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Abstract— By leveraging the capabilities of Internet of Things (IoT) technology in conjunction with the smart grid concept and
cloud-based data sharing, distribution system operators (DSOs) and parking lot operators (PLOs) can coordinate collaboratively to optimize
techno-economic interactions. The integration of smart devices for data acquisition, monitoring, and control, along with cloud-based
platforms for data storage, analysis, and collaboration, facilitates more efficient energy management, cost-effectiveness, and overall
performance improvements. Building on these technological advancements, this study examines the daily operational planning of a smart
distribution system in collaboration with PLOs, utilizing the Equilibrium Optimizer (EO) algorithm. Considering the potential of parking
lots, the DSO aims to optimize both economic objectives and load leveling goals simultaneously, benefiting from structural reconfiguration
for additional technical and financial gains. The model effectively incorporates constraints related to the expected and reliable operation of
parking lots, as well as the security and radiality of the distribution system. By analyzing various objective functions and perspectives,
the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method is used to determine the optimal state across all
scenarios, achieving 60.3$, 5306.6 kW, and 716.8 kW for the first, second, and third objective functions, respectively. Numerical studies
and simulation validations are conducted to evaluate the proposed model’s performance, with results discussed in detail.

Keywords—Smart distribution system, parking lot, optimal interactions, equilibrium optimizer, technique for order of preference by
similarity to ideal solution.

1. INTRODUCTION

1.1. Motivation
The soaring energy demand in distribution systems has led

to the proliferation of renewable energy resources and energy
storage systems (ESSs) as indispensable parts of modern networks
[1]. On the other hand, with the modernization and digitalization
of transmission and distribution systems toward the smart grid
concept, new distributed energy resources (DERs), such as electric
vehicles, have emerged as significant players in distribution
systems and urban areas [2]. These vehicles are charged in private
homes or public lots operated by parking lot operators (PLOs).
Although contributing to clean and carbon-free transportation, their
uncontrolled and aggregated charging load can instigate serious
challenges, such as feeder congestion, transformer overloading,
and voltage drops in distribution networks. In this way, effective
smart charging paradigms are essentially required [3]. On the plus
side, data availability and cloud computing concepts have provided
unique opportunities to optimize techno-economic interactions
between distribution system operators (DSOs) and PLOs [4].
Energy storage and ancillary service provisions can be considered
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in these interactions [5]. These operators facilitate bidirectional
interactions of energy and data between them. Specifically, upon
receiving both technical and economic signals from the DSO,
PLOs devise an optimal management strategy for the parking
infrastructure, subsequently transferring this information back to
the DSO [6]. Moreover, the inclusion of smart and remotely
controllable devices, such as automatic switches, enables online,
remote, and automatic topological variations within these systems.
This process, which is referred to as the reconfiguration of
distribution systems, stands out as one of the key strategic
maneuvers with the potential to significantly impact energy
management while concurrently enhancing technical and economic
objectives [7, 8]. The ongoing study focuses on developing a smart
reconfigurable distribution system encompassing techno-economic
collaborations between PLOs and DSO. Specifically, the key
objectives are to maximize parking lot benefits from the PLO’s
perspective to maintain their economic advantages and business
model success. Then, the developed model aims to enhance the
operational efficiency of the distribution system through structural
reconfiguration and concurrent interactions with PLOs. In this
process, load leveling and minimization of power losses are
pursued by the DSO.

1.2. Literature review
Considerable research studies are conducted in the field of DSO

and PLO optimal operation. The model developed in [9] proposes
an innovative IoT-driven smart parking lot management approach
that alleviates the limitations associated with communication
range, energy consumption, and implementation costs. This system
facilitates the detection of vehicles presence and transfers this
information to a centralized server. The investigated system also
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hosts a solar-powered rechargeable energy storage system (ESS).
The proposed model is anticipated to mitigate traffic congestion,
optimize parking lot utilization, and enhance user awareness. Beside
these benefits, the technical enhancements of distribution system,
say as its capacity to minimize losses in the context of parking lot
integration and load leveling, remain unaddressed. Furthermore,
the potential contributions of distribution system reconfiguration
towards achieving technical objectives have been overlooked.
Manivannan in [10] has developed a machine learning approach for
advanced energy management of hybrid electric vehicles equipped
with energy storage capabilities. Within this framework, energy
optimization techniques and algorithms are elaborated to mitigate
operation costs and minimize charging durations. Furthermore, it
strategically coordinates the charging of PEVs to avert new peak
occurrence in load curves. However, some critical aspects such as
PEVs aggregation and behavior in distribution system level has
been overlooked. The interactive energy management of DSOs and
PLOs, fostered for techno-economic benefits, are also overpassed.
Topological modifications in reconfiguration process could also be
further explored. Benefitting the topology variation, a stochastic
two-stage framework for smart microgrid formation is developed
in [11] which aims at maximizing restored loads; hence, enhancing
its resilience. The analysis sheds light on the influence of various
resources such as distributed and renewable generations, ESSs, and
PEVs. A linear programming model, coupled with graph theory,
is employed to determine the microgrid configuration facing with
contingencies. Nevertheless, this investigation neglects collaborative
operation PLOs and the microgrid operator. Also, it does not
contribute to technical merits of reconfiguration. Through the
introduction of an iterative optimization framework, the authors in
[12] have developed a self-healing performance index to assess the
resilience level of the multi-carrier energy system. This framework
reduced the expected values of aggregated system and energy not
supplied costs concerning. Note that this study has overlooked
the possibility of collaborative energy interactions. Moreover, the
distribution system model and topological reconfigurations are not
considered. A similar attempt, considering the opportunities of
reconfiguration and resilience enhancement, has been reported in
[13] aiming at strengthening the grid resilience in the presence
of DERs. An innovative network topology-based multi-objective
optimization framework was proposed within which the economic
and resilience metrics were enhanced while concurrently mitigating
carbon emissions. Although the analytical findings, corroborated
the efficiency of the developed model, the collaborative energy
interactions and data sharing among the system participants and
through the cloud mechanisms are not considered. The authors in
[14] have developed a day-ahead scheduling framework deploying
reconfiguration in microgrid scheduling, simultaneously within the
distribution system. To mitigate the possible adverse impacts,
the proposed framework integrates ESS and demand response
programs at the network level, enhancing the operation adaptability
and explores the power losses and voltage deviation minimization
in network reconfiguration. However, the necessities of the parking
lot’s integration and their interaction in energy management
have been evidently excluded. In the context of PEVs and
DSOs cooperation, a recent model develops an advanced energy
management system incorporating the capabilities of load and PEV
aggregations and demand response programs [15]. The primary
objective of the residential aggregator is to minimize the acquired
power from the upstream network. Concurrently, the consumers
aim to mitigate their electricity costs without compromising their
comfort levels. This is while the objective of the community-level
charging station is to minimize the aggregated costs associated with
the charging and discharging of all PEVs. All of these expressions
are formulated as an optimization process. Besides the recorded
improvements in the investigated criteria, further improvements
could be triggered by collaborations of PEV parking lots and
network reconfiguration inclusion. High proliferation of PEVs in
distribution systems and uncoordinated charging of these vehicles

