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Abstract— The development of smart energy microgrids (MGs) and the influence of various types of distributed energy resources
(DERs) on the demand side have increased the importance of addressing technical issues within MGs. In addition, the expansion of
smart homes can improve issues related to the resilience of MGs during a disaster event. Therefore, this paper presents an efficient
model for the optimal planning of energy management in a smart MG, taking into account the optimal energy interactions between smart
homes and aiming to improve the MG’s resilience in a disrupted state, specifically with the integration of smart homes. In the suggested
[framework, interactions between smart homes and the microgrid operator (MGO) are considered. Through this model, the MGO obtains
oversight of home energy management (HEM) systems, which enables it to improve resilience against MG disruptions. By facilitating
energy management and interaction among smart homes, supported by DERs, the MGO can effectively bolster system resilience. In the
mathematical modeling, smart homes include responsive loads (RLs), non-RLs, a bath-heating system (BHS), air-conditioning (AC), plug-in
hybrid electric vehicles (PHEVs), energy storage systems (ESSs), and photovoltaic (PV) systems. Simulation analysis shows that operating
the HEM system effectively, together with interlinked smart home energy exchanges, boosts the resilience of microgrids by 63.59%, using
the General Algebraic Modeling System (GAMS). The results obtained are promising.
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1. INTRODUCTION Energy interactions among consumers can enhance resilience in

MGs during high-impact, low-probability (HILP) events [7]. When

1.1. Motivation disruptions occur, the MG disconnects from the main distribution

. . . L network, creating isolated islands of power. This capability to

Electric smart microgrids (MGs) act as the final link in the form independent islands with both generation and consumption

energy supply chain for end users [1]. Their peak technical boosts resilience over traditional networks. By deploying smart

performance ensures a dependable future for the electricity sector. grid technologies and forming smart microgrids, the resilience of

Recently, improving the resilience and protection of smart MGs distribution systems is improved. To this end, a novel resource

that incorporate distributed energy resources (DERs) has garnered allocation model based on the modularity feature of MGs has

considerable interest [2]. These MGs operate as cohesive control been proposed in [8]. Additionally, smart MGs offer improved

systems, allowing them to connect to or disconnect from the services, ensure better power availability, and enhances security
main grid, functioning in either grid-connected or island mode [3]. for consumers [9].

The deployment of MGs is vital for improving DER integration,
tackling network challenges such as peak demand, and reducing
energy not supplied (ENS) and increasing the network resilience
[4]. Microgrids, by having the property of modularity, can lead
to improved resilience of the electric distribution network [5].
To maximize the effectiveness of smart MGs, it is essential to
incorporate DERs on the demand side and encourage energy
interactions among users. This collaboration, along with strategic
energy planning, can greatly enhance the overall objectives of the

The home energy management (HEM) system is a key solution
for managing DERs in smart homes [10]. It includes a smart meter
(SM) and a home controller (HC) that are connected to household
devices. The HC addresses load-sharing challenges from the
user’s perspective [11]. Smart homes also incorporate local energy
storage systems (ESS), photovoltaic (PV) systems, and plug-in
hybrid electric vehicles (PHEVs) in the load planning process. To
motivate smart home users to engage in consumption management
programs, the MG operator (MGO) provides incentives, such as

MG [6]. reduced tariffs. Consumers can respond to the MG control center’s
requests through the HEM system [12].

This study defines smart homes as those equipped with
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PV systems. These intelligent devices can engage in two-way
communication with the HEM system. Such interactions depend
on telecommunication networks and the Internet of Things (IoT)
across various home area networks (HAN) and local area networks
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International License. and HEM systems enhance resilience and motivates consumers to
Copyright © 2025 University of Mohaghegh Ardabili. participate in managing energy demand. As a result, the HEM

76


https://orcid.org/0000-0002-4284-8742
https://orcid.org/0000-0003-4999-8281
https://doi.org/10.22098/joape.2025.16269.2259
https://creativecommons.org/licenses/by-nc/4.0/

Journal of Operation and Automation in Power Engineering, vol. 12, no. Special Issue, Dec. 2024 77

system 1is vital for effective energy planning and strengthening
resilience in energy MGs.

