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Abstract— Maintaining electrical grid stability and reliability requires the rapid diagnosis and classification of faults in power distribution
systems. This study presents a hybrid model that integrates deep learning with support vector machine (SVM) methodologies to classify
distribution system faults. In the proposed approach, feature extraction is performed using a convolutional neural network (CNN), and an
SVM classifier is employed to identify fault patterns and establish generic fault classifications. The hybrid model is trained and evaluated
using an extensive dataset comprising power distribution system fault currents under various fault types and conditions. The integration
of deep learning feature extraction with SVM classification enhances fault classification effectiveness. This study aims to contribute to the
overall improvement of distribution system reliability, reduction of downtime, and more efficient grid management. To achieve this, PSCAD
software is utilized to simulate faults and collect images of three-phase fault current data. Initially, the fault classification problem is
addressed using four pre-trained CNN models, with the collected images serving as input data. The hybrid model consists of two distinct
components: an SVM block, known for its efficient and precise data classification capabilities, and a CNN block, specifically designed
for feature extraction. In the MATLAB environment, a combination of four pre-trained CNN models—AlexNet, SqueezeNet, GoogLeNet,
and ResNet-18—are utilized in conjunction with an SVM to create hybrid models. The hybrid SqueezeNet-SVM model has demonstrated
exceptional performance, achieving an accuracy rate of 99.95%, a precision rate of 99.98%, a sensitivity rate of 99.6%, and a specificity
rate of 99.7%.

Keywords—Convolutional Neural Network, Support Vector Machines, fault classification, distribution system sensitivity, specificity,
kappa score.

1. INTRODUCTION

Short-circuit faults that result in power loss pose a constant
threat to distribution systems. Therefore, accurately identifying
and correcting faults as quickly as possible is critical to ensure
rapid restoration. The application of fault diagnosis techniques
from transmission grids to distribution grids is challenged by
the structural complexities inherent in distribution grids, including
heterogeneity and numerous laterals [1]. Distribution lines are
vulnerable to severe weather and/or environmental conditions.
Electrical faults disrupt electricity and reduce the effectiveness
of power networks. Hence, one of the primary objectives of
distribution lines is to minimize these effects as much as possible.
A fault classification approach that is highly reliable, fast, and
precise is required to ensure that end users are never without
power [2, 3]. This need becomes more critical as the level of
automation in power distribution systems is rapidly increasing.
To address these changes, artificial intelligence methods must be
employed to manage information from distribution systems [4].

In recent years, significant attention has been given to studying
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fault classification and location estimation methods in power
transmission systems [5, 6]. Authors of the paper [7], propose a
protection scheme for a six-phase transmission line using a Mono
ANN Module and Multi ANN Modules. The scheme utilizes
the Discrete Wavelet Transform for fault location estimation.
Fault detection and classification in transmission lines can be
performed quickly and accurately using an Extreme Learning
Machine [8]. However, these methods cannot be directly applied
to power distribution systems due to differences in connecting
networks, grounding, protective relays, and other factors. In a
distribution system, several physical factors—such as the voltages
of different generators, the phase difference between any two
generators, resistance during faults, fault inception angle, fault
location, and the length of distribution lines—are measurable
but vary significantly. Numerous studies have employed machine
learning-based fault diagnosis approaches, utilizing data from
various contexts to address the uncertainties inherent in distribution
systems [9]. The study in [10] presents a method to identify
various types of faults in networks of distributed underground
cables.

1.1. Motivation
The aim of this study is to improve the detection and

identification of various faults in power distribution systems,
which are essential for ensuring a reliable energy supply. System
failures and power outages can cause significant disruptions,
making it crucial to identify these problems quickly and accurately.
This research combines two advanced technologies—deep learning
models and Support-Vector-Machines (SVM)—to achieve this goal.
SVM is a proven technique for data classification, particularly
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effective with smaller datasets. On the other hand, deep learning
models such as AlexNet, GoogleNet, SqueezeNet, and ResNet
excel at identifying complex patterns and analyzing large volumes
of data. By integrating these two approaches, the study aims to
develop a more robust and reliable system for fault detection,
thereby enhancing performance by reducing downtime and ensuring
more consistent power distribution. This innovative combination
leverages the strengths of both machine learning methods to
enhance fault detection capabilities. Ultimately, this research seeks
to improve the accuracy and efficiency of fault detection in
power distribution systems by integrating traditional machine
learning (SVM) with advanced deep learning techniques. Various
challenges associated with the research problem of this study can
be summarized as follows:

A. Lack of Data: A major challenge is the availability of
labeled training and testing samples. Collecting accurate and
sufficient fault data is difficult due to the infrequent occurrence of
faults in power distribution systems. Limited data can impede the
performance and accuracy of fault detection algorithms.

B. Complexity and Non-linearity: Power distribution systems
are highly complex and nonlinear, comprising various
interconnected components and exhibiting dynamic behaviour.
So, traditional fault detection methods, which rely on simplified
models and assumptions, become inappropriate.

C. Sensitivity to System Variations: Power distribution systems
can experience significant variations in operating conditions, such
as load fluctuations, voltage changes, and alterations in system
topology. Existing fault detection methods may be sensitive to
these variations, resulting in false alarms or missed detections.

D. Fault Localization: Precisely locating faults in power
distribution systems can be challenging due to the distributed
nature of the system, which includes numerous feeders, branches,
and nodes. This complexity makes it difficult to pinpoint the exact
fault location.

