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Abstract— Nowadays, with the detrimental impacts of air pollution on human health and its significant societal expenses, it has been
imperative to utilize renewable energy sources (RESs) and energy storage systems (ESSs). This study introduces a new objective function
aimed at achieving a long-term optimal plan where it contrasts the outcomes of meeting network load demand with and without
the integration of renewable/non-renewable distributed energy resources (DERs). The analysis considers installation and operational
costs, addressing uncertainties through Monte-Carlo and scenario-based methodologies. The proposed problem is structured as a convex
optimization model. Simulations are conducted on the IEEE 33-bus system, showcasing the model’s efficacy through cost efficiency and
reduced emission expenses. The study confirms that the investment in renewable energy resources and ESS units can be recouped in less
than five years. It was observed that in the long-term, there is a cost reduction of 29.4% when DER units are incorporated. Also, the
emission cost for the horizon year is diminished by 43.2% compared to the case where the DERs are absent.
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NOMENCLATURE

Indices
i, j Buses
S Uncertainty scenario
T Time (hr)
Y Planning horizon year
Parameters
Pr obs Probability of each uncertainty scenario
D Duration of days in year
DGE CO2 emission due to power generation of DGs

(tons/MWhr)
DGMax Maximum number of DG units that can be allocated in

the whole network
EFC/EFD Charge/discharge efficiency of ESS units
emc Emission cost ($/ton)
ESSMax Maximum number of ESS units that can be allocated

in the whole network
GE CO2 emission due to power received from the upward

network (tons/MWhr)
IMax
i,j Maximum lines ampacity in ampere
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Infr Inflation rate (%)
Intr Interest rate (%)
INDG Gas turbine’s (synchronous DG’s) installation cost

($/MVA)
INESS Installation cost of ESS units ($/MWhr)
INWT Wind turbine’s (WT’s) installation cost ($/MVA)
PLi /Q

L
i Peak value of active/reactive load demand

PWT,cap
i,t,s Capacity of wind turbine
PGMax/Q

G
Max Maximum active/reactive power injected from
upstream network

PESSMax Maximum active power of ESS units
PF Generation power factor of synchronous DG units
PWy Present worth factor
RLinei,j Line resistance
SDGMax Capacity of synchronous generators
SOCMax Maximum energy storage capacity of ESS units
V windt,s Wind speed
WTMax Maximum number of WT units that can be allocated in

the whole network
XLine
i,j Line reactance

λt,s Load level factor
PrDG Operation cost for synchronous DG ($/MWhr)
PrSUB Price of energy purchased from upward grid ($/MWhr)
Prated Rated power of wind turbines
VMax/VMin Maximum/minimum voltage magnitude for buses
Vrated Rated speed of wind turbine
Vcin/Vcout Cut-in/cut-out speeds of wind turbine
Sets
ΩN Set of buses
ΩS Set of uncertainty scenarios
ΩT Set of time
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ΩY Set of studied years
ΩSlack Set of slack bus
Variables
DGi Binary variable for allocation of new dispatchable DG

units
EMCy Total emission cost of CO2 per year
ESSi Binary variable to allocate new ESS units
ichi,t,s/idchi,t,s Charge/discharge binary variable of ESS
ICDG Total Installation cost for synchronous DGs
ICESS Total installation cost of ESS units
ICWT Total installation cost of wind turbine units
OCDGy Total operation cost of dispatchable DGs and wind

turbines per year
OCSUBy Total cost of purchasing energy from upstream network

per year
OFy Main objective function
Pneti,j,t,s/Q

net
i,j,t,s Active and reactive powers flowing in the feeders

PGi,t,s/Q
G
i,t,s Active/reactive power received from the transmission
system

PDGi,t,s/Q
DG
i,t,s Active/reactive power generated by synchronous DGs

PWT
i,t,s Active power generated by WTs
PDi,t,s/PCi,t,s Charge/discharge of ESS units
SGi,t,s Apparent power injected to the network from the upstream

network
SOCi,t,s State of charge for ESS units
WTi Binary variable for allocation of new wind turbines
Ji,j,t,s Square of lines’ current magnitude
Ui,t,s Square of bus voltage
Vi,t,s Voltage of buses

1. INTRODUCTION

Given the evident increase in load demand over recent years,
a fundamental inquiry emerges within the context of long-term
economic distribution system planning. This inquiry pertains to the
comparative economic viability between two options: expansion of
upstream network encompassing power generation and transmission
infrastructure, or the deployment of distributed energy resources
(DER) units near the loads [1, 2]? To address this question, a
comprehensive assessment and comparison of four key factors is
imperative:
• Installation and expansion cost of new substations/DERs
• Expansion cost of transmission lines
• Power loss cost
• Air pollution cost
Due to the destructive effects of CO2 gas in air pollution

and the significant costs imposed on society as a result of it,
the management of CO2 emission has become one of the most
crucial issues in the world [3]. Also, reducing power losses in the
network has always been one of the main concerns of distribution
network operators (DNOs) [4]. Therefore, the DNOs should have
a special view on minimizing CO2 emission as well as power
loss reduction in today’s power systems. One of the alternatives to
achieve these goals is the use of RESs and ESS units in modern
distribution networks. The use of DERs and ESSs in distribution
network brings many benefits such as deferring reinforcements,
reducing the installation and operational costs, relieving lines and
substations’ capacity, peak shaving, reducing the power loss and
voltage drop, and increasing the network reliability and resiliency
[5–7].