1.2. Literature review

In [13], the enhancement of smart home appliance usage
alongside electric vehicles and a small rooftop PV system is
explored by focusing on their influence on energy consumption and
cost savings. The methodology emphasizes strategic scheduling of
smart appliances, leveraging real-time pricing to minimize energy
expenses. Results indicate a potential cost reduction of up to 80.6%
compared to baseline scenarios across various conditions. However,
this study demonstrates how household energy scheduling can
benefit energy management. This study has not considered the
role of optimal household load planning in studies of the average
pressure level of the distribution network and has not studied the
effect of household load management in optimal planning of the
MG. Also, the interaction of consumers in energy management in
the MG in order to improve the resilience of the MG has not been
considered. In [14], a stochastic programming strategy is proposed
for optimizing energy consumption in a grid-connected smart
HEM system, which integrates PV panels, batteries, and diesel
and gas heating/cooling systems. A demand response program is
utilized under time-of-use pricing in Syria to enhance efficiency.
The main goal is to minimize expected costs and improve
consumer comfort by optimizing controllable DERs. To address
the uncertainties in PV generation and potential electrical rationing,
the conditional value-at-risk approach is applied, using two methods
for modeling the uncertainty, interval bands and interval-based
scenarios. However, the technical constraints of MGs, particularly
regarding their resilience and the role of energy exchanges in
mitigating these challenges, remain underexplored. Additionally,
analyzing various scenarios to determine the optimal choice from
either the MG’s perspective or that of the consumers has not been
addressed. In [15] a novel method for enhancing the efficiency of
HEM systems is proposed by focusing on achieving financial and
operational goals while improving the power factor. It involves
managing flexible loads, adjusting thermostatic loads based on user
preferences, and accurately assessing power for energy storage
and electric vehicles. The model addresses uncertainties in user
behavior and renewable energy generation using a Markov decision
process and incorporates deep reinforcement learning for real-time
load scheduling. However, in this study, PV and AC equipment
by the MG operator have not been identified. By identifying the
equipment that responds to price signals, load response programs
can be used to better improve the load curve and reduce costs.
Also, examining various types of smart homes and their energy
interactions can enhance the objectives of MGs and improve
energy availability during disruptions. In [16], an optimization
method for energy management systems is developed to integrate
renewable DERs with independent diesel generators. The system
features a wind turbine, PV system, a diesel generator, and an
ESS, designed to support both flexible and fixed loads connected
to the network. Validation through simulations confirms the
method’s practicality. Compared to other strategies, this approach
enhances efficiency, improves resource allocation, optimizes load
scheduling, and adapts well to demand and supply fluctuations,
ultimately achieving significant cost savings and maximizing energy
utilization. This study thoroughly analyzes energy management
in MGs with various DERs but fails to consider the impact of
consumer involvement and two-way interactions on enhancing
MG objectives. It also does not address scenarios where the
MG operates independently from the main grid. In [17], the
challenges of energy management in an isolated hybrid MG
are explored to integrates three renewable energy sources solar,
geothermal, and biomass along with an ESS. This study employs
intelligent management techniques aimed at minimizing energy
production costs through cost function optimization, ensuring
efficient operation despite variable weather. Although this study

has studied the case of MG disconnection from the main grid,
it did not consider the HEM system’s integration with electrical
devices and DERs through the HAN, nor its connection to MGO
via the LAN for bidirectional information exchange. In [18], a
detailed framework for developing an emergency response plan for
power outages is presented. This study highlights the need for a
specialized team with clear roles, including coordinator and safety
personnel. However, it didn’t examine how the involvement of
smart homes and their energy exchanges contribute to strengthening
resilience and optimizing performance from the viewpoints of both
smart homes and MG. Also, the effects of these interactions on
the resilience and performance metrics have not been adequately
explored.