have been addressed in [16] demonstrating a possible feeder
congestions and voltage security issues. An efficient model is
proposed for optimal operation of PEVs charging and discharging
by minimizing energy costs. Although some system-level issues
are considered, the collaborations of PEVs parking lots and DSO
and topological reconfigurations in both technical and economic
indices improvements are not considered. Rao et al. in [17] have
contributed an optimal model for locating PEV parking lots and
maximizing the monetary benefits of PEV charging/ discharging.
Some preliminary technical opportunities are also considered;
however, the collaboration among the DSO and PLOs and the
effect of network automation are not pursued in the established
model. A transactive PEVs required energy management model is
proposed in [18]. The initial objective has been the balancing of
PEVs demanded energy within the supply capacity. However, the
system level issues are not considered. For effective PEVs access
and management, parking lots are optimally sited and sized in [19]
within the first stage. Then, this study has explored the operational
issues of the PEVs within these parking lots in the second
stage. The need for coordinated and smart charging algorithms
have been highlighted; however, the system-level opportunities and
collaborations are not fostered. The added burden of PEVs on low
voltage distribution networks voltage drops is investigated in [20].
Then, an optimal model is launched based on different resources
available in the network level to maintain the voltage within the
permissible range. However, the collaborative interaction of PLOs
and DSO based on data sharing in cloud paradigm and the network
reconfiguration impacts have not been investigated.

1.3. Contributions

Considering the reviewed literatures and the main focuses of the
ongoing study as mentioned earlier in motivations, the following
could be listed as the possible contributions and highlight of this
study:

• An optimal techno-economic cooperation model of PLOs
and DSO:
Beyond the conceptualization, efficient mathematical
modeling of PLOs and DSO interactions is launched
and solved optimally, considering both the technical and
economic objectives and constraints;

• Ensuring business model success of PLOs:
By profit maximization, the business model success of PLOs
is assured;

• Concurrent minimum power losses and load deviations for
DSO:
Following the profit maximization, the developed model
incorporates the remaining capacity of PLOs in enhancing
the operational indices of DSOs, say as assuring the possible
minimum power losses and minimum voltage deviation;

• Linearization and multi-attribute characterization of ob-
jectives:
Non-homogenous objective functions are treated in a
linearized manner intended for computational goals and
through multi-objective decision making approaches to
determine the final compromise on solutions.

1.4. Manuscript structure

The remaining of this manuscript proceeds as follows. Section
2 presents the mathematical models of DSO and PLO operations,
including their corresponding constraints, and addresses the
optimization and solution method. With the aim of performance
validation, Section 3 provides extensive numerical and simulation
studies, along with further discussions and analysis. Finally,
Section 4 gathers the concluding remarks.
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2. PROPOSED STRATEGY

2.1. Fundamentals of the proposed model
The proposed model incorporates a smart distribution system

that benefits from modern and intelligent devices, systems, and
data sharing platforms. Fig. 1 shows the flowchart of the proposed
model in three sequential stages. In the initial phase, the data
concerning each bus within the distribution system is transmitted to
remote terminal units (RTUs). Subsequently, the DSO undertakes
a comprehensive analysis of the system’s data, considering both
technical and economic aspects. This evaluation is aimed at
optimizing the planning and operation of the smart distribution
system, as well as the efficient utilization of PEVs parking lots’
facilities. In the subsequent phase, based on data sharing among the
players, DSO devises some strategic plans for optimal placement
of parking lots, determining the ideal number of PEVs for energy
charging/discharging, and configuring the smart distribution system
for optimal performance. This process yields the optimal system
configuration and maximizes the utilization of parking lots. The
DSO retains the flexibility to adjust the operation in alignment with
their own and PLO’s objectives and preferences. Additionally, the
DSO undertakes the responsibility for safeguarding the distribution
system against technical issues and ensuring its protection. To do
so and mitigating the technical challenges, an energy management
framework is developed to minimize day-ahead losses and load
profile deviations of the distribution system. As the model provides
the results for different objectives considering both the DSO’s and
PLOs’ non-homogenous viewpoints, by employing the technique
for order preference by similarity to ideal solution (TOPSIS) as a
multi-attribute decision making approach, the optimal scenario is
selected from a range of existing alternatives [21].