As mentioned, the presence of DERs in the network is highly
beneficial. This matter will be more highlighted regarding the load
demand increase in the coming years. Due to the load increase
in the long term, the network costs (including expansion and
operation costs) would be much higher without the presence of
DERs. Furthermore, due to the load demand increase, especially
at peak load hours, the power loss and emission costs will
be increased accordingly. In this regard, several researches have
addressed the planning issue of distribution systems to satisfy

the load growth considering different technical and operational
constraints, which are reviewed subsequently.

In [8], the effect of energy storage systems and renewable
energy sources on the optimization of network security index,
network reliability index, and system operating and investment
costs has been investigated. In addition, the switches status, ESSs
charging/discharging pattern, and the active power values of diesel
generators are optimally determined. The model of this work is
not convex, and hence, finding of global optimum solution is not
guaranteed. Ref. [9] proposes a novel comprehensive optimization
model for the expansion planning of a resilient network. In this
paper, optimal placement and capacity of substations and DG units
as well as optimal feeders routing and hardening are obtained. In
addition, to achieve a resilient network, the presented model has
been tested in different scenarios. In [10], in order to improve
power generation quality and reduce the effect of renewable
energy sources fluctuations, optimal sizing and siting of ESS
units have been determined by considering costs minimization.
The simulation results were obtained by two methods of genetic
algorithm (GA) and particle swarm optimization (PSO) on the
IEEE 33-bus system. In this paper, the installation cost of ESS
and DER units have not been considered. Also, the optimization
model is non-linear and non-convex. A new energy management
system is presented in [11] to form a micro-grid with various
renewable energy resources and energy storage systems. Also, a
new mathematical model is used for the PV units operating in
the micro-grid. A modified bat algorithm (MBA) is employed
to achieve an optimal energy management of micro-grid under
uncertainty condition. The simulation results indicate that the MBA
is faster and more accurate than the GA and PSO algorithms. Also,
it is demonstrated that the use of renewable energy sources has
a great effect on the system power loss reduction. The employed
optimization methods are of meta-heuristic types obtaining local
optimum solutions. In [12], a convex formulation is presented to
minimize the power loss in normal operating mode as well as
load shedding in emergency condition after occurrence of natural
disasters. A Line flow based algorithm is used for AC power
flow of distribution system. Also, the impact of conventional and
renewable energy sources and ESS units on the power flow is
investigated. The simulations have been implemented in GAMS
through a mixed-integer quadratically-constrained programming
(MIQCP) model where the GUROBI solver has been employed for
the optimization purpose. This papers’ result could be improved by
allocating DG units as well as ESS units. Because of annual load
demand increase, there will be lines and transformers congestion
as well as buses voltage drop. In this regard, in [13], the use
of renewable DGs as an impressive way to deal with these
problems is suggested. A hybrid method based on moth-flame
optimization (MFO) algorithm is employed to determine the
optimal location of DG units. The proposed method is applied
on the IEEE 69-bus system, where the results show power loss
reduction and improvement of buses voltages. This paper has
not regarded uncertainty of loads and DG units. In addition, the
cost, as an important issue, has not been under consideration. In
order to reduce the effects of power fluctuations in renewable
DGs and their uncertainty, a new technique is presented in [14]
to optimally determine the location and size of each source in
distribution systems with a radial structure. Uncertainty scenarios
are generated by implementing Monte-Carlo simulation, where
the backward reduction algorithm is employed to reduce the
number of scenarios for lowering the computational complexity.
In addition, a multi-objective function is considered to minimize
expected total cost, the expected total voltage deviation, and the
expected total emissions. The proposed method is applied on the
IEEE 33-bus system and also on an actual distribution network in
Portugal. A convex optimization approach is given in [15] having
two objective functions the first of which includes energy loss
minimization under normal operation condition, and the second
one is the load curtailment reduction under emergency conditions.
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For this aim, conventional and renewable DGs as well as ESS
units are optimally allocated, and also, the micro-grids (MGs) are
optimally configured. Efficiency of the presented method from the
viewpoints of energy loss minimization and resiliency improvement
is investigated through different experiment in GAMS. The model
has not been evaluated from the cost point of view.

Reviewing the literature shows that each of the works has not
considered one or more of the following issues:
• Consideration of renewable and non-renewable DGs in

long-term expansion planning of distribution systems;
• Using convex formulations such that that the optimality of

the solution is guaranteed;
• Considering environmental emission in the planning;
• Uncertainty consideration
In the current paper, total cost (expansion cost and operation

cost) caused by impact of power loss and air pollution is compared
to the effect of construction (or not) of new renewable/non-
renewable DGs and ESSs in long term. In fact, the main aim
of this paper is to compare two states: if the investment on the
network expansion and new DERs installation is economical in
long-term from the viewpoint of power loss and emission costs
reduction? Or there is no need to this issue, and the power loss
and emission costs do not have high effect, and they can be
neglected? The planning options are composed of allocation of
dispatchable and renewable energy based DGs as well as ESSs.
All the results have been calculated by taking into account the
uncertainty of the load and wind speed obtained by the Monte
Carlo method. The investment, operational, and emission costs
are introduced into the objective function, and all of problem
limitations are considered. Also, the LFB (line-flow-based) AC
power flow relations are utilized. All the relations are convexfied
such that a MIQCP optimization model is composed. The proposed
model is accomplished in GAMS where the global optimum
solvers are employed to obtain the solutions.