In [19] a statistical framework is created to evaluate the resilience
of grid-connected MGs during islanding events, focusing on their
ability to maintain essential loads. It defines MG survivability as
the probability of meeting critical load demands in such scenarios.
The research also presents an optimized control algorithm for
isolated MG operations and conducts sensitivity analyses to identify
key parameters that improve survivability, reduce fuel usage, and
minimize disruptions to critical loads. This study provides a
thorough examination of MGs in an island environment; however,
it overlooks the energy exchanges among consumers, which could
significantly enhance MG research. Additionally, the study does
not incorporate other energy sources like ESS and PHEV. The
research outlined in [20] focuses on transforming traditional
electricity distribution networks into resilient, autonomous smart
MGs that optimize the integration of DERs. This paper examines
management strategies for connecting and disconnecting these
DERs and their effects on MG performance and resilience.
The study also addresses technical challenges, such as voltage
fluctuations, and proposes adding energy sources to improve
resilience. However, the research does not consider the impact of
optimal consumer planning or demand-side participation on MG
efficiency. In paper [21], the exploration of energy management
in smart grids is approached through two scenarios: one where
the microgrid is integrated with the main grid and another where
it functions autonomously. This study predominantly aims to
optimize economic outcomes from the perspective of smart homes
while also enhancing the technical performance of the microgrid
when connected, placing less emphasis on reliability enhancements.
Additionally, the research employs half-hour intervals for data
analysis; utilizing shorter intervals could further elevate accuracy.
In [22], the improvement of resilience in a distribution system is
investigated, with a focus on the deployment of both fixed and
portable ESSs to maintain network stability. The study prioritizes
the supply of critical loads as the primary metric for achieving
resilience, formulating the problem as a mixed-integer linear
optimization model. The objective function aims to minimize costs,
while constraints are imposed to ensure operational feasibility
under both normal and resilient network conditions. Although
the research effectively addresses the resilience of distribution
networks, but incorporating energy interactions on the demand side
could significantly improve the operation of ESSs, an aspect that
remains unexplored in this study.

In [23], the authors emphasized the value of incorporating smart
homes into microgrid energy management, enabling optimized
scheduling of decentralized energy sources, storage solutions, and
domestic appliances to minimize operational costs. They introduced
efficient planning methods for household energy system usage,
emphasizing the integration of solar thermal ESS, and gauged
its influence through comparative scenarios analyzing operational
costs both with and without their inclusion in the residential energy
system. However, the research did not consider collaborative
energy interactions between smart homes, which could potentially
improve the efficiency of the DERs. In [24], a novel optimization
strategy is introduced, featuring a dual objective: decreasing
energy losses during normal operation and system load shedding
in disrupted conditions after the occurrence of natural disasters.
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This is accomplished by strategically positioning DG and ESS
within a smart microgrid. While the authors aim to highlight the
resilience-boosting impact of DERs on the smart microgrid during
natural disasters, they overlook the potential of data and energy
interactions among consumers to further improve resilience indexes
in disrupted mode. In Paper [25], a new approach to resilience
in the energy IoT is presented, featuring a new multi-dimensional
method. The study explores the layered vulnerabilities of smart
microgrids within the energy IoT framework, examining the
interplay between the " physical, perception, communication, and
application layers." It formulates a new model that consider the
various stages of smart microgrid operation and introduces a multi
resilience strategy that accounts for different operational phases.
However, the research does not address how different DERs on
the demand side contribute to improve the resilience.

After reviewing the related literature, a comparison of recent
literature with the proposed model can be summarized in Table 1.
As shown in this table case-by-case research on MGs shows several
key deficiencies, including inadequate engagement of demand-side
participation and load response programs, poor planning for smart
home equipment usage, and neglecting the impact of ESS, AC and
BHS on HEM. Additionally, there is often insufficient consideration
of HEM systems in MG planning, limited participation of smart
home devices and DERs in resiliency efforts, and suboptimal use
of MG energy interactions for resilience enhancement. Lastly,
improvements in technical functions during disruptions to increase
the resilience of a smart microgrid based on energy interactions
between smart homes are frequently ignored.

1.3. Contributions

This paper aims to introduce a comprehensive model for
optimizing electrical energy management in a smart MG, drawing
insights from existing research. The main focus is on facilitating
bidirectional communication and energy interactions among smart
homes to enhance the MG’s resilience. The key contributions of
this study are as follows:

1) Maximizing the use of different home energy resources:
Device implementation, including PV, PHEV, ESS, and smart
appliances enables optimized energy usage which improves MG
resilience through effective energy control.