E. Computational Efficiency: Real-time fault detection and
classification require algorithms that operate within strict
time constraints. However, some existing methods may be
computationally intensive, requiring substantial processing power
or lengthy simulations, which can hinder the deployment of
efficient and timely fault detection systems.

F. Adaptability to New Fault Types: Power distribution systems
are prone to various fault types. Existing fault detection approaches
may struggle to adapt to new or evolving fault types, necessitating
manual reconfiguration or retraining of the system.

G. Robustness to Noisy Measurements: Measurement noise
in power distribution systems can affect the accuracy of fault
detection algorithms. Noise from sensors, communication systems,
or environmental factors can introduce false readings and impact
the reliability of fault diagnosis.

H. Scalability: As distribution systems expand and integrate
renewable resources and smart grid technologies, their scale and
complexity increase. Existing fault detection approaches may lack
scalability, making it challenging to manage large-scale systems
with an increasing number of components and data points.

1.2. Literature review
Addressing the challenges discussed in previous subsection

requires advancements in fault detection techniques. Traditional
methods can be time-consuming, which motivates the application
of intelligent algorithms for rapid and accurate fault detection in
subterranean cables. Researchers have explored various machine
learning techniques for detecting and classifying faults in power
distribution systems. These techniques include fuzzy logic-based
methods [11], neuro-fuzzy approaches [12], Support Vector
Machines (SVM) [13], Artificial Neural Networks (ANNs) [14],
KNN-Bayesian method [15] and SVM combined with Principal
Component Analysis (PCA) [16]. Some researchers have also
integrated machine learning with signal processing techniques to

enhance results. Examples include Feedforward Neural Networks
(FFNN) combined with S-Transform, Adaptive Resonance Theory
(ART) neural networks with time-time (T-T) transform, wavelet
entropy with ANNs, fuzzy logic with Discrete Wavelet Transform
(DWT) [17], and ANFIS with wavelet transform [18], among
others [19, 20]. In [21], authors have proposed a quick fault
diagnosis for distribution lines having dispersed generations. The
study presented in [22] focuses on developing a fuzzy logic method
that uses discrete wavelet transform to detect various faults in an
imbalanced electrical power distribution system.

Recent advancements in deep learning have garnered significant
attention in both academic and industrial sectors [23]. A notable
development is effective use of Convolutional Neural Networks
(CNNs) and transfer learning algorithms for image processing and
recognition tasks [24, 25]. They are capable of learning mid- and
high-level abstractions from raw data [26] and consist of layers
such as convolutional, pooling, and Rectified Linear Unit (ReLU)
layers. CNNs are extensively used in computer vision and offer
high accuracy in image recognition [27]. Recently, CNN based
methods have also been widely adopted for fault diagnosis in
transmission lines [28–31] and power distribution systems [32–34].
Bayesian CNN is used for faulty line identification in [35].

While Convolutional Neural Networks (CNNs) offer several
advantages over traditional neural networks, their training
algorithms are similar to those of Back Propagation Neural
Networks (BPNNs) and are based on the Empirical Risk
Minimization Principle (ERMP). In [7], a method utilizing deep
learning integrated with data pre-processing techniques is proposed.
CNNs require large datasets and can be prone to overfitting [36].
To enhance the generalization capabilities of CNNs, Support
Vector Machines (rooted in Statistical Learning Theory (SLT)
and the principle of structural risk minimization) are often used
in combination with CNNs. This approach has been applied to
various tasks, including handwriting recognition, facial recognition,
human action recognition, and fault detection [28]. Support Vector
Machines (SVM) are designed to identify the optimal hyperplane
that separates data points into distinct classes with the maximum
margin [37]. They are effective in handling high-dimensional and
complex datasets and are used in a variety of fields, including image
classification, text classification, bioinformatics, fault classification,
and finance [38, 39]. Table 1 summarizes the extensive research
on fault classification in power systems. Following research gaps
have been identified from this literature survey:

1) When CNNs are used alone, they may sometimes overfit,
particularly when trained on small datasets due to their
complex architectures. However, integrating SVMs can help
mitigate this problem. SVMs balance model complexity with
the ability to generalize to new, unseen data, thereby reducing
the likelihood of overfitting.

2) In many previous studies, the ratio of training data to testing
data for deep learning networks is set at 90%:10%. This high
ratio can result in overfitting, causing the model to perform
poorly under varying fault conditions.

3) Most researchers have not developed models capable of
classifying all possible categories of single faults (both
symmetrical and unsymmetrical faults).

4) Previous research often relied on signal processing techniques
such as S-Transform, Wavelet Transform, and Principal
Component Analysis (PCA) for feature extraction, which
adds to the overall complexity of the models.

To address these research gaps, this paper presents a
comprehensive hybrid deep learning-based system for fault
classification. The innovative use of time-series fault current
images with a hybrid CNN-SVM model aims to discover visual
patterns for monitoring circuit states and identifying type of the
fault.



Journal of Operation and Automation in Power Engineering, Vol. , No. X, XXXX (Proofed) 3

Table 1. Literature survey for fault identification.

Ref No. Year Author No. of faults Part of power systems Approach Training/testing data ratio in (%)
[37] 2020 Ongwei. et al. 11 Distribution line SVM 90:10
[28] 2020 Rai. et al. 10 Transmission line CNN 90:10
[29] 2022 Nguyen et al. 10 Transmission line CNN+WT 80:20
[7] 2023 Nien 11 Distribution Line CNN+STFT 90:10
[30] 2023 Yangkui Xi 10 Transmission line CNN+CWT+SHUFFLE 80:20
[34] 2024 Shengsoo 7 Distribution line CNN 85:15

1.3. Novelty and contribution of the present work
In light of the identified research gaps, this paper makes the

following key contributions:
1) Development of a hybrid deep learning model: The paper

introduces a hybrid deep learning model capable of classifying
both symmetrical and unsymmetrical faults (11 types in total)
in a distribution system. 70% of the data is used for training
and 30% is used for validation and testing.