The main contribution of this paper can be outlined as follows:
• Presenting a convex optimization model for distribution

network expansion planning in the long-term
• Investment and operation costs have been considered as well

as emission costs
• Utilizing a Monte-Carlo scenario-based method for

uncertainty consideration
• A new cost-effective insight to compare renewable/non-

renewable DG units expansion

2. PROBLEM FORMULATION

2.1. Uncertainty modeling
In this paper, load demand and wind speed, as two sources

of uncertainty have been considered. The wind speed uncertainty
is modeled by the Weibull distribution. The probability density
function (PDF) of the wind speed is according to Eq. (1)
[16], where V is the wind speed, and K and C are constant
parameters representing shape and scale parameters, respectively.
These parameters are dependent on geographic location of the
wind turbine, and they usually have hourly/daily/seasonal changes.

f (v) =
k

c

(
V

c

)
e−(V

c
)
α

(1)

For the load demand, the normal distribution is utilized to model
its uncertain behavior [16]. The PDF of load demand is as Eq. (2),
where µP and σP are mean and standard deviation, respectively.
These parameters are taken from the historical data for each hour
of the day in the current problem.

f (P ) =
1√

2πσP
e
− (P−µP )2

2σ2
P (2)

In this paper, the PDFs of Eqs. (1) and (2) are employed
to generate wind speed and load demand scenarios using the
Monte-Carlo simulation. By the aid of the MCS, a large number of
uncertainty scenarios are generated. Then, the k-means clustering
algorithm is utilized to cluster the scenarios and reduce the number
of them to a reasonable extent in order to lower the computational
burden. The details of MCS and k-means techniques have been
given in [17] and [18].

2.2. Objective function
The main objective function is according to Eq. (3), which

includes investment cost of new DERs and ESSs, operation costs,
and emission cost of CO2 for the horizon year of 20. In Eq. (4),
the objective function is calculated for each case study. Eqs. (5)-(7)
show investment cost of DG, WT, and ESS units, respectively.
Also, operation cost for the energy injected to the system from
the upstream network and DG units are given in Eqs. (8) and (9),
respectively. Eq. (10) denotes the emission cost corresponding to
CO2 emission due to power generation in upward grid and DG
units, respectively. As seen in the equations, the present worth
values of operational costs are employed by using PWy factor
which is dependent on interest and inflation rates. For convenience,
definition of parameters and variables is given in the nomenclature.

∀i, j ∈ ΩN ,∀t ∈ ΩT ,∀s ∈ ΩS , ∀y ∈ ΩY :

Main Objective Function = Min(OFy) ;∀y = 20 (3)

OFy = ICDG + ICWT + ICESS+
OCSUBy +OCDGy + EMCy

(4)

ICDG =
∑
i∈ΩN

DGiIN
DG (5)

ICWT =
∑
i∈ΩN

WTiIN
WT (6)

ICESS =
∑
i∈ΩN

ESSiIN
ESS (7)

OCSUBy = D × PWy

∑
i∈ΩN

∑
t∈ΩT

∑
s∈ΩS

SGi,t,s Pr obsλt,sPrSUB (8)

OCDGy = D × PWy

∑
i∈ΩN

∑
t∈ΩT

∑
s∈ΩS

PDGi,t,s Pr obsPrDG (9)

EMCy = D × PWy×
emc

∑
i∈ΩN

∑
t∈ΩT

∑
s∈ΩS

PGi,t,sGE Pr obs + PDGi,t,sDGE Pr obs (10)

PWy =
∑
y∈ΩY

(
1 + Infr

1 + Intr

)y
(11)

2.3. Problem constraints
Different constraints govern the proposed model, which are

detailed in the following.
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A) Power flow constraints
The nature of basic AC power flow equations is non-linear and

non-convex. With the aim of convexifying complex calculations and
reduce the problem solving time, the line flow based (LFB) model
is used [9]. Regarding binary variables of DERs installation, the
obtained convex model is mixed-integer quadratically-constrained
programming (MIQCP) which the global optimum solvers such as
GUROBI and CPLEX can handle and solve it in GAMS [19].

∑
j∈ΩN

A`iP
net
i,j,t,s = PGi,t,s + PDGi,t,s + PWT

i,t,s + PDi,t,s−

PCi,t,s − λt,sPLi −
∑

j∈ΩN

B`iR
Line
i,j Ji,j,t,s

(12)

∑
j∈ΩN

A`iQ
net
i,j,t,s = QGi,t,s +QDGi,t,s − λt,sQLi −∑

j∈ΩN

B`iX
Line
i,j Ji,j,t,s

(13)

Ui,t,s − Uj,t,s = +2
(
RLinei,j Pneti,j,t,s +XLine

i,j Qneti,j,t,s

)
+[(

RLinei,j

)2
+
(
XLine
i,j

)2]
Ji,j,t,s

(14)

(
Pneti,j,t,s

)2
+
(
Qneti,j,t,s

)2 ≤ Ji,j,t,sUj,t,s (15)

Pneti,j,t,s = −Pnetj,i,t,s (16)

Qneti,j,t,s = −Qnetj,i,t,s (17)

(
PGi,t,s

)2

+
(
QGi,t,s

)2

≤
(
SGi,t,s

)2

(18)

Eqs. (12) and (13) represent balance of active and reactive
powers at bus i, in different time periods, and scenarios. A`i is
the `i − th element of the bus-line matrix. This element will be
1/-1 if bus i is the sending/receiving bus of line in path i − j.
Otherwise, it is 0. B`i is similar to A`i if the “1” elements are
replaced by 0. Eq. (14) denotes the relation between voltages of
two nearby buses. Eq. (15) gives the relation among power, voltage
and current. Active and reactive powers of sending and receiving
buses are expressed in Eqs. (16) and (17). It is worth mentioning
that Pnetj,i,t,s and Qnetj,i,t,s are active and reactive powers transferred
from node j to node i at the side of node i, i.e., the power loss of
line i − j has not been regarded in Eqs. (16) and (17). Eq. (18)
illustrates nodal relations between active, reactive, and apparent
powers. In Eqs. (19)-(21), buses’ voltages and branches’ currents
constraints have been given. Limitations of injected power from
the upstream network are given in Eqs. (22) and (23).