Note that although the established model and data sharing
mechanism contributes to mutual collaborative benefits for both
DSO and PLOs on technical and economic metrics, still several
limitations persist. Some of these limitations could be listed for
further explorations and research as follows, to mention but a few:
• Data quality and availability:

The performance of these technologies hinges on the precision
and accessibility of data. Suboptimal data quality may cause
not-optimal energy distribution decisions;

• System integration challenges:
Non-heterogeneous data sharing and integration systems
based on diverse protocols could exacerbate the complexities
associated with real-time data transfer, sharing, and decision-
making processes;

• Scalability concerns:
With an increase in the number of PEVs and the huge
amount of data to be transferred and shared, the scalability
issues might rise, limiting the practicability of these models;

• Cybersecurity vulnerabilities:
In smart grid applications and paradigm performing based
on data and automation concepts, the acquired data should
be correct and reliable; hence, safe-guarding the data against
bad-data injection and hackers would be of utmost priority;

• Regulatory issues:
As some new systems, these systems and the corresponding
data sharing mechanisms should be placed in some standard
grid codes;

• Initial capital costs:
Although the data presence and the subsequent systems
running in this base represents unique opportunities, all of
this requires remarkable investment costs.

2.2. Mathematical representation of the proposed model
The first priority is on maximizing the profits of parking lots

participation from the perspective of the PLO. In Eq. (1), the
income stemming from the energy interactions of the parking lot
establishment with the distribution system is formulated.

Revenue =

∑
Ls∈Lsdisch


PriceLsdisch ×


P

ParkingLot
disch︷ ︸︸ ︷

PPEV × nPEVLsdisch

×
∑

¯

λ
[
SOC¯

Lsdischλ× (%λ̄Lsdisch)
]

 ∀Lsdisch ∈ Ls
(1)

Here, PriceLsdisch represents the energy price at discharge
load states, PPEV denotes the power of each PEV, and nPEVLsdisch
signifies the number of PEV available for discharging task.
Additionally, in this framework, SOCλ̄Lsdisch illustrates the state
of charge (SOC) in different discharging states, while λ̄Lsdisch
indicates the percentage of each discharging state. Each state
expresses the probability of each SOC. Within the proposed
model, two cost components are considered for parking lots. The
first component is associated with the PEV charging, while the
subsequent one is linked to the yearly operational expenses of
the parking lot. Both components are then formulated within the
model.

Cost1 =

∑
Ls∈LsCh



((
PriceLsCh

µe

)
+ coste

)
×


P

ParkingLot
Ch︷ ︸︸ ︷

PPEV × nPEVLsCh

×
[

(1−
∑

¯

λ(SOC¯
LsCh

λ×%λ̄LsCh))

]


∀LsCh ∈ Ls

(2)

Cost2 =∑
Ls

[(
costCa×(nPEVLsCh

+ nPEVLsdisch)
)]

∀Ls (3)

Cost = Cost1 + Cost2 (4)

Cost1 represents the cost of charging the existing PEV in the
parking lot at their specific charge states. PriceLsCh denotes the
charging cost and µe represents the impact coefficient of PEV
charging equipment. coste signifies the cost value of equipment
damage due to additional usage for charging and discharging.
SOCλ̄LsCh

represents the SOC for each charge state and %λ̄LsCh

indicates the probability percentage of each SOC. In the second
cost component, costCa signifies the annual parking usage cost,
while nPEVLsCh

illustrates the number of PEVs available for charging
at each charge state.

Considering the revenue and costs of parking lot, the objective
function of maximizing benefit/profit form the PLO’s point of view
can be modeled as follows.

OF1 = Maximize

Benefit = {Revenue− Cost}
(5)

To optimize the objective function OF1, particular consideration
must be given to relevant constraints concerning the quantity of
PEVs engaged in charging/ discharging operations. It is necessary
to keep the number of PEVs involved in charging activities during
the specified study period equal to the total number of PEVs
undergoing discharging processes within the identical temporal
frame. This limitation, imposed by the parking capacity, is included
in the model in Eq. (6).

nPEV =
∑

Ls∈Lsdisch

nPEVLsdisch =
∑

Ls∈LsCh

nPEVLsCh

nPEV − nParkingCpacity 6 0

(6)

The second objective function considers the DSO’s point of
view and provokes the minimization of load curve deviation (LCD)
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to have a uniform load profile. Hence, this objective function is
formulated as follows.

OF2 = minimize

LCD =

{∑
Ls

∣∣∣PTarget − PLoad(Ls)− PParkingLot(Ls)∣∣∣} (7)

PTarget =

∑
Ls

PLoad(Ls)

T = 24
(8)

The goal is to make the load curve values closer to the
mean value represented by the target value. Here, PLoad(Ls) and
PParkingLot(Ls) denote the distribution system and the parking
lot’s loads, respectively. The parking lot load explicitly points
to either PEVs charging or discharging powers, represented as
follows for every state of charging or discharging processes.