2) Elimination of additional signal processing: The proposed
model directly processes images of three-phase fault current
time series data, removing the need for additional signal
processing or feature extraction techniques.

3) Testing across multiple CNN architectures: The model is
evaluated using four pre-trained CNN architectures—ResNet-
18, AlexNet, GoogleNet, and SqueezeNet—and their
classification accuracies are compared.

4) Model generalization: The model’s generalization is
demonstrated by training and testing it on data collected under
various fault conditions, including different fault resistances,
inception angles, and fault locations.

The novelty of this paper lies in its innovative integration
of deep learning models with Support Vector Machines (SVMs)
to enhance fault detection in power distribution systems. This
approach grasps strengths of both methodologies, improving the
accuracy and efficiency of fault detection—an essential factor
in maintaining a reliable and continuous power supply. This
combined method represents a relatively new approach in the
context of power distribution systems and offers improvements
over traditional single-model.

The remainder of this paper is organized as follows: Section
2 introduces the IEEE 13 Node test feeder and the various
pre-trained CNN architectures. Section 3 details the methodology
and the results and conclusions are presented in Sections 4 and
5, respectively, followed by a discussion of the challenges and
limitations of the proposed approach and the conclusion.

2. THEORETICAL FRAMEWORK

This study involves modeling and simulating an IEEE radial
topology (Fig. 1.) The feeder is equipped with a 4.16 kV voltage
source. The PSCAD environment is used to generate data for
training and testing a deep learning model.

2.1. Convolutional neural network
A Convolutional Neural Network (CNN), commonly referred to

as a ConvNet, is a type of artificial neural network specifically
designed for processing and analyzing visual data, such as
images and videos. CNNs have proven to be highly effective
in various computer vision tasks, including image classification,
object detection, and facial recognition [40]. The typical process
of a CNN involves feeding an image into the network, where it
undergoes processing through multiple layers to extract distinctive
features, eventually leading to an output, such as a classification
result. During training, the network’s parameters—specifically,
weights and biases—are adjusted using backpropagation and
optimization algorithms to minimize the difference between the
network’s predictions and the actual labels in the training data.

CNNs are a form of supervised machine learning used to identify
image features based on spatial correlations. These networks are
commonly employed to analyze local relationships within data.
Since CNNs can autonomously learn features, they are capable of
producing accurate classifications even without extensive domain
knowledge [41]. The basic CNN architecture, as shown in Fig. 2,
comprises several layers, and more complex models may include
additional layers to capture more intricate patterns.
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. Given an input image I and a filter F with dimensions m times n, the ‘convolution operation’ at a specific location (i, j) 
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Where I(i+p, j+q) represents the pixel values of the input image at location (i+p, j+q). 

B. Activation Function 

Typically, an activation function( like ReLU (Rectified Linear Unit)) is applied element-wise and is defined as eqn.. 2. 

This function helps CNNs learn complex patterns by introducing non-linearities. 

                              ReLU(x)=max(0,x)                                               (2)   

 

C. Pooling Operation 

   Pooling layers are used to reduce the spatial dimensions of the input, thus reducing the computational complexity 
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Fig. 1. IEEE 13-node test feeder.
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Convolutional Neural Networks (CNNs) are primarily used in
the field of deep learning for tasks like image recognition, object
detection, and more. They consist of multiple layers, including
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convolutional layers, pooling layers, and fully connected layers.
Key equations and mathematical models used for CNNs [42].

A) Convolution operation
Given an input image I and a filter F with dimensions m

times n, the ‘convolution operation’ at a specific location (i, j) is
calculated by using Eq. (1).

(I ∗ F ) (i.j) =∑m−1
P=0

∑n−1
q=0 I(i+ p+ q).F (p.q)

(1)

Where I(i + p, j + q) represents the pixel values of the input
image at location (i+ p, j + q).

B) Activation function
Typically, an activation function (like ReLU (Rectified Linear

Unit)) is applied element-wise and is defined as Eq. (2). This
function helps CNNs learn complex patterns by introducing
non-linearities.

ReLU(x) = max(0, x) (2)

C) Pooling operation
Pooling layers are used to reduce the spatial dimensions of the

input, thus reducing the computational complexity and controlling
overfitting. Max pooling is a commonly used pooling operation,
where the maximum value within a window is selected. Given an
input tensor ‘A’ and a pooling window of size p times q, the max
pooling is represented as Eq. (3).

MaxPooling(A)(i,j)=
max
p− 1
m = 0

max A
q − 1
n = 0

(i + p + q) (3)

D) Fully connected layer
After the convolutional and pooling layers, fully connected

layers are employed for classification or regression tasks. In a fully
connected layer, each neuron is connected to every neuron in the
previous layer. For an input ‘x’ to a fully connected layer, with
weights ‘W’ and biases ‘b’, the output ‘z’ of the fully connected
layer is computed as shown in Eq. (4).

z = Wx+ b (4)

These are some of the fundamental equations and mathematical
models used in CNNs. However, there are many variations and
enhancements to CNN architectures, such as residual connections,
batch normalization, and dropout, which further contribute to the
complexity and effectiveness of these models. Transfer learning is
a technique for efficiently transferring knowledge from one model
to another. It is particularly useful for enhancing the performance
of a model trained on a smaller dataset and is commonly applied
for domain adaptation. This method leverages a pre-trained model
to improve accuracy. The effectiveness of transfer learning varies
depending on factors such as the compatibility of datasets, the
size of the pre-trained model’s original training dataset, and
the available computational resources. The following subsections
provide details on four distinct pre-trained CNN models used in
this study.