{
Vi,t,s = 1 ;∀i ∈ ΩSlack
VMin ≤ Vi,t,s ≤ VMax ;otherwise

(19)

Ui,t,s = (Vi,t,s)
2 (20)

0 ≤ Ji,j,t,s ≤
(
IMax
i,j

)2

(21)

{
0 ≤ PGi,t,s ≤ PGMax ;∀i ∈ ΩSlack
PGi,t,s = 0 ;otherwise

(22)

{
0 ≤ QGi,t,s ≤ QGMax ;∀i ∈ ΩSlack
QGi,t,s = 0 ;otherwise

(23)

B) Constraints of synchronous DGs
Eqs. (24)-(26) represent active/reactive power generation limits

of synchronous DG units. In order to allocate the DG units, a
binary variable which is named DGi has been used, and the
number of installed DG units throughout the network must be
lower than DGMax.

- tan
(
cos−1 (PF )

)
PDGi,t,s ≤ QDGi,t,s ≤ tan

(
cos−1 (PF )

)
PDGi,t,s (24)

(
PDGi,t,s

)2

+
(
QDGi,t,s

)2

≤ DGi
(
SDGMax

)2

(25)

∑
i∈ΩN

DGi ≤ DGMax (26)

C) Constraints of ESS units
ESS units will have significant role in efficient operation of

distribution network if they are optimally located and scheduled.
Eq. (27) denotes state of charge (SOC) of ESS unit installed at bus
i, at time period t, in each uncertainty scenario. In Eq. (28), ESSi
is a binary variable indicating installation status of ESS unit at bus
i. Eqs. (29) and (30) express charge/discharge power of each ESS
unit. Based on Eq. (31), charging/discharging of storage devices
cannot be occurred at the same time. Also, Eqs. (32) and (33)
guarantee that the number of energy storage units must be lower
than maximum permissible number, and the SOC at the final hour
must be equal to initial charge, respectively.

SOCi,t,s = SOCi,(t−1),s + (PCi,t,sEFC)−
(
PDi,t,s
EFD

)
(27)

0 ≤ SOCi,t,s ≤ ESSiSOCMax (28)

0 ≤ PCi,t,s ≤ ichi,t,sPESSMax (29)

0 ≤ PDi,t,s ≤ idchi,t,sPESSMax (30)

ichi,t,s + idchi,t,s ≤ ESSi (31)

∑
i∈ΩN

ESSi ≤ ESSMax (32)

SOCi,t24,s = SOCi,t0,s = ESSiSOC0 (33)

D) Constraints of WT units
Eqs. (34)-(36) are established for WT units’ installation and

operation limits, based on which the generated active power of
wind turbine is dependent of the wind speed and characteristics of
the WT [15]. The parameters of the relations have been defined in
the nomenclature.

PWT,cap
i,t,s =


0 ;∀V windt,s < Vcin

Prated
V windt,s −Vcin
Vrated−Vcin

)
;∀Vcin ≤ V windt,s < Vrated

Prated ;∀Vrated ≤ V windt,s < Vcout
0 ;∀V windt,s ≥ Vcout

(34)

0 ≤ PWT
i,t,s ≤WTiP

WT,cap
i,t,s (35)

∑
i∈ΩN

WTi ≤WTMax (36)
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Step 3) Determine the objective function and the problem constraints 

3-1) Objective function: sum of generation cost, load shedding cost, and wind curtailment cost 

3-2) Constraints: 

• Power flow equations 

• Minimum/maximum active/reactive power of DG units 

• Maximum generation of wind power units 

• Maximum allowable power flow through lines 

• Voltage limit of buses 

Step 4) Set the optimization problem as a MIQCP model and assign a proper solver for the presented 

model 

4-1) Set GUROBI as the MIQCP solver 

Step 5) Adjust the required settings for the model and solver 

5-1) Adjust the iteration limit (iterlim=1000000 in GAMS) 

5-2) Adjust maximum time that the solver may run before it terminates (reslim=1000000  in 

GAMS) 

5-3) Adjust maximum number of nodes to process in the branch and bound tree for MIP problem 

(nodlim=1000000  in GAMS) 

Step 6) Run the GAMS optimization model and set the software to print the results on an Excel file 

The test system, as shown in Fig. 1, is the IEEE 33-bus network [20]. The network is a 12.66kV 

distribution system with 32 fixed lines in total with radial structure; two synchronous DG units exist in 

the network before the expansion planning. These two units have been allocated such that the power loss 

is reduced. The system’s total peak load is 3.715MW and 2.3MVAr [20]. The load and line data for this 

system can be found in [21]. Also, Table 1 prepares the required parameters of the problem. Specification 

of candidate DGs and ESS units are presented in Tables 2 and 3, respectively [9, 22]. By employing the 

Monte-Carlo technique, and using hourly mean and standard deviation given in [23 and 24], 1000 

uncertainty scenarios of wind speed and load demand are generated, and then, the k-means clustering 

algorithm is employed to reduce the scenarios to 10 ones. Specifications of the reduced scenarios are 

given in Figs. 2, 3, and 4.  