PParkingLot(Ls) =

∑
Ls∈LsCh

(
IPEV × PPEV × nPEVLsCh

)
∀LsCh ∈ Ls

∣∣∣PLoad < PMin
Target

−1×
∑

Ls∈Lsdisch

(
IPEV × PPEV × nPEVLsdisch

)
∀Lsdisch ∈ Ls

∣∣∣PLoad > PMax
Target

0 ∀Ls | PLoad < PTarget −

PMargin︷ ︸︸ ︷(
PMax
Target − PMin

Target

2

)
(9)

Based on Eq. (9), it can be inferred that if the distribution
system load is less than the minimum target power (PMin

Target), the
parking lot would be in a charging state. If the distribution system
loading level exceeds the maximum target power (PMax

Target), the
parking lot would be in a discharging state. If the distribution
system load is in the margin region (PMargin), the parking lot is
neither charging nor discharging. In this context, IPEV is a binary
variable for the charging/discharging states of parking lot.

IPEV =
1 ∀Ls

∣∣∣PLoad > PMax
Target & PLoad < PMin

Target

0 ∀Ls | PLoad 6 PTarget −

PMargin︷ ︸︸ ︷(
PMax
Target − PMin

Target

2

) (10)

The third objective function, again from the perspective of
the DSO, aims at minimizing the distribution system losses.
Accordingly, Eq. (11) is considered.

OF3 = Minimize

PLoss =
∑
Ls

{
NK∑
k=1

(Rk × I2
k,Ls)

}
(11)

Here, Rk and Ik,Ls represent the resistance value of and the
current flowing through each branch in the distribution system. To
enhance the solution possibilities of the proposed model, nonlinear
terms are linearized. IPEV and nPEVLsdisch

are linearized as follows.
Note that for the remaining components, a similar approach is
considered.

−MAXdisch
PEV × IPEV PPEVLS MAXdisch

PEV × IPEV ∀Lsdisch ∈ Ls
∣∣PLoad > PMax

Target (12)

−MAXdisch
PEV × IPEV 6 PPEVLS 6MAXdisch

PEV × IPEV ∀Lsdisch ∈ Ls
∣∣PLoad > PMax

Target (13)

−MAXdisch
PEV ×

(
1− IPEV

)
6
(
PPEVLS − nPEVLsdisch

)
∀Lsdisch ∈ Ls

∣∣PLoad > PMax
Target (14)

(
PPEVLS − nPEVLsdisch

)
6MAXdisch

PEV ×
(
1− IPEV

)
∀Lsdisch ∈ Ls

∣∣PLoad > PMax
Target (15)

Here, the parameter MAXdisch
PEV assumes a substantial big value.

The constraints pertaining to voltage magnitudes at the
distribution system nodes are declared as follows. It is essential
for all buses to have the voltages within the permissible ranges.
Similar limitations run for the current flowing from the branches,
as well.

{
VMin − V bLs 6 0

V bLs − VMax 6 0
∀Ls, b∣∣V 1

Ls

∣∣ = 1 p.u ∀Ls
(16)

The total voltage deviation value considering all distribution
system’s nodes is computed by Eq. (17). This equation is
formulated based on the per unit (p.u.) state, with the objective of
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minimizing the voltage profile deviation (VPD) from the nominal
value of 1 p.u.

V oltage ProfileDeviation (V PD) =∑
Ls

{
33∑
b=1

∣∣∣V bLs − 1
∣∣∣} (17)

In an AC load flow, the balance of active and reactive powers
should be established in each bus of the distribution system,
denoted by Eqs. (18) and (19). In these equations, the impact
of reactive power of parking lot is neglected signifying that the
exchanged power with the parking lot is predominantly active
power.

PGrid(Ls)− PParkingLot(Ls)− PLoad(Ls) =
N∑
m=1

(|V (n,Ls)| |V (m,Ls)| |Yn,m| cos(δ(m,Ls)− δ(n,Ls) + θn,m)) ∀Ls
(18)

QGrid(Ls)−QLoad(Ls) =

−
N∑
m=1

(|V (n,Ls)| |V (m,Ls)| |Yn,m| sin(δ(m,Ls)− δ(n,Ls) + θn,m)) ∀Ls
(19)

Here, PGrid(Ls) and QGrid(Ls) represent input active
and reactive power from the main grid to the distribution
system. V (n,Ls), V (m,Ls), δ(m,Ls), and δ(n,Ls) respectively
represent voltage values at buses n and m and angle values of bus
voltages for load level Ls. Yn,m and θn,m denote bus admittance
values and their angles.

Network radialilty constraint is considered in reconfiguration
process and through RCSs inclusion. In this process, Eq. (20)
denotes the relationship between the number of loops, number of
branches, and the number of buses, assuring a radial structure.