2.2. AlexNet
The architectural design of AlexNet comprises a total of

25 layers, whereby three layers are fully linked and five
levels are convolutional. The architecture makes use of the
Rectified_Linear_Unit (ReLU) activation-function. The dimensions
of the RGB input images utilized by AlexNet are 227 by 227
pixels, with a depth of 3 channels. As illustrated in Fig. 3, the first
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Fig. 3. Layer structure of AlexNet.

convolutional layer employs 96 different receptive filters of size
11×11 (LRN) to carry out convolution and maximum pooling.

To do a greater number of pooling operations, three filters
are employed. In the second layer, a total of 55 filters are
employed to execute identical operations. The third to fifth layer
of convolutional employ feature maps size of 384, 384, and
296, respectively. The dropout technique is used in the model
architecture by incorporating two fully linked layers followed by a
Softmax layer [43].

2.3. GoogleNet
The GoogLeNet model, developed by Christian Szegedy at

Google, was designed to reduce computational complexity. The
proposed method entailed the integration of "Inception Layers"
that encompassed diverse receptive fields achieved through the
utilization of different kernel sizes, as illustrated in Fig. 4. The
GoogLeNet architecture consists of a notable 22 layers, a rather
large number. However, in comparison to the AlexNet model,
which possesses a network parameter count of 60 million, Google
utilizes substantially fewer parameters, specifically 7 million. In
addition, it is worth noting that the computational requirements of
GoogleNet were also found to be significantly lower than those of
AlexNet, with a value of 1.53G MACs [44].
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2.4. SqueezeNet
SqueezeNet v1.0 a convolutional neural network [45], despite

having 50 times fewer parameters, is capable of attaining accuracy
levels comparable to AlexNet on the ImageNet dataset. SqueezeNet
is composed of 18 convolutional neural layers, as depicted in Fig.
5. After undergoing training, the network can categorize photos
into a diverse range of 1000 object categories, encompassing
various species. The network exhibits the capacity to acquire
intricate feature representations for a diverse range of photographs.
The SqueezeNet v1.1 networks exhibit a level of accuracy that
is similar to that of the SqueezeNet v1.0 networks. However,
they achieve this accuracy while demanding a reduced number of
floating-point operations per prediction, as shown in Ref. [46].

2.5. ResNet-18
Among the ResNet (Residual Networks) models, ResNet-18

is a convolutional neural network design known for its compact
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architecture. As one of the smallest versions of ResNet, ResNet-18
is commonly used for image classification tasks. It introduces the
concept of residual blocks, which include shortcut connections
(also known as skip connections) that facilitate easier gradient flow
during training. These shortcut connections enable the training of
very deep neural networks and help mitigate the vanishing gradient
problem.

ResNet-18 is popular for a variety of computer vision
tasks, such as object detection, image segmentation, and image
classification.Compared to larger ResNet variants like ResNet-50
or ResNet-101, ResNet-18 is more computationally efficient and
better suited for applications with limited resources [48].
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The training of ResNet-18 involves backpropagation, which
computes gradients of the loss function with respect to the
network’s weights and biases and updates them using an
optimization algorithm like stochastic gradient descent. This
network incorporates residual mapping (H(x) = F (x)+x) instead
of the desired underlying mapping (H(x)). ResNet-50 is a
variation with 50 layers, and Fig. 6 illustrates a residual block
for the ResNet-18 architecture. ResNet-18’s architecture consists
of stacked 3x3 convolutional layers. It can train deeper networks
without sacrificing performance and is easier to optimize [49].

2.6. Support Vector Machine
The Support Vector Machine (SVM) is a widely used supervised

machine learning algorithm for classification and regression tasks.
It is a non-parametric, discriminative learning method that aims
to identify the optimal boundary (or hyperplane) that separates
data points into distinct groups. The goal of SVM is to find
the optimal hyperplane as shown in Fig. 7. The SVM algorithm
selects the hyperplane that maximizes this margin, which enhances
the model’s ability to generalize to new, unseen data. SVMs
can also handle non-linearly separable data by mapping it to a
higher-dimensional feature space where it may become linearly
separable. This is achieved through a technique known as the kernel
trick, which allows for efficient computation without explicitly
working in the high-dimensional space. SVMs are widely applied
in various fields, including text classification, image classification,
and bioinformatics.

They have also been designed to deal with problems involving
several categories of categorization and regression analysis.
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Table 2. Different conditions for fault creation.

Parameter Values
Faulty nodes 632, 633, 634, 650, 671, 675, 680, 692 nodes

Different inception angles 10*, 35*, 60*, 85*, 110*, 135*, and 185* degree
Resistances value 0, 0.5, 50, 100, 500, 1000, 1500 ohm

3. METHODOLOGY
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The process initiates with fault currents time series data collection
using PSCAD simulation software. This data is subsequently
imported into MATLAB, where images are generated to be utilized
as input for convolutional neural networks (CNNs).
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 Fig. 8. Methodology.

The training dataset for CNNs consists of labeled data
corresponding to various types of faults. The CNN/HYBRID-CNN
model is used to train and assess fault classification accuracy based
on the provided input-output data.