 
Fig. 1: Single-line diagram of the 33-bus test system 
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Fig. 1. Single-line diagram of the 33-bus test system.

Table 1. Input parameters for WT, ESS, DG, and network.

Element Parameter Value

WT

Prated 750 kW
Vcin 3 m/s
Vcout 25 m/s
Vrated 12 m/s{
WTMax= 3 ;∀ case 3
WTMax= 0 ;∀ otherwise

ESS

SOCMax 1 MWh
PESSMax 0.2 MW
SOC0

SOCMax

3{
ESSMax = 3 ;∀ case 3
ESSMax = 0 ;∀ otherwise

DG
SDGMax 500 kW
PF 0.9{
DGMax = 5 ;∀ case 2
DGMax = 2 ;∀ otherwise

Network

IMax
i,j 250 A

PrSUB 60 $/MWhr
D 365 days/year

emc($/ton) 45
GE(tons/MWhr) 0.632
DGE(tons/MWhr) 0.365

Horizon year 5, 10, 15, 20 Vi,t,s = 1 ;∀i ∈ ΩSlack
0.93 ≤ Vi,t,s ≤ 1.05 ;∀ case 1
0.95 ≤ Vi,t,s ≤ 1.05 ;∀ case 2, case 3
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Fig. 2: Uncertainty Daily load profile of network 

 

 

Fig. 3: Hourly profile of the wind speed  

 

 

Fig. 4: Probability of each uncertainty scenario 
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Fig. 2. Uncertainty daily load profile of network.

3. NUMERICAL STUDY

In order to evaluate the presented approach, its performance has
been numerically tested in this part.

Table 2. Specification of candidate DG units.

DG technol-
ogy

Units’ energy
capacity (kVA)

Installation
cost
($/kVA)

Operating
cost
($/MWhr)

Gas turbine 500 400 46
Wind turbine 750 800 0
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Fig. 3. Input parameters for WT, ESS, DG, and network.
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Fig. 2: Uncertainty Daily load profile of network 

 

 

Fig. 3: Hourly profile of the wind speed  

 

 

Fig. 4: Probability of each uncertainty scenario 
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Fig. 4. Probability of each uncertainty scenario.
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3.2. Simulation results 

In this paper, three simulation cases have been set up to evaluate the impact of power loss and air 

pollution on distribution network expansion and operation cost, and also the effect of using DER units 

instead of supplying all of the system loads through upstream network. In order to find out just the 

explained parameters, the loads will not grow in each horizon year and are fixed as the first year. It is 

obvious that if each case can become the best solution for this examination, it will be the global answer 

and it will be more acceptable when the loads are grown in each horizon year. Therefore, in these cases 

there is no need to change lines and expand the substation. This is another reason not to have load growth. 

The studied period includes future 5, 10, 15, and 20 years (as horizon years). 

• Case 1 

In this case, the network is not expanded, and it is operated for the future horizon years. 

• Case 2 

In this case, only new synchronous DG units are installed in the network, and they are optimally 

allocated. A maximum number of 3 units are allowed to be installed.   

• Case 3 

In this case, instead of synchronous DGs, the ESS and WT units are allocated in the network, and the 

maximum allowed number of ESSs and WTs is 3.  

Table 4 presents specification of installed DER units in three cases. As there are two existing DG 

units at buses 11 and 30, the new installed DER and ESS units are shown in Figs. 5 and 6. As seen, 

the DER units are placed at appropriate locations in the middle and ending parts of the network to 

supply the loads and satisfy the constraints.   

 

 

Fig. 5: Network topology after expansion in case 2 
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Fig. 5. Network topology after expansion in case 2.
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Fig. 6: Network topology after expansion in case 3 

Table 4: location of DER units 

 
Existing New 

DG @ bus DG @ bus WT @ bus ESS @ bus 

Case 1 11, 30 ---- ---- ---- 

Case 2 11, 30 7, 25, 32 ---- ---- 

Case 3 11, 30 ---- 15, 25, 31 14, 15, 31 

 

In Table 5, the output results such as installation cost, operation cost, emission cost, and the total 

objective function value for each case study is presented. As seen, the cases 3, 2, and 1 have higher 

investment cost, respectively. The operation cost related to energy purchase from the upward grid has the 

maximum value in case 1; it is minimum in case 2; and in case 3, the operation cost is more than case 2. 

The operation cost of DER units is minimum in case 3 and is maximum in case 2. Also, in case 1, the 

related operation cost is between case 2 and case 3. Due to exploitation of wind turbine and ESS units, 

there is a cost reduction in case 3 compared to other cases. It can be seen that the total operation cost 

decreases from case 1 to case 3.  

On the other side, nowadays, the global warming and human health have become the most important 

concerns of mankind. Emission of CO2 gas, apart from its financial costs, has unfavorable consequences 

along with destruction of the environment. In this regard, planning for the network infrastructure 

enhancement is much important for human survival and health of the planet. As shown in Table 5, the use 

of renewable energy resources and ESS units in case 3 results in less CO2 emission and lower emission 

cost. Also, case 2 is better than case 1, as in the presence of DG units, the system needs lower values of 

energy to be received from the upstream grid. Also, lower power loss is created in distribution system. In 
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DG

DG

 DG units

 Wind turbine units

 Energy storage system

DG

Fig. 6. Network topology after expansion in case 3.