NmL = Nbr −Nbus + 1 ∀Ls (20)

Various optimization algorithms could be employed to fine-
tune the established model considering different objectives
and constraints. The equilibrium optimizer (EO) algorithm,
characterized by its dynamic mass balance principles, serves
as a notable optimization engine. EO is in-depth explored and
compared to conventional heuristic algorithms such as GA, PSO,
and etc. where its outperformance is certified [22, 23]. It updates
concentrations randomly based on viable equilibrium solutions,
enhancing performance in early iterations while preventing local
minima convergence later on. This balance helps adapt the
parameters and reduces particle movement. In this way, EO
consistently achieves optimal or near-optimal solutions more
efficiently, with less computational time and fewer iterations
across various applications. Accordingly, this optimization engine
is contemplated to solve the established model.

3. SIMULATION STUDIES: NUMERICAL RESULTS AND
PERFORMANCE VALIDATIONS

3.1. Input data
As clarified earlier, in this study, EO is dedicated as the

optimization engine implemented in MATLAB coding environment.
In this algorithm, a constant that determines the exploration capacity
is set at 1.83, while the constant that regulates the exploitation
ability is set at 0.80. Moreover, the number of particles is fixed
at 30 and the number of iterations is set to 500. These parameter
values are based on a compromise between the characteristics of
the objective functions and the specific outcomes. As depicted in
Fig. 2, the IEEE 33-bus distribution system with its base topology
is contemplated in numerical studies. The information about the
lines and buses of the distribution system is given in [24]. Here,
the DSO is the responsible for energy management processes.

An Optimal Interaction Model of Reconfigurable …                                                                            by 

13 | P a g e  

3.1. Input Data 

As clarified earlier, in this study, EO is dedicated as the optimization engine 

implemented in MATLAB coding environment. In this algorithm, a constant that 

determines the exploration capacity is set at 1.83, while the constant that regulates 

the exploitation ability is set at 0.80. Moreover, the number of particles is fixed at 30 

and the number of iterations is set to 500. These parameter values are based on a 

compromise between the characteristics of the objective functions and the specific 

outcomes. As depicted in Figure 2, the IEEE 33-bus distribution system with its base 

topology is contemplated in numerical studies. The information about the lines and 

buses of the distribution system is given in [24]. Here, the DSO is the responsible for 

energy management processes.  

   19     20    21     22

    23     24     25

18

        1       2        3       4       5       6       7      8        9    10     11    12    13    14     15    16   17 

   26     27    28     29     30      31     32 
   19     20    21

22

    23     24  

   26     27    28     29     30    31     32     33

35 25

37

34

36

33

        1       2        3        4       5      6        7      8       9      10    11    12   13    14      15    16     17     18                                              

Remote Control Switch
Close Lines
Open Lines

 
Figure 2: IEEE-33 bus distribution system. 
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Table 1. SOC information of PEVs.

SOCλ̄LsCh
%λ̄LsCh

SOCλ̄LsCh
%λ̄Lsdisch

0.0 40% 0.0 10%
0.2 20% 0.4 10%
0.3 20% 0.6 20%
0.5 10% 0.8 30%
1.0 10% 1.0 30%

The load curve of the system, considering hourly intervals,
is shown in Fig. 3. From this figure, it is evident that the
peak power of 3800 kW in the distribution system occurs at
3 p.m. The mean power consumption (P_Target), maximum
mean power value (P_Target_Max), and minimum mean power
value (P_Target_Min) are calculated at 2112.9 kW, 2218.5 kW,
and 2007.2 kW, respectively. Furthermore, this investigation
incorporates an evaluation of a parking lot accommodating 100
PEVs with an individual capacity of 10 kW.
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The PEVs charging intervals are designated between h1-h8
and h21-h24 according to the energy consumption patterns.
Accordingly, the discharging periods could occur during h11-h19.
Also, during time intervals h9, h10, and h20, the parking lot is
in idol mode without any energy interactions with the DSO. The
value of µe is assumed to be 0.9, while coste and costCa are
set at 0.125$/kWh and 0.432$/day, respectively. Additionally, the
SOC related to charging and discharging of PEVs along with the
percentage uncertainty of each SOC is provided in Table 1.

The electricity price signal is shown in Fig. 4. Seemingly, the
electricity prices are lower during off-peak time intervals compared
to peak loading hours. This difference in energy price instigates
energy arbitrage opportunity for the end-use consumers.
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3.2. Numerical results and performance validation

A) Initial results
Four distinct scenarios, each with three cases are considered in

simulation studies, as follows:
• Scenario 1: The first scenario assumes the distribution

system to be in its base configuration, without any system
reconfiguration; additionally, the parking lot facilities are
absent;

• Scenario 2: The second scenario considers the presence
of parking lots in the distribution system within an
interactive operation model; then, its impact on enhancing the
objective functions, say as benefit maximization (OF1),
LCD minimization (OF2), and power losses (OF3)
minimization are tailored without considering the influence
of reconfiguration;

• Scenario 3: The third scenario explores only the optimal
reconfiguration of the smart distribution system without
considering parking lots. Similarly, its effect on the three
objective functions is explored and compared to scenario 2;

• Scenario 4: This scenario considers the concurrent
deployment of topological reconfiguration and parking lots
presence in distribution system and assesses the investigated
objective functions.

In addition to the outlined scenarios, this study considers three
different cases, each corresponding to one of the three objective
functions. Table 2 presents the results of each scenario across
these three cases. The reported data of scenario 1 shows that when
the parking lot facilities are absent, there is not any potential
advantage and the system performance depreciates, sensibly. The
second objective function within this scenario, pertaining to the
deviation of the load curve from the margin area, is quantified at
16,067 kW; while, power losses, as the third objective function,
are measured at 1,783.7 kW. Furthermore, the daily voltage
deviations of all system’s buses and across the scheduling hours is
computed at 23.93 p.u. Notably, in this scenario, without system
reconfiguration, lines 33, 34, 35, 36, and 37 are identified as radial
components within the distribution system.