2) Fostering active participation in demand-side management:
Encouraging smart home users to actively manage their energy
consumption through HEM systems; The demand response requires
users to engage with incentives along with the MGO for enhancing
grid resilience.

3) CEfficiently scheduling smart home appliances while
prioritizing user comfort: The control system operates appliances
efficiently to reduce energy usage while maintaining comfort
standards for smart home residents. The implementation requires
finding models that strike an optimal balance between energy
efficiency and user satisfaction to deliver an acceptable quality of
living.

4) Assessing energy transactions both purchases and sales within
a HEM framework: Evaluating the energy bought from and sold
back to the microgrid by smart homes and energy interaction
between them using HEM systems impacts on MG resilience.

5) Strengthening overall MG resilience by presenting an
innovative mathematical model to optimize electrical energy
planning, emphasizing the importance of energy interactions
between smart homes to improve resilience during disruptions: The
proposed model with new mathematical modes allows smart homes
to collaborate with each other for energy-sharing purposes that
improves microgrid disturbance responses and recovery mechanism
to enhance system resilience.

1.4. Manuscript structure

This research is structured in the following manner. Section
2 outlines the core principles of the suggested model along

with its mathematical formulation. Following that, Section 3 then
presents numerical findings along with validations and analyses
of performance. Finally, Section 4 contains the concluding
observations.

2. PROPOSED STRATEGY
2.1. Core principles of the proposed model

The essential integrated framework is depicted in Fig. 1. HEM
systems can concurrently link to smart home electrical devices
and the MG operator (MGO) via the home area network (HAN)
and local area network (LAN), respectively. These HEM systems
collect data such as consumption details through both networks
simultaneously [26, 27]. Information obtained from electric loads,
including smart appliances, non-RLs, ESS, PHEV, BHS, AC units,
and PV systems is leveraged to optimize the management of RLs
and DERs in energy oversight. Subsequently, the HEM systems
within each smart residence transmit this data to the MGO through
smart meters installed in every smart home.

Power system resilience refers to the ability of the system
to withstand disasters and recover quickly to normal conditions
[28, 29]. Measures to improve resilience are divided into three
phases: pre-disaster (preventive proactive actions), during the
disaster (corrective active actions), and post-disaster (restorative
reactive actions). [30]. To achieve equilibrium in energy usage
and boost resilience during disruptions within a MG, the MGO
should explore optimal strategies for energy exchange among smart
homes [31]. In standard operational mode, individual smart homes
manage all HEM systems. Conversely, during a disruption, the
MGO takes control of all HEM systems to enhance the overall
functionality of the MG and improve system resilience against
disturbances. As illustrated in the resilience curve in Fig. 1, the
MG's efficiency during the disturbed mode declines from P1 to P3.
Subsequently, after entering the recovery mode, the system reverts
to its original performance level (P1). By facilitating bidirectional
energy interactions among smart homes within the HEM system,
we can enhance the resilience of the MG, elevate the efficiency
during disturbed conditions to point P2, and reduce the ENS for
the MG in this mode.

Main Grid

S
!

apes pgusioy

Data Flow
(HAN)

_—~L— Data Flow
(LAN)
——  Energy Flow

Fig. 1. Fundamental integrated strategy.

Based on the illustrated figure, this study primarily aims to
develop an effective mathematical framework for the optimal
management of electrical energy within a MG. The model will
consider energy exchanges and data transactions between smart
homes, with the overarching objective of enhancing the MG’s
resilience.

2.2. Mathematical representation of the proposed model

The aim is to enhance the resilience of the smart MG
by strategically planning energy interactions among smart homes.
These interactions will demonstrate its positive impact on resilience.
The modeling assumes that if the MG faces a disruption lasting
half an hour due to any HILP event, how well it can still
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Table 1. Comparison of recent literature with the proposed model.