3.1. The test network and problem inputs
The presented model is programmed and implemented in the

GAMS software. All the problem formulations are convexified
to compose a MIQCP model, and the “GUROBI”, as a global
optimum solver, is employed for the optimization purpose. As the
proposed approach is a convex optimization, it gives a unique
and optimum solution without needing to comparing it with
meta-heuristic algorithms such as genetic algorithm (GA), particle
swarm optimization (PSO), etc.

For a better perception of the solution process of the proposed
model, the following procedure can be considered:

Step 1) Import the required data
1-1) Get the distribution system data
• Location of loads and their values
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Table 3. Specification of candidate ESS units.

ESS technology Energy capacity of
each unit (MWhr)

Charge/discharge
capacity (MW)

Installation cost
($/kWhr)

Efficiency of
charge

Efficiency of
discharge

Energy storage
system

1 0.2 200 0.95 0.9
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 7: Active and reactive powers received from the upstream network, (a) and (b): case 1, (c) and (d): case 2, (e) 

and (f): case 3. 

In Fig. 8, state of charge (SOC) of ESS units has been illustrated for case 3 in different uncertainty 

scenarios. As it can be observed, the ESSs are charged from hour 1 to hour 11 reaching to their maximum 

capacity. From hour 17 to hour 21, they are discharged in accordance with the load increase at these 

hours, and reach their initial SOC at the last hour of day. Regarding the buses at which the ESS units are 

installed, the charging and discharging profile of ESSs are different in different uncertainty scenarios. In 

total, the scheduling of ESS units is in a way that the operation and installation as well as emission costs 

are decreased.  
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Fig. 7. Active and reactive powers received from the upstream network, (a) and (b): Case 1, (c) and (d): Case 2, (e) and (f): Case 3.

Table 4. Location of DER units.

Existing New
DG @ bus DG @ bus WT @ bus ESS @ bus

Case 1 11, 30 —- —- —-
Case 2 11, 30 7, 25, 32 —- —-
Case 3 11, 30 —- 15, 25, 31 14, 15, 31

• Location of existing DG units
• Configuration (route) of lines
• Lines impedances (reactance, resistance)
1-2) Get the synchronous DG data
• Minimum/maximum active/reactive power capacity
• Price of generated power
1-3) Get the wind power generators data
• Rated power
• Rated, cut-in, and cut-out speeds
1-4) Get the loads data
• Peak value of active/reactive powers

Table 5. Results of cost components in three cases.

Cost component Case 1 Case 2 Case 3
ICDG (M$) 0 0.6 0
ICWT (M$) 0 0 1.8
ICESS (M$) 0 0 0.6

Total installation cost (M$) 0 0.6 2.4

OCSUBy (M$)

y=5 15.46 6.43 11.32
y=10 44.34 18.43 32.47
y=15 75.24 31.27 55.10
y=20 105.37 43.80 77.16

OCDGy (M$)

y=5 5.65 13.75 4.57
y=10 16.19 39.42 13.09
y=15 27.48 66.89 22.21
y=20 38.48 93.67 31.11

Total operation
cost (M$)

y=5 21.11 20.18 15.89
y=10 60.53 57.85 45.56
y=15 102.72 98.16 77.31
y=20 143.85 137.47 108.27

EMCy (M$)

y=5 9.70 7.45 5.50
y=10 27.80 21.38 15.77
y=15 47.17 36.27 26.76
y=20 66.06 50.79 37.47

OFy (M$)

y=5 30.81 28.23 23.79
y=10 88.34 79.82 63.73
y=15 149.89 135.03 106.47
y=20 209.91 188.86 148.15
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Table 6. Comparison of profits in three cases.

Profit (in M$ and %)
Case 2 VS. Case 1 Case 3 VS. Case 1 Case 3 VS. Case 2

Pr ofit (M$) = OF
Case(β)
y −OF

Case(α)
y

Pr ofit (%) =
OF

Case(β)
y −OFCase(α)

y

OF
Case(β)
y

y=5 2.58 8.37% 7.02 22.78% 4.44 15.73%
y=10 8.52 9.64% 24.61 27.86% 16.09 20.16%
y=15 14.86 9.91% 43.42 28.97% 28.56 21.15%
7=20 21.05 10.03% 61.76 29.42% 40.71 21.55%
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(a): Bus 14 

 

(b): Bus 15 

 

(c): Bus 31 

Fig. 8: Energy level of ESS units in case 3 in different buses and uncertainty scenarios 
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Fig. 8. Energy level of ESS units in case 3 in different buses and
uncertainty scenarios.

• 24-hour load profile
1-5) Get the weather data
• 24-hour wind speed
• Generation of uncertainty scenarios based on Monte Carlo

technique
1-6) Get the ESS units data
• Maximum state of charge capacity
• Maximum charge/discharge rate
• Charge/discharge efficiency

Step 2) Determine the decision variables
2-1) LFB algorithm as convex AC power flow equations is used.

The main decision variables include:
• Active/reactive power balance at each bus of the network
• Voltage magnitude of buses

21 

 

From the network voltage viewpoint, the three cases have been compared using the voltage magnitude of 

two sample buses 18 and 33. This comparison can be seen in Figs. 9 and 10 for the whole day. It is 

obvious that in case 1, the voltages of buses located at the end of feeder drop to values lower than 0.95 

per unit (pu) during the peak load hours. This is not favorable for the network operator and loads. 