In case 1 of scenario 2, where the first objective function is
only prioritized, the objective function is quantified at 424.70$.
Subsequently, in cases 2 and 3, the second and third objective
functions are emphasized, resulting in values of 5,586.4 kW and
1,699.5 kW, respectively. Furthermore, the presence of the parking
lot results in reductions of around 10,480.6 kW and 84.2 kW in
the values of the second and third objective functions, indicating a
favorable influence on the distribution system operation.
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of the results, it is evident that the three first priorities belong to scenario 4, 

signifying it as the most efficient techno-economic scenario. For more details and 

performance analysis, a comparative analysis is hence conducted between the 

outcomes of scenarios 4 and 1. 

Table 3: Ranked priorities of the obtained results. 
Scenarios States OF1 OF2 OF3 Ranking 

Scenario 1 State 1 - 16067 kW 1783.7 kW 9 

Scenario 2 

State 2 424.7 $ 7695 kW 1757.8 kW 6 

State 3 121.2 $ 5586.4 kW 1727.9 kW 4 

State 4 117 $ 7166.6 kW 1699.5 kW 5 

Scenario 3 
State 5 - 16067 kW 696 kW 7 

State 6 - 16067 kW 696 kW 8 

Scenario 4 

State 7 404.3 $ 6730 kW 725.4 kW 3 

State 8 60.3 $ 5306.6 kW 716.8 kW 1 

State 9 87.9 $ 6143.1 kW 713.3 kW 2 

 
Figure 5: Parking lot benefit in scenario 4-case2. 
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As shown, scenario 4 reflects the best results among the investigated scenarios 

and cases; hence, justifying a comparative and in-depth study with the base scenario. 

The load profile of the distribution system for each of the cases in scenario 4 is shown 

in Figure 6. As can be seen, it can be inferred that the energy interactions between 

the DSO and PLOs coupled with the reconfiguration process, demonstrates a 

remarkable effect on load balancing and cost reductions of both PLOs and DSO. 

Accordingly, the load curve in Scenario 4 has undergone a substantial enhancement 

compared to Scenario 1.  
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Fig. 5. Parking lot benefit in scenario 4-case 2.
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Fig. 6. The distribution system’s load curve in scenario 4.

In scenario 3, due to the absence of the parking lot, the
first case is omitted from the investigation. In cases 2 and

3, the second and third objective functions are respectively
explored, resulting in values of 16067 kW and 696 kW for the
objective functions, respectively. Comparing the obtained results
with those of the scenario 1 highlights that system reconfiguration
diminishes the third objective function by approximately 1087.7
kW, signifying a beneficial impact on reducing power losses within
the distribution system. However, as the overall power consumption
remains unchanged, there is not any remarkable effect on LCD
improvement and the consumption curve remains unchanged, too.
Additionally, as a same pattern of reconfiguration is for both cases
in scenario 3, the power loss values obtained for these cases
are equivalent. Following optimal reconfiguration in this scenario,
lines 7, 9, 13, 31, and 37 are identified as open lines within the
distribution system.

The objective function values obtained for each case of
scenario 4 are 404.3$, 5306.6 kW, and 713.3 kW, respectively.
Comparative analysis of this scenario with scenario 1 demonstrates
that simultaneous presence of the parking lot and system
reconfiguration option substantially enhances the first objective
function by 404.3$, and the second and third objective functions
by 10760.4 kW and 1070.4 kW, respectively. This highlights
the positive impact of reconfiguration and parking lot integration
on mitigating LCD and reducing losses within the distribution
system. Moreover, enhancement in VPD in scenario 4 compared
to scenarios 1 and 2 is substantial; albeit, not surpassing that of
scenario 3. Exclusion of VPD in scenario 4 versus scenario 3
shows that the presence of a parking lot has negligible influence on
VPD improvement; rather, it is the reconfiguration that holds the
potential to improve VPD. Following the optimal reconfiguration
in this context, lines 7, 11, 12, 31, and 37 are identified as
open lines within the distribution system. Additionally, the optimal
positioning of the parking lot for scenarios 2 and 4 is determined
at buses 23 and 28, respectively.

B) TOPSIS-driven priority determination of solutions
As seen, there are many different cases and scenarios considering

the different objective functions ahead of the decision makers
and operators. To make a compromise and include all of the
participants’ priorities, TOPSIS approach is deployed. As shown
in Table 3, there exist nine distinct states with specified values for
each of the objective functions. The assignment of weights to each
objective is dedicated based on its relative significance. In this
investigation, to motivate the parking lot presence and foster the
collaboration between PLOs and DSO in energy management for
enhanced profitability, the weight attributed to the first objective
function is set at 0.5. This is while, the second and third objective
functions, which are from the DSO’s perspective, are dedicated the
weights of 0.25 and 0.25, similarly. Based on the results recorded
in this table, the second state within the scenario 4 (scenario 4-case
2) emerges as the best result for all participants, say as PLOs and
DSO. Within this prioritized hierarchy, the resulted benefit from
the parking lot approximates 60.3$, with the quantified values for
the second and third objective functions to be equal with 5306.6
kW and 716.8 kW, respectively. The cash flow of the parking
lot in scenario 4-case 2 is depicted in Fig. 5. As demonstrated,
the parking lot attains profits by discharging power during peak
consumption periods while charging the PEVs during the light load
conditions; thereby, culminating in an optimized charge/discharge
strategy. The data presented in this figure indicates that during
specific time periods, notably at 9, 10, and 20, as the PEVs are
absent, there is not any record of improvement in both costs and
profits. By scrutinizing the priority of the results, it is evident
that the three first priorities belong to scenario 4, signifying it as
the most efficient techno-economic scenario. For more details and
performance analysis, a comparative analysis is hence conducted
between the outcomes of scenarios 4 and 1.