3.1. Fault current measurements and creating train-
ing/testing data
In any power distribution system, there are five distinct types

of faults: L-G fault, L-L fault, L-L-G fault, L-L-L fault, and
L-L-L-G fault. These fault categories cover a comprehensive
range of 11 different failure scenarios when analyzing three lines.
This study involves measuring and utilizing three-phase electrical
currents under various fault conditions, as detailed in Table 2. A
simulation model is created using the PSCAD/EMTDC framework
to achieve this. The simulation runs for 1.3 seconds, with fault
events occurring between 0.2 and 1 second. In total, 5,568 cases
are recorded: 5,120 cases (8 nodes * 8 resistances * 8 inception
angles) for each of the 10 fault types, and an additional 448 cases
(8 nodes * 7 resistances * 8 inception angles) for the ABC fault.
These cases include time series data for a three-phase current
signal recorded during each fault.

The collected samples are then organized into vectors with 5568
rows, which serve as training/testing/validation datasets. Output
training data is composed of a label that represents the type of
fault in the input data.

3.2. Hybrid CNN-SVM model
This section provides a comprehensive discussion of the hybrid

deep learning model employed in this study. The process consists
of two main components. Models such as Alexnet, Googlenet,
ResNet, or SqueezeNet are employed to extract deep feature
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maps. These maps are then converted into feature vectors and
subsequently sent to the second phase, as depicted in Fig. 9. In the
subsequent phase, ‘SVM’ model is responsible for partitioning the
feature maps obtained in the preceding stage into distinct clusters,
to facilitate the classification process. One rationale for employing
these hybrid technologies is in their ability to operate effectively
with computer specifications of moderate cost, in contrast to
CNN models that necessitate high-priced computer specifications.
In addition, hybrid methodologies exhibit expedited training of
datasets and employ elementary calculations, whereas CNN models
necessitate prolonged training periods for datasets and include
intricate computations [50].
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In summary, hybrid model involves using a deep neural network
(DNN), such as a Convolutional Neural Network (CNN), for feature
extraction and a Support Vector Machine (SVM) for classification.
Here’s a more detailed breakdown of the methodology:

A) Data preprocessing
a. Dataset collection:
A dataset comprising voltage and current signals under various

fault and non-fault conditions in a power distribution system is
collected. The dataset is designed to be diverse, covering different
fault types, resistances, inception angles, and locations.

b. Data labeling:
The dataset is annotated to indicate the occurrence and

characteristics of faults. This labeled data will be used for
supervised training.

c. Data segmentation:
The voltage and current signals are divided into segments,

taking into account the temporal aspects of the data.
B) Deep neural network (CNN) for feature extraction

a. Model architecture:
Four pre-trained CNN models—AlexNet, SqueezeNet,

GoogleNet, and ResNet-18—are utilized in this work.
b. Training:
The CNN models are trained on the labeled dataset, enabling

the network to extract discriminative features from the fault current
signals. Categorical cross-entropy is selected as the loss function
during training, and dropout regularization is applied to prevent
overfitting.

C) Feature extraction and SVM classification
a. Feature extraction: The trained CNN is employed as a

feature extractor. The output from one of the intermediate layers
of the CNN is used as the feature vector for each signal segment.

b. Flattening or pooling features: Global pooling is applied to
the extracted features to create a vector representation for each
segment.

c. SVM classification: The flattened or pooled features are fed
into an SVM for classification. The SVM is trained on these
feature vectors, with labels indicating the fault types.

D) Model evaluation and validation
a. Dataset splitting:
The dataset is divided into training and testing sets, with a 70%

to 30% split.
b. Performance metrics:
The performance of the combined model is evaluated using

standard metrics such as accuracy, precision, kappa score,
sensitivity, and specificity.

3.3. Performance evaluation metrics
The following Metrics are used to evaluate the performance of

the proposed methodology:

A) Classification accuracy
Testing data is presented to examine the accuracy of the

predictions by reviewing the labels. Accuracy is obtained according
to Eq. (5).

Accuracy =

(
Ncorrect

Ntotal

)
∗ (100) % (5)

In this context, Ncorrect represents the mixture no. of accurately
classified cases, while Ntotal = total cases within ‘test dataset’.

B) Kappa score
An additional performance parameter employed for evaluating

the efficacy of our technique is the kappa score. The method’s
effectiveness is widely recognized as being supported by statistically
credible evidence [51]. The kappa score is commonly measured
on a scale from 1 to -1, where a value of 1 indicates flawless
categorization. The kappa Scores in this study are computed using
Eq. (6).

K =
(Acc) − (V acc)

1 − (V acc)
(6)

In this case, random accuracy is shown by Vacc, while obtained
accuracy is denoted by Acc. The calculation of random accuracy
is shown in Eq. (7).

V acc = 1/N (7)

Here, ‘N’ represents the total classes
C) Precision

Precision is a statistical measure of how many true positives a
classifier or model predicts out of all the positive guesses it makes.
The value of precision is calculated by Eq. (8).

Precision =
TP

TP + FP
∗ 100 (8)

D) Sensitivity
Sensitivity is a statistical variable that measures how many true

positives there are in a set of positive cases. In other words,
sensitivity is a measure of how well a model can pick out good
cases. Value of sensitivity calculated by Eq. (9).

Sensitivity =
TP

TP + FN
∗ 100 (9)

E) Specificity
A high specificity number means that the model can correctly

find most of the wrong cases in the dataset and has a low rate
of false positives. On the other hand, a low specificity number
means that the model is making a lot of false positive predictions
and isn’t doing a good job of finding negative cases. The value of
specificity is calculated by Eq. (10).