However, in cases 2 and 3, the ending buses’ voltages are within the acceptable range.  

.     

 
(a): Case 1 

 
(b): Case 2 

 
(c): Case 3 

Fig. 9: Voltage magnitude of bus 18 in three cases under different uncertainty scenarios 

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1 3 5 7 9 1 1 1 3 1 5 1 7 1 9 2 1 2 3

V
o

lt
ag

e 
(p

u
)

Time (hr)

S1 S2 S3 S4 S5

S6 S7 S8 S9 S10

0.95

0.96

0.97

0.98

0.99

1

1 3 5 7 9 1 1 1 3 1 5 1 7 1 9 2 1 2 3

V
o

lt
ag

e 
(p

u
)

Time (hr)

S1 S2 S3 S4 S5

S6 S7 S8 S9 S10

0.96

0.97

0.98

0.99

1

1 3 5 7 9 1 1 1 3 1 5 1 7 1 9 2 1 2 3

V
o

lt
ag

e 
(p

u
)

Time (hr)

S1 S2 S3 S4 S5

S6 S7 S8 S9 S10

Fig. 9. Voltage magnitude of bus 18 in three cases under different
uncertainty scenarios.

• Active/reactive power generation of DG units
• Active power generation of wind units
• Injected power from the upward grid
• Charge/ discharge scheduling of ESS units

Step 3) Determine the objective function and the problem
constraints

3-1) Objective function: sum of generation cost, load shedding
cost, and wind curtailment cost

3-2) Constraints:
• Power flow equations
• Minimum/maximum active/reactive power of DG units
• Maximum generation of wind power units
• Maximum allowable power flow through lines
• Voltage limit of buses

Step 4) Set the optimization problem as a MIQCP model and
assign a proper solver for the presented model

4-1) Set GUROBI as the MIQCP solver
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(a): Case 1 

 
(b): Case 2 

 
(c): Case 3 

Fig. 10: Voltage magnitude of bus 33 in three cases under different uncertainty scenarios 
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Fig. 10. Voltage magnitude of bus 33 in three cases under different
uncertainty scenarios.

Step 5) Adjust the required settings for the model and solver

5-1) Adjust the iteration limit (iterlim= 1000000 in GAMS)
5-2) Adjust maximum time that the solver may run before it

terminates (reslim= 1000000 in GAMS)
5-3) Adjust maximum number of nodes to process in the branch

and bound tree for MIP problem (nodlim= 1000000 in GAMS)

Step 6) Run the GAMS optimization model and set the
software to print the results on an Excel file

The test system, as shown in Fig. 1, is the IEEE 33-bus network
[20]. The network is a 12.66kV distribution system with 32 fixed
lines in total with radial structure; two synchronous DG units
exist in the network before the expansion planning. These two
units have been allocated such that the power loss is reduced. The
system’s total peak load is 3.715MW and 2.3MVAr [20]. The load
and line data for this system can be found in [21]. Also, Table
1 prepares the required parameters of the problem. Specification
of candidate DGs and ESS units are presented in Tables 2 and 3,
respectively [9, 22]. By employing the Monte-Carlo technique, and
using hourly mean and standard deviation given in [23] and [24],
1000 uncertainty scenarios of wind speed and load demand are
generated, and then, the k-means clustering algorithm is employed
to reduce the scenarios to 10 ones. Specifications of the reduced
scenarios are given in Figs. 2, 3, and 4.

3.2. Simulation results
In this paper, three simulation cases have been set up to evaluate

the impact of power loss and air pollution on distribution network
expansion and operation cost, and also the effect of using DER
units instead of supplying all of the system loads through upstream
network. In order to find out just the explained parameters, the
loads will not grow in each horizon year and are fixed as the first
year. It is obvious that if each case can become the best solution
for this examination, it will be the global answer and it will be
more acceptable when the loads are grown in each horizon year.
Therefore, in these cases there is no need to change lines and
expand the substation. This is another reason not to have load
growth. The studied period includes future 5, 10, 15, and 20 years
(as horizon years).

A) Case 1
In this case, the network is not expanded, and it is operated for

the future horizon years.
B) Case 2

In this case, only new synchronous DG units are installed in the
network, and they are optimally allocated. A maximum number of
3 units are allowed to be installed.

C) Case 3
In this case, instead of synchronous DGs, the ESS and WT units

are allocated in the network, and the maximum allowed number of
ESSs and WTs is 3.

Table 4 presents specification of installed DER units in three
cases. As there are two existing DG units at buses 11 and 30, the
new installed DER and ESS units are shown in Figs. 5 and 6.
As seen, the DER units are placed at appropriate locations in the
middle and ending parts of the network to supply the loads and
satisfy the constraints.

In Table 5, the output results such as installation cost, operation
cost, emission cost, and the total objective function value for each
case study is presented. As seen, the cases 3, 2, and 1 have higher
investment cost, respectively. The operation cost related to energy
purchase from the upward grid has the maximum value in case
1; it is minimum in case 2; and in case 3, the operation cost is
more than case 2. The operation cost of DER units is minimum
in case 3 and is maximum in case 2. Also, in case 1, the related
operation cost is between case 2 and case 3. Due to exploitation
of wind turbine and ESS units, there is a cost reduction in case
3 compared to other cases. It can be seen that the total operation
cost decreases from case 1 to case 3.