C) Comparative results and discussions
As shown, scenario 4 reflects the best results among the

investigated scenarios and cases; hence, justifying a comparative
and in-depth study with the base scenario. The load profile of
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Table 2. Simulation results.

Scenario 1

OF1=Benefit ($) -

Scenario 3

Case 2

OF1=Benefit ($) -
OF2=LCD (kW) 16067 kW OF2=LCD (kW) 16067 kW
OF3=Ploss (kW) 1783.7 kW OF3=Ploss (kW) 696 kW

VPD 23.93 p.u. VPD 6.62 p.u.
Open Lines 33-34-35-36-37

Case 3

OF1=Benefit ($) -

Scenario 2

Case 1

OF1=Benefit ($) 424.7$ OF2=LCD (kW) 16067 kW
OF2=LCD (kW) 7695 kW OF3=Ploss (kW) 696 kW
OF3=Ploss (kW) 1757.8 kW VPD 6.62 p.u.

VPD 23.96 p.u. Open lines 7-9-13-31-37

Case 2

OF1=Benefit ($) 121.2$

Scenario 4

Case 1

OF1=Benefit ($) 404.3$
OF2=LCD (kW) 5586.4 kW OF2=LCD (kW) 6730 kW
OF3=Ploss (kW) 1727.9 kW OF3=Ploss (kW) 725.4 kW

VPD 23.96 p.u. VPD 7.471 p.u.

Case 3

OF1=Benefit ($) 117$

Case 2

OF1=Benefit ($) 60.3$
OF2=LCD (kW) 7166.6 kW OF2=LCD (kW) 5306.6 kW
OF3=Ploss (kW) 1699.5 kW OF3=Ploss (kW) 716.8 kW

VPD 23.95 p.u. VPD 7.468 p.u.
Open lines 33-34-35-36-37

Case 3

OF1=Benefit ($) 87.9$
OF1 Point of view (case 1) OF2=LCD (kW) 6143.1 kW
OF2 Point of view (case 2) OF3=Ploss (kW) 713.3 kW
OF3 Point of view (case 3) VPD 7.466 p.u.

Open lines 7-11-12-31-37

Table 3. Ranked priorities of the obtained results.

Scenarios States OF1 OF2 OF3 Ranking
Scenario 1 State 1 - 16067 kW 1783.7 kW 9

Scenario 2
State 2 424.7$ 7695 kW 1757.8 kW 6
State 3 121.2$ 5586.4 kW 1727.9 kW 4
State 4 117$ 7166.6 kW 1699.5 kW 5

Scenario 3 State 5 - 16067 kW 696 kW 7
State 6 - 16067 kW 696 kW 8

Scenario 4
State 7 404.3$ 6730 kW 725.4 kW 3
State 8 60.3$ 5306.6 kW 716.8 kW 1
State 9 87.9$ 6143.1 kW 713.3 kW 2
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Figure 6: The distribution system’s load curve in scenario 4. 
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First, the strategic reconfiguration and change of paths; and second, optimal 

management of charging and discharging cycles of PEVs within the parking lot. 

Figure 8 depicts the minimum voltage level of the system buses. Specifically, at 15:00, 

the minimum voltage in scenario 1 is recorded equal to 0.9 p.u.; whereas, in scenario 

4, the minimum permissible voltage level is equal to 0.95 p.u. Indeed, the established 

framework successfully maintains the minimum voltage levels within the 

distribution system through the opportunities provoked by optimal reconfiguration 

and parking lots energy interactions. 

 
Figure 7: The distribution system’s power losses in scenario 4. 
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Fig. 7. The distribution system’s power losses in scenario 4.

An Optimal Interaction Model of Reconfigurable …                                                                            by 

19 | P a g e  

Figure 6: The distribution system’s load curve in scenario 4. 
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scenarios 3 and 4. This observation is due to lower impact of parking lot facilities on 

losses reduction. However, a substantial difference in losses is seen when comparing 

the scenarios 3 and 4 with those in scenarios 1 and 2. This notice highlights the 

positive influence of concurrent consideration of reconfiguration and parking lots 

energy interaction in daily scheduling processes. Figure 10 depicts the optimal 

number of PEVs that are handled in scenario 4. Based on this figure, it is inferred 

that the optimal number of PEVs designated for either charging or discharging, 

varies across the time intervals at each scenario. For instance, at 07:00 which is 

identified as a peak charging period, the optimal number of PEVs are computed as 

97, 80, and 60. Moreover, in the chosen state with the utmost priority, say as scenario 

4-case 2, the reconfiguration process of the distribution system determines the RCS 

in lines 7, 11, 12, 31, and 37 as open. The optimal configuration of the distribution 

system, corresponding to this state, is illustrated in Figure 11. This figure 

demonstrates that the radial topology of the 33-bus distribution system is kept, to be 

persistent as an operational constraint of these network.  