[13] (2024) [14] (2024) [15] (2024)

Proposed model

PV * * N

ESS - * *

PHEV * - *

AC - - -

BHS - - -

RL * * *
Non-RL - - *
HEM System - - *
Resiliency - - -
Energy Interaction - - -

[22] (2024) [24] (2025) [25] (2025)
% * *

* ¥ X ¥ X ¥

supply power to smart homes should be assessed. This assessment
focuses on the energy-sharing infrastructure among smart devices.
Ultimately, the key question is whether smart homes can lower the
expected ENS of the MG by sharing energy with one another.

In this equation, the system’s ENS is modeled in a disrupted
state. This occurs when the MG is disconnected from the main
grid, preventing energy interaction between smart homes. In this
modeling, each home’s DERs provide energy solely to that specific
smart home.

MG_ENSFI=NO —

Nt [Ny

’Z |:Z [HEDER HTEhyt]:l (])
st {[HEJF® —HTEn:] >0 |
MG_ENSFI=NO —( vh,t

In this equation, M G_ENSFI=NO indicates the ENS for a
smart MG over a day without energy interaction between smart
homes. Nt denotes the length of the planning period, while Ng
refers to the number of smart homes. Each smart home generates
its own energy during disruptions, specifically when the MG is
disconnected for half an hour, with no energy interaction between
smart homes. If the total energy produced by DERs in these
smart homes exceeds their total energy consumption, then all
equipment needs are met, resulting in zero ENS for that period.
This state must be included in the model. H E{Z ER represents the
total energy from ESS, PHEV, and PV systems available during
disruptions. Lastly, HT E}, ; signifies the total energy consumption
of each smart home’s equipment for every time interval, as detailed
in the equations below.

HEDER _ nEssdisch « HEEfsdisch x I}ﬁfsdisch> +
PHEV, PHEV,, .
(n}I:HEVduch % HEht disch s Ih,t disch )+
(nfv,DC—AC % HE}}:X e:cpected) Vh, t
2
HTBu = HENE: + 35 (HER; < TG0+
(HER® x Ii7§) + (HE xIng)  Vhit

In this context, 7, FS5aisch denotes the conversion factor from
DC to AC for the ESS. H EESSd”‘h represents the total energy
discharged by the ESS durmg the time period t for each
smart home, while I, Ssd”‘” is a binary variable indicating the
dlschagge status of the ESS from the h-th home in the t-th interval.

PHEVaisch jndicates the DC to AC conversion factor for PHEV
in the h-th home, and HEPHEV‘“S"‘ signifies the total energy
dlscharged l;yv the PHEV durlng time interval t for each smart
home. I Bt disch is a binary variable reflecting the discharge
mode of the PHEV from the h-th home in the t-th interval.

n}}: V:DE=AC j4entifies the DC to AC conversion factor for PV

. . PV, ted ..
systems in every smart home, while HE, ["“""°“"°* estimates the

expected energy output from PVs for time interval t. H E,?? and
H EN RL correspond to the energy demand of the j-th RL and
the overall energy consumption of non-RL household loads during
interval t, respectively. I, ; ; is a binary variable for the j-th load in
interval t; if it equals 1, it indicates that the j-th load is consuming
energy during that period. HEES reflects the energy consumed
by BHS, and I fi 7 is a binary variable for interval t. Additionally,
HEDC quantifies the energy used by the AC system, with I;ﬁf
serving as a binary variable related to it; if this variable equals
1, it indicates that the AC system is actively regulating indoor
temperature.

The quantity of energy supplied by DERs in smart homes is
contingent upon their state of energy (SOE). Consequently, the
volume of energy that can be released from ESS and PHEV during
each time period can be determined by evaluating the SOE using
the equations outlined below.

min
ESSgisen

SOEP;S < HE, [ @t |}
HEESS 0 Vh,t
SOEftSS > HEESSdzsch 0
HEESS HEESSduch Vh, t
HEESSdmh < SOEESS < HE!
HEPSS = SOEESS it

@

max
ESSrhsch

4

SOEPHEV < HEI;:?EVdisch ll

HEPHEV =0 Vh,t

SOE}I;{IEV > HEPHEfoffh U

HEPHEV HEPHEVdMCh Vh,t

HE:fEVé?L?h < SOEPHEV < HEPHEVE'?fh U
HEPHEV SOEPHEV Vh,t

(&)

In this context, SOEESS and SOEPHEV represent the SOC
of ESS and PHEV at the conclusion of the time period t

ESS ESS“”X
for each smart home h. Meanwhile, HE) ”“”h H E disch

PHEVR®ID PHEV
HEht diech and HE, disch mdlcate the minimum and

maximum discharge rates for the ESS and PHEV during each time
interval.