On the other side, nowadays, the global warming and human
health have become the most important concerns of mankind.
Emission of CO2 gas, apart from its financial costs, has unfavorable
consequences along with destruction of the environment. In this
regard, planning for the network infrastructure enhancement is
much important for human survival and health of the planet. As
shown in Table 5, the use of renewable energy resources and ESS
units in case 3 results in less CO2 emission and lower emission
cost. Also, case 2 is better than case 1, as in the presence of DG
units, the system needs lower values of energy to be received from
the upstream grid. Also, lower power loss is created in distribution
system. In other words, the power loss in the network is reduced
through reduction of power injection from the upstream network.
In the horizon year of 20, the emission cost is reduced by 43.2%
and 26.2% in case 3 compared to cases 1 and 2, respectively.
The total cost (objective function) is also compared in Table 5.
Although case 3 has high installation cost, the total cost in this
case has the lowest value as the operation and emission costs are
decreased. In other words, in the long-term (horizon year of 20),
reduction of operational and emission costs compensates for the
increase of installation cost, such that in total, there is a cost
reduction of 29.4% and 21.5% in case 3 compared to cases 1 and
2, respectively.

Table 6 compares among profits of three cases in four horizon
years. As the horizon year increases, the superiority of the
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proposed model is more highlighted. This verifies that using
renewable energy resources and energy storage systems in the
network is more economical than using synchronous DG units in
the long-term. Both of these two conditions (case 3 and case 2)
are more economical than case 1 in which new DG and DER units
are not present.

According to Tables 5 and 6, in case 3, the total installation
cost is about 2.4 M$ and the profit of this case compared to case 1
is about 7.02 M$ in the horizon year of 5. Therefore, by installing
WTs and ESS units, in the next 5 years, in addition to returning
the installation cost, 292.5% of profit is gained compared to the
installation cost. Therefore, it is the main purpose of this paper
to prove that the installation cost of renewable energy resources
and ESS units will be returned in less than 5 years. In fact, due
to high power loss cost, emission cost, and energy purchase cost,
the DERs installation will be cost-effective and economical. It
should be noticed that in case 3, about 60% of the load demand
is supplied by DER units. It was assumed that the load demand is
not increased. If we consider the load demand growth, the effect
of DER installation will be more highlighted. Fig. 7 compares the
amount of active and reactive powers received from the upstream
network in three cases and in different uncertainty scenarios. It is
observed that the injected active and reactive powers to distribution
network are increased at the peak load hours to follow the load
demand pattern and supply the loads properly. As shown, in case
2, there is a considerable reduction in the injected power, which is
due to generation of synchronous DG units. Although in case 3,
there is no significant change in power received from the upstream
network, the total operation cost has been reduced from 137.47M$
to 108.27$, which is due to scheduling of WT and ESS units.
It should be noticed that in case 3, regarding the wind speed
variations, the output power of WT units is lower than their rated
capacity, but, by an appropriate scheduling of ESS units, it is seen
that the power delivered by the upward grid to the distribution
system is almost the same as case 2.

In Fig. 8, state of charge (SOC) of ESS units has been illustrated
for case 3 in different uncertainty scenarios. As it can be observed,
the ESSs are charged from hour 1 to hour 11 reaching to their
maximum capacity. From hour 17 to hour 21, they are discharged
in accordance with the load increase at these hours, and reach
their initial SOC at the last hour of day. Regarding the buses at
which the ESS units are installed, the charging and discharging
profile of ESSs are different in different uncertainty scenarios. In
total, the scheduling of ESS units is in a way that the operation
and installation as well as emission costs are decreased.

From the network voltage viewpoint, the three cases have been
compared using the voltage magnitude of two sample buses 18 and
33. This comparison can be seen in Figs. 9 and 10 for the whole
day. It is obvious that in case 1, the voltages of buses located at
the end of feeder drop to values lower than 0.95 per unit (pu)
during the peak load hours. This is not favorable for the network
operator and loads. However, in cases 2 and 3, the ending buses’
voltages are within the acceptable range.

The minimum voltage is occurred at hour 18 for all the
uncertainty scenarios. It is seen at this hour, the 5th uncertainty
scenario (S5) has the minimum voltage equal to 0.931pu and
0.952pu respectively in cases 1 and 2. This is while for case 3,
the minimum voltage is 0.968pu happening at hour 23 in scenario
2 (S2). In total, the voltage profile of the system is improved by
employing the DER units despite having lower costs.

4. CONCLUSION
This paper proposed a convex model with a new approach for

evaluating the long-term effects of distributed energy resources
on supplying the loads of distribution system considering of
power loss cost as well as the emission cost. In addition, the
installation and operational costs are considered, and the problem
uncertainties have been taken into account using scenario-based

model incorporating Monte-Carlo and k-means techniques. The
proposed model is established as a MIQCP model implemented
in the GAMS to find optimal solutions. Different experiments
are set up and investigated on the IEEE 33-bus network. The
simulations prove the effectiveness of the proposed approach
from the viewpoints of cost efficiency as well as emission cost
reduction. It is indicated that the installation cost of renewable
energy resources and ESS units will be returned in less than 5
years. In fact, due to high power loss cost, emission cost, and cost
of purchasing energy from the upward grid, the DERs installation
will be cost-effective and economical. As the future work, the
total cost reduction and emission reduction can be considered as
a multi-objective optimization to find Pareto-optimal solutions. In
addition, the effect of network reconfiguration, as a short term
planning approach can be investigated to see the possible cost
reduction as well as technical improvements.
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