Specificity =
TN

TN + FP
∗ 100 (10)

Name of the CNN archi-
tecture/parameters

SqueezeNet AlexNet GoogleNet ResNet-18

Size of image 227*227*3 227*227*3 224*224*3 224*224*3
Min. batch size 23 23 23 23
Max epoch 3750 3750 3750 3750
Initial learning rate 0.0003 0.0003 0.0003 0.0003
Validation frequency 250 250 250 250
Training time 87m7sec 109m1sec 71m3sec 65m31sec
Execution environment CPU CPU CPU CPU

Table 3a. Training parameters of CNN architectures
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Fig. 10. PSCAD Simulink model of the IEEE 13 node radial distribution
topology.

Parameter Value
C parameter 1

gamma parameter (γ) 0.0999
The sigma parameter (δ2) 0.6
Kernel function K (x, y) RBF

Table 3b. Training parameters of CNN architectures

4. SIMULATION RESULTS WITH DISCUSSION

This research paper introduces a ‘PSCAD-Simulink-Model’ of
IEEE 13-node radial topology, as shown in Fig. 10. The model
is designed to simulate 11 different types of faults that can occur
at eight specific nodes. The simulation platform can accurately
replicate various fault categories, encompassing a wide range of
fault resistance and inception angle values. The dataset used for
training a Convolutional Neural Network (CNN) consists of visual
representations depicting the sequential progression of three-phase
fault currents. The images presented in this study were generated
using MATLAB software version 2021a.

4.1. Splitting input dataset for training and testing
A data splitting strategy is employed where 75% of the

available data is allocated for training, while the remaining 25%
is reserved for testing and validation. A total of 5,568 incidents
were observed across 11 distinct fault categories. Out of these,
5,120 cases involve 10 types of faults, determined by combinations
of 10 resistance values, 8 nodes, and 8 inception angles. The
remaining 448 cases pertain specifically to the ABC fault, defined
by 7 resistance values, 8 nodes, and 8 inception angles. The
comprehensive dataset includes fault category labels and 5,568
images depicting three-phase fault current data. Initially, the data

Table 4. Comparison of performance of AlexNet, GoogleNet, ResNet and
SqueezeNet.

Name of the model SqueezeNet AlexNet GoogleNet ResNet
Accuracy 99.82% 98.92% 97.48% 96.24%

Kappa score 0.9981 0.9873 0.9745 0.961
Precision 99.85 99.2 97.90 97.05

Sensitivity 99.83 99.09 98 97.01
Specificity 99.84 99.10 98.01 97.03

Table 5. Performance results for hybrid CNN-SVM models.

Name of the
model

SqueezeNet
with SVM

AlexNet
with SVM

GoogleNet
with SVM

ResNet with
SVM

Accuracy 99.95% 99.6% 98.9% 99.30%
Kappa score 0.998 0.995 0.987 0.99
Precision 99.981 97.2 99.0 98.9
Sensitivity 99.86 97.1 98.9 99.2
Specificity 99.87 97.15 98.75 99.25
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(d)
Fig. 11. Training progress: a) AlexNet, b) GoogleNet, c) SqueezeNet d)
ResNet-18.

is divided into a training set of 3,898 images, a validation
set of 1,115 images, and a testing and prediction set of 555
images. Following this, a series of preprocessing operations—such
as scaling, rotation, and reflection—are applied. Image scaling
ensures that the input scale for the deep learning network remains
consistent. To mitigate potential overfitting, random preprocessing
techniques are employed to enhance the diversity of the visual
input.

4.2. CNN & SVM training parameters’ selection
Training parameters of CNN & SVM can have direct effect on

the performance of the proposed model. Values of these parameters
is chosen in the proposed model via extensive hit and trial while
considering their effect(s) on the performance of the model.

A) CNN training parameters
The performance of a deep learning model for fault classification

can be significantly influenced by various training parameters as
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Table 6. Comparison of accuracy with literature.

Reference no. Year Technique Overall accuracy (%) (without noise)
Proposed technique 2023 SqueezeNet+SVM 99.95%

[34] 2024 CNN 99.46%
[30] 2023 CNN+CWT+SHUFFLE 99.90%
[31] 2023 CNN+STFT 99.36%
[23] 2023 SVM 99.08%
[20] 2022 Robust Semi-Supervised Prototypical Network (RSSPN) 91.10%
[15] 2021 KNN- Bayesian method 97%
[33] 2021 Deep CNN 99.3%
[35] 2021 CNN 72%
[37] 2020 SVM 99.52%
[27] 2018 2-D CNN 89%

discussed ahead.
1) Size of image: Larger images contain more detailed

information, potentially enabling the model to learn more
discriminative features. However, larger images also require
more memory and computational resources for processing,
which can increase training time and complexity.

2) Min. batch size: The batch size determines the number of
samples processed before updating the model’s parameters
during training. A larger batch size can lead to more stable
gradients and faster convergence but may require more
memory. A smaller batch size introduces more noise into the
gradient estimation but may help the model generalize better,
especially with limited data.

3) Max epochs: The maximum number of epochs indicates how
many times the entire training dataset is processed through
the model during the training phase. To find the optimal
number of epochs, it is common to monitor the model’s
performance on a separate validation dataset and halt training
once the performance starts to decline."

4) Initial learning rate: The initial learning rate determines the
size of the steps taken during gradient descent optimization.
A higher learning rate can lead to faster convergence but
may cause instability or overshooting. A lower learning rate
may converge more slowly but could potentially find a better
optimum and prevent divergence.