 

 
Figure 9: Comparison of the distribution system’s power losses. 

 

Figure 10: Optimum number of PEVs in scenario 4. 
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the distribution system for each of the cases in scenario 4 is
shown in Fig. 6. As can be seen, it can be inferred that the
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Figure 11: The distribution system optimal configuration in scenario 4-case2. 

4. Conclusion 

This research focused on developing an interactive operation model for the 

DSO and PLOs in a smart distribution system. The presented model was intended to 

enhance both economic and technical goals, leveraging the collaboration of PEV 

parking lots and system reconfiguration. Additionally, the operational 

constraints were successfully included in the proposed model. Four different 

scenarios were explored to assess the performance of the proposed model. The 

findings showed that the inclusion of parking lot facilities, structural reconfiguration, 

and the establishment of energy and data interactions between PLOs and the 

distribution system yielded enhancements in both technical and economic objectives. 

As different objectives were considered from different participants’ points of view, 

the TOPSIS approach was deployed to reflect the most suitable solution among 

them. Regarding the solution with the highest priority, the obtained results 

demonstrated values of 60.3 $, 5306.6 kW, and 716.8 kW for the first, second, and 

third objective functions, respectively. These results demonstrated significant 

improvements over the base scenario and network operation metrics. The 

integration of energy interactions between distribution systems and parking lots, 

facilitated by data sharing, presents promising future opportunities. Areas such as 

smart parking solutions, demand response programs, resilience and sustainability 

initiatives, data security and privacy concerns, as well as machine learning 

approaches, could be further explored here. 

Fig. 11. The distribution system optimal configuration in scenario 4-case 2.

energy interactions between the DSO and PLOs coupled with
the reconfiguration process, demonstrates a remarkable effect on
load balancing and cost reductions of both PLOs and DSO.
Accordingly, the load curve in Scenario 4 has undergone a
substantial enhancement compared to Scenario 1.

Technical issues are also impacted sensibly within the scenario
4. The power losses incurred in the distribution system with
optimal reconfiguration of the network and presence of the parking
lots are illustrated in Fig. 7. Evidently, the power losses across
the scheduling periods is noticeably diminished in scenario 4
compared to scenario 1. This reduction in power losses is attributed
to two primary factors. First, the strategic reconfiguration and
change of paths; and second, optimal management of charging and
discharging cycles of PEVs within the parking lot. Fig. 8 depicts
the minimum voltage level of the system buses. Specifically, at
15:00, the minimum voltage in scenario 1 is recorded equal to
0.9 p.u.; whereas, in scenario 4, the minimum permissible voltage
level is equal to 0.95 p.u. Indeed, the established framework
successfully maintains the minimum voltage levels within the
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distribution system through the opportunities provoked by optimal
reconfiguration and parking lots energy interactions.

In an overall comparison of all scenarios, the power losses of
distribution system are compared considering the case 3 of overall
four scenarios. Results are displayed in Fig. 9. As is evident, there
are minimum differences in losses between scenarios 3 and 4.
This observation is due to lower impact of parking lot facilities on
losses reduction. However, a substantial difference in losses is seen
when comparing the scenarios 3 and 4 with those in scenarios 1
and 2. This notice highlights the positive influence of concurrent
consideration of reconfiguration and parking lots energy interaction
in daily scheduling processes. Fig. 10 depicts the optimal number
of PEVs that are handled in scenario 4. Based on this figure, it
is inferred that the optimal number of PEVs designated for either
charging or discharging, varies across the time intervals at each
scenario. For instance, at 07:00 which is identified as a peak
charging period, the optimal number of PEVs are computed as
97, 80, and 60. Moreover, in the chosen state with the utmost
priority, say as scenario 4-case 2, the reconfiguration process of the
distribution system determines the RCS in lines 7, 11, 12, 31, and
37 as open. The optimal configuration of the distribution system,
corresponding to this state, is illustrated in Fig. 11. This figure
demonstrates that the radial topology of the 33-bus distribution
system is kept, to be persistent as an operational constraint of
these network.

4. CONCLUSION

This research focused on developing an interactive operation
model for the DSO and PLOs in a smart distribution system.
The presented model was intended to enhance both economic
and technical goals, leveraging the collaboration of PEV parking
lots and system reconfiguration. Additionally, the operational
constraints were successfully included in the proposed model. Four
different scenarios were explored to assess the performance of the
proposed model. The findings showed that the inclusion of parking
lot facilities, structural reconfiguration, and the establishment of
energy and data interactions between PLOs and the distribution
system yielded enhancements in both technical and economic
objectives. As different objectives were considered from different
participants’ points of view, the TOPSIS approach was deployed
to reflect the most suitable solution among them. Regarding the
solution with the highest priority, the obtained results demonstrated
values of 60.3$, 5306.6 kW, and 716.8 kW for the first,
second, and third objective functions, respectively. These results
demonstrated significant improvements over the base scenario and
network operation metrics. The integration of energy interactions
between distribution systems and parking lots, facilitated by data
sharing, presents promising future opportunities. Areas such as
smart parking solutions, demand response programs, resilience and
sustainability initiatives, data security and privacy concerns, as
well as machine learning approaches, could be further explored
here.
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