During disruption mode, and without taking energy interactions
into account, the DERs available in each smart home solely deliver
the energy necessary for that specific residence. As a result, the
proportion of home energy supply (HES) for each household in
each time interval can be determined using a designated equation.
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DER
HEh,t
HTE ¢

HESF{=NC = Yh,t

HES%?Z‘O) <1 = %HESFI=NC = (6)
HESFPI=NO 5100  Vh,t

HESFI=NO >1 = %HESFI=NO =

100 Vh,t

s.t

Based on the criteria established in this equation, during the
intervals when the overall energy output from the DERs in smart
homes exceeds the total energy demand of household appliances,
the value of H ES}]E I=NO will exceed 1 for that interval. Because
the goal of calculating the home energy percentage is to assess
this situation, H ES,? T=NO s assigned a value of 100% during
these intervals, indicating that the entire energy requirement of the
home is met by the DERs.

The improvement of MG resilience has been simulated by
factoring in energy interaction between the smart homes. The
assessment of ENS for these homes, specifically when energy is
bought and sold among them, is outlined in the following equation.
This method provides a deeper insight into how energy trading
influences the overall availability and reliability of energy within
the MG system.

l

> [HERPR — (1 - MGES,) x HTEy 1))

h=1

MG_ENSPI=YES — ¢yt

MG_ENSPI=YES —

Np [ N,
S [HEPF® — (1 - MGES,) x HTEj,)]

t=1 | h=1

O]

s.t >0 4

In this equation, MG_ENSTI=YES indicates the percentage
of energy supplied to homes by all smart homes after they have
shared their DERs, resulting in a consistent value for each home.
It is essential to recognize that, in this method, some homes may
experience a decrease in ENS, while others may see an increase.
Viewed from the MG’s perspective, all HEM systems are available
during disruptions, especially when the MG is disconnected from
the main grid. This availability helps to reduce the ENS for the
MG and bolsters its resilience. The following equation outlines the
percentage of MG energy supply (MGES).

u DER
> HEy

MGES, = "Z4—— vt
E HTE}
t=1
()
MGES; <1 = %MGESt =
. ] MGES, x 100 vh,t
8- MGES; >1 = %MGES, =
100 Vh, t

As stipulated in this model, the parameter M G ES; will exceed
1 when the cumulative energy output of DERs in smart residences
surpasses the overall energy demand of household appliances.
This determination is crucial for assessing the home’s energy
contribution. Therefore, in such intervals, a value of 100% is
assigned to indicate that all household energy is sourced from
DERs. Consequently, considering all relevant equations, the main
objective function of this research, which focuses on enhancing
resilience, can be articulated as follows:

OF = Maximize (MG_RI) =
(MG_ENSEI=NO _pG_ENSPI=Y ES) )
MG_ENSET=NO x 100

In this analysis, MG_RI illustrates the enhancement in
resilience by contrasting the advancements in ENS when energy
interactions among smart homes are either included or excluded.

This section of the paper outlines the essential constraints for
modeling the examined issue on a case-by-case basis. The energy
acquired by each smart home during the time interval t is comprised

of two components: H E;’Luty’]” e representing the energy procured

from the main grid, and H E"Y""“*9"*°" which denotes the energy

sourced from neighboring smart homes within the MG.

Consequently, the comprehensive energy bought by each smart
home, along with the energy sold by each one, is represented by
the following equations, respectively.

buy buy __ buy, MG
HE,#,5 X I}}Lﬂf = HEh’t +
HE uy,nerg or Vh7t

h,t

(10

HE;S x Inelt = HE;SM 9" yh t (11

In this context, [ Z“ty and Ifft” are binary variables associated

with the energy transactions of smart home h at time t, where a
value of 1 indicates that the smart home is engaged in buying
or selling energy. Additionally, HEZZ”’””QMW represents the
quantity of energy sold by each smart home to other homes within
the MG.