5) Validation frequency: More frequent ‘validation’ allows for
early detection of overfitting or training issues.

Table 3a displays the training parameters of CNN models.
The convolutional neural network (CNN) models utilized in
this research encompass ResNet-18, AlexNet, GoogleNet, and
SqueezeNet.

4.3. SVM training parameters

To develop an SVM model, several parameters must be specified.
The key SVM training parameters and their effects on model
performance are as follows:

1) C parameter: The C parameter controls the trade-off
between achieving a high classification accuracy on the
training data and maintaining a larger margin that separates
different classes [52]. A higher C value imposes a greater
penalty for errors, resulting in a narrower margin and better
classification accuracy for all training points. Conversely, a
lower C value allows for a larger margin, leading to a simpler
decision function and potentially improved generalization.

2) Gamma parameter (γ): The gamma parameter controls the
trade-off between the error reduction and the smoothness of
the decision function. A high gamma value indicates that
the model fits the training data closely, while a low gamma
value suggests that the model may have better generalization
capabilities by reducing the likelihood of overfitting.

3) Sigma parameter (σ2): A higher sigma value results in a
smoother and more flexible SVM decision function, which
can better accommodate variations in the data.

4) Kernel function K(x, y): SVM uses a kernel function to
map training data points into a higher-dimensional feature
space using non-linear mapping. Four types of kernel
functions can be used in SVM. The Radial Basis Function
(RBF) kernel is often chosen as the optimal option due
to its numerical stability and ability to handle non-linear
relationships effectively. Table 3b displays the training
parameters of SVM.

4.4. Training of deep learning model
Deep learning models using four types of pre-trained CNN

models were trained for fault classification, with the training curves
for each model shown in Figs. 11-(a-d). These training curves
provide insights into the models’ learning processes during training.
They typically include metrics such as training loss, validation
loss, training accuracy, and validation accuracy, all plotted against
the number of training epochs. The training loss curve reflects the
model’s error on the training dataset as training progresses, with
a decreasing training loss indicating effective learning and fitting
to the training data. Similarly, an increasing training accuracy
suggests that the model is improving its performance on the
training data. In these charts, blue lines represent training accuracy,
black lines represent validation accuracy, and orange lines represent
loss. Table 3a, shown above, details all the parameters of the CNN
architectures.

4.5. Results and discussion
In this section, the accuracy of fault identification achieved by

the hybrid model is presented and compared with the accuracy of
pre trained deep learning model acting alone.

A) Comparison of performance of AlexNet, GoogleNet,
ResNet and SqueezeNet

Firstly, four pretrained deep learning models are used to identify
fault types in the IEEE 13-bus test feeder. The confusion matrices
for the test data are shown in Fig. 12-(a-d) for the AlexNet,
GoogleNet, SqueezeNet, and ResNet-18 models. In these matrices,
the classes labeled ’a’ through ’k’ represent specific types of
short-circuit faults, categorized as follows: ‘A to B’, ‘A to B to
C’, ‘A to B to C to G’, ‘A to B to G’, ‘A to G’, ‘B to C’, ‘B to
C to G’, ‘B to G’, ‘C to A’, ‘C to A to G’, and ‘C to G’. These
confusion matrices represent the test data, comprising a total of
553 cases.

In Fig. 10-(c), which corresponds to the SqueezeNet CNN
model, only one case is misclassified. The true class is ’c’, but it
is predicted as ’b’. Similarly, the confusion matrices for AlexNet,
GoogleNet, and ResNet show 4, 8, and 7 misclassifications,
respectively. Table 4 displays the ‘Classification Accuracy’,
‘Precision’, ‘Sensitivity’, ‘Specificity’, and ‘Kappa Score’ for the
four types of transfer learning architectures of CNN.

B) Performance of CNN-SVM hybrid model
Using the CNN and SVM training parameters discussed in

Subsection 4.2, the proposed model was trained on 70% of the
total data. The performance matrix for the hybrid model, evaluated
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Specificity 99.84 99.10 98.01 97.03 
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4.4.2 Performance of CNN-SVM Hybrid Model 

Using the CNN and SVM training parameters discussed in Section 4.2, the proposed model was trained on 70% of the total 

data. The performance matrix for the hybrid model, evaluated on the test data (30% of the total data), is presented in Table 5. 

In this model, features extracted from the CNN model are used as input for the SVM classifier. The pre-trained CNN model 

SqueezeNet, when paired with the SVM classifier, achieved the best classification results, as shown in Table 5. 

 

Table 5.  Performance Results for Hybrid CNN-SVM Models 

Name of the Model SqueezeNet  
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AlexNet 

with SVM 
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with SVM 

ResNet 
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Accuracy 99.95%  99.6% 98.9% 99.30 
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Precision 99.981 97.2 99.0 98.9 

Sensitivity 99.86 97.1 98.9 99.2 

Specificity 99.87 97.15 98.75 99.25 

 

A comparison of Tables 4 & 5 indicates that this combined approach results in higher fault identification accuracy 

compared to using the CNN alone. Deep Learning models, especially Convolutional Neural Networks (CNNs) can capture 

data’s intricate patterns and dependencies.This capability  is essential for identifying subtle fault signatures in power 

distribution systems. These models can automatically learn hierarchical feature representations, which makes them powerful 

for tasks requiring complex pattern recognition.  In the hybrid method, CNN effectively captures the complex patterns in the 

data, while the SVM provides robust classification, resulting in enhanced fault identification accuracy. The SVM's ability to 

handle high-dimensional spaces complements the Deep Learning model’s capability to capture complex patterns, leading to 

a more powerful and effective fault identification system in power distribution networks. Moreover, SVM uses regularization 

techniques that help prevent overfitting, especially in high-dimensional spaces, essential for maintaining generalization 
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on the test data (30% of the total data), is presented in Table
5. In this model, features extracted from the CNN model are
used as input for the SVM classifier. The pre-trained CNN model
SqueezeNet, when paired with the SVM classifier, achieved the
best classification results, as shown in Table 5.

