgrids with cchp and energy storage systems,” J.
Energy Storage, vol. 29, p. 101301, 2020.

[30] P. Harsh and D. Das, “Optimal coordination strategy
of demand response and electric vehicle aggregators for
the energy management of reconfigured grid-connected
microgrid,” Renewable Sustainable Energy Rev., vol. 160,
p. 112251, 2022.

[31] F. H. Aghdam, N. T. Kalantari, and B. Mohammadi-Ivatloo,
“A chance-constrained energy management in multi-microgrid
systems considering degradation cost of energy storage
elements,” J. Energy Storage, vol. 29, p. 101416, 2020.

[32] F. Bouffard and F. D. Galiana, “Stochastic security for
operations planning with significant wind power generation,”
in 2008 IEEE Power Energy Soc. Gener. Meet.-Convers.
Delivery Electr. Energy 21st Century, pp. 1–11, IEEE, 2008.

[33] Z. Tang, Y. Liu, L. Wu, J. Liu, and H. Gao, “Reserve model
of energy storage in day-ahead joint energy and reserve
markets: A stochastic uc solution,” IEEE Trans. Smart Grid,
vol. 12, no. 1, pp. 372–382, 2020.

[34] R. Torquato, Q. Shi, W. Xu, and W. Freitas, “A monte

carlo simulation platform for studying low voltage residential
networks,” IEEE Trans. Smart Grid, vol. 5, no. 6, pp. 2766–
2776, 2014.

[35] W. Gil-González, O. D. Montoya, E. Holguín, A. Garces,
and L. F. Grisales-Noreña, “Economic dispatch of energy
storage systems in dc microgrids employing a semidefinite
programming model,” J. Energy Storage, vol. 21, pp. 1–8,
2019.

[36] H. Yuan, F. Li, Y. Wei, and J. Zhu, “Novel linearized
power flow and linearized opf models for active distribution
networks with application in distribution lmp,” IEEE Trans.
Smart Grid, vol. 9, no. 1, pp. 438–448, 2016.

[37] S. Dunn, S. Wilkinson, D. Alderson, H. Fowler, and
C. Galasso, “Fragility curves for assessing the resilience
of electricity networks constructed from an extensive fault
database,” Nat. Hazard. Rev., vol. 19, no. 1, p. 04017019,
2018.

[38] Z. K. Pecenak, M. Stadler, P. Mathiesen, K. Fahy, and
J. Kleissl, “Robust design of microgrids using a hybrid
minimum investment optimization,” Appl. Energy, vol. 276,
p. 115400, 2020.

[39] N. Rezaei, A. Khazali, M. Mazidi, and A. Ahmadi,
“Economic energy and reserve management of renewable-
based microgrids in the presence of electric vehicle
aggregators: A robust optimization approach,” Energy,
vol. 201, p. 117629, 2020.

[40] N. Nikmehr, “Distributed robust operational optimization of
networked microgrids embedded interconnected energy hubs,”
Energy, vol. 199, p. 117440, 2020.

[41] M. Kafaei, D. Sedighizadeh, M. Sedighizadeh, and A. S.
Fini, “A two-stage igdt/tpem model for optimal operation
of a smart building: A case study of gheshm island, iran,”
Therm. Sci. Eng. Prog., vol. 24, p. 100955, 2021.

[42] S. M. Mousavi-Taghiabadi, M. Sedighizadeh, M. Zangiabadi,
and A. S. Fini, “Integration of wind generation uncertainties
into frequency dynamic constrained unit commitment
considering reserve and plug in electric vehicles,” J.
Cleaner Prod., vol. 276, p. 124272, 2020.


	Introduction
	Motivation
	Literature review
	Contributions and organization

	Problem formulation for proposed OMS
	Optimal OMS
	Assumptions for the optimization model
	Objective functions
	Topological limitations of the MG
	Requirements for the radial topology
	Pre-defined DFR structure

	Constraints of DERs and MG
	Estimation of the probability of line fault

	Robust optimization method
	The application of the solution algorithm to the mathematical model
	OMS considering DFR

	Simulation results
	The under-study system
	Sensitivity analysis
	Case studies
	Case study of double contingencies
	Case study of triple contingencies

	Comparison between models

	CONCLUSION AND FUTURE WORK