A comparison of Tables 4 and 5 indicates that this combined
approach results in higher fault identification accuracy compared

to using the CNN alone. Deep Learning models, especially
Convolutional Neural Networks (CNNs) can capture data’s
intricate patterns and dependencies.This capability is essential
for identifying subtle fault signatures in power distribution
systems. These models can automatically learn hierarchical feature
representations, which makes them powerful for tasks requiring
complex pattern recognition. In the hybrid method, CNN effectively
captures the complex patterns in the data, while the SVM provides
robust classification, resulting in enhanced fault identification
accuracy. The SVM’s ability to handle high-dimensional spaces
complements the Deep Learning model’s capability to capture
complex patterns, leading to a more powerful and effective fault
identification system in power distribution networks. Moreover,
SVM uses regularization techniques that help prevent overfitting,
especially in high-dimensional spaces, essential for maintaining
generalization capability. Table 6 gives a comparison of the
accuracy of the suggested technique to those of other procedures
used in the literature.

As shown in Table 6. It is self-evident that the proposed
strategy is capable of diagnosing the faults in a distribution grid
with maximum accuracy and is better than the other techniques
presented in the literature. Additionally, this method has shown
positive results regardless of the fault resistance magnitude or fault
inception angle. measure and location of faulty node.

C) Challenges and limitations in applying the proposed
model for fault classification in real-world power
distribution systems

Despite being highly accurate, applying the proposed model
for fault classification in real-world power distribution systems
presents several challenges and limitations as follows:

1) Data availability and quality: Acquiring labeled fault data
from real-world power distribution systems can be challenging
due to privacy concerns, limited access to real fault data,
and the high cost of collecting labeled datasets. The quality
of the collected data may vary due to factors such as noise,
sensor errors, and missing or incomplete labels.

2) Imbalanced data: Imbalanced data can bias model’s learning
process and result in poor performance, especially for
minority fault classes.

3) Generalization to new environments: CNN-SVM model
trained on one power distribution system may not generalize
well to different distribution systems with distinct fault
characteristics, topologies, and operating conditions. Adapting
pre-trained models to new environments requires additional
labeled data.

4) Model complexity: As the proposed model involves complex
architecture and requires significant computational resources
for training and inference, especially when dealing with large-
scale datasets and high-resolution images. Deploying such
model in real-time fault detection systems embedded within
power distribution infrastructure could present challenges
related to computational efficiency.

5) Robustness to adversarial attacks: Adversarial attacks are
particularly concerning in critical systems like power
distribution, where security and reliability are paramount.

6) Integration with existing infrastructure: Integrating CNN-
SVM models into existing power distribution infrastructure
and operational workflows may require significant changes
to data acquisition systems, communication protocols, and
decision-making processes. Compatibility with legacy systems
and standards, as well as regulatory compliance, must be
considered during integration efforts.

Addressing these challenges and limitations requires a
multidisciplinary approach involving collaboration between power
system engineers, machine learning researchers, data scientists,
and domain experts.
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5. CONCLUSIONS AND FUTURE SCOPE
The hybrid model that combines Convolutional Neural Network

(CNN) and Support Vector Machine (SVM) techniques offers
significant advantages for fault classification in power distribution
systems by leveraging the complementary strengths of both
methods. The proposed hybrid approach, which integrates
deep learning (DL) with SVM, has demonstrated substantial
improvements in fault classification accuracy compared to
conventional techniques. This enhanced accuracy is crucial
for the reliable operation of electricity distribution systems.

CNNs are particularly effective at automatically extracting
relevant features from raw data, such as waveform signals or
sensor measurements, thereby reducing the need for manual
feature engineering. This enhances the system’s ability to adapt
to various types of faults. Moreover, the hybrid model has the
advantage of generalizing well to previously unseen fault types
and adapting to changing system conditions—a critical capability
in real-world power distribution systems where fault patterns can
evolve over time. The high classification accuracy of the proposed
hybrid model enables optimized maintenance schedules, early
anomaly detection, and reduced false alarms, leading to minimized
operational disruptions, improved overall system reliability, and
more efficient grid management.

This study employed AlexNet, GoogLeNet, ResNet-18, and
SqueezeNet for fault classification in a distribution system. The
hybrid model combining CNNs with SVM further improved the
results. Specifically, the combination of the AlexNet architecture
with SVM achieved 99.10% accuracy, while the highest accuracy,
i.e., 99.95%, was achieved by using SqueezeNet in conjunction
with SVM. Thus, this combination is considered the optimal choice
for classifying fault types within the IEEE 13-bus radial topology.

In summary, this work represents a significant advancement in
fault classification for power distribution systems by integrating
deep learning and SVM models into a hybrid approach. The
method reduces false alarms while enhancing accuracy, adaptability,
and system dependability. To effectively implement the proposed
model in real-world power distribution systems, careful data
collection, continuous monitoring, and regular maintenance are
essential. Future research could explore real-time fault detection
and classification systems, the use of advanced sensor technologies,
and experimenting with different combinations of deep learning
and traditional machine learning algorithms.
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