It is important to note that while there is a framework for
modeling energy purchases and sales, the total discharge energy
from ESS and PHEYV, as well as the total energy generated by PV
systems, is not fully delivered to the homes; rather, a portion of
this energy is allocated for sale within the MG. The mathematical
representation of the total energy sold by each smart home, which
is distributed among other homes in the MG, is formulated in
the following equation. In this equation, the total electrical energy

sold by ESS, PHEYV, and PV for each smart home is denoted as
ESSYE, PHEVMG, PVMG, .
HEh,t lisch | HEh,t isch “and HEh’t “iseh for each respective

interval.

ESSYS
HE;S' x I})' = HE,, 7@t +

PHEVJMS PVMS
HEh . disch _|_ HEh tdzsch Vh7 t

12)

Smart homes cannot engage in both energy buys and sales
simultaneously within the same time interval, Therefore, it is
essential to include the following equation in the modeling process.

LYW+ LY <1 Vht (13)

In this research, the MG is designed such that it cannot
sell energy to the main grid; all energy exchanges occur solely
among smart homes within the MG. Consequently, the total energy
acquired by smart homes within the MG must equal the total
energy sold by other smart homes within the same system. This
condition is essential and must be satisfied for every time interval
considered in the analysis.

ZHEZ?Zl,neighbor — Z HEZ?ty,neighbor Vit (14)
h h

Each smart home acquires energy to meet the demands of its
electrical appliances and DERs. Therefore, to achieve equilibrium
in the energy consumption of every smart home, a mathematical
framework must be developed to quantify the total energy acquired
for each designated time period.



Journal of Operation and Automation in Power Engineering, vol. 12, no. Special Issue, Dec. 2024 81

HE"Y x Ifj;y = HENFY + z (HEFE < If% ) +
(HEPS x + (HEPC x I 9

it )
+< ESS (HEESSch « [ESSch)> +

15
HEPHEVCh JPHEV., as)
PHEV XAy 4 -
ESSQ?;Z‘?L) ( PHEV;';??S) _

home
(HE}I:YMM;L) Vh,t

In this context, the variables representing the quantities of energy
injected by ESS, PHEV, and PV systems to each smart home

ESShom(‘

during the specrﬁed time interval t are denoted as HE, disch
PHEV}: pVhome

HE, ; d“Ch, and HE, , %" respectively. Subsequently, the

mathematical models for these energy sources will be detailed
through their respective equations. The state vector associated with
load j and the energy consumption of the BHS is presented in the
equation that follows.

107 = (125, 1%, 175, v (16)

07 = (125, 1%, 125, W (17
Smart home owners should recommend the timing for utilizing
RLs and the periods for employing the BHS, taking into account
consumer comfort and the energy usage trends of their residences.
These elements should be structured in the following manner.

Z I, =Uft whj (18)
t= Sj
Z Ipf = vh
t=ts 1
op L t<ts ht—OVh 9
Tttty IS =0vh

In this context, s; and f; delineate the initiation and end periods
for employing the j-th controllable RL within the h-th smart home.
It is important to highlight that these timeframes are proposed
by proactive homeowners to optimize energy management. UJRL
represents the duration necessary for the j-th respondent to utilize
the specified load. Based on the aforementioned framework, any
binary variable associated with each household’s controllable load
that falls outside the designated interval is assigned a value of zero.
Furthermore, ¢, and ¢y indicate the commencement and cessation
periods for utilizing the BHS as recommended by the homeowners
of each smart residence. UPY encompasses the intervals advised
by these homeowners for BHS usage. Consequently, total energy
consumption for the BHS should be confined to this specified
timeframe; any consumption occurring outside this recommended
period is deemed negligible. To effectively model uninterrupted
operation whenever a home responder activates a load, it is
essential that the designated interval remains continuous.

yh t Zh,j t — Ih ] t (20)
it g

Nt

Sunse=1 Vhj @1

yh,j t +Z}LJ t S 1 Vh’ .]7 (22)

In these formulations, % "+ and 2B “;+ denote the brnary
indicators for the activation and deactivation of the RLs. yitt Se=1
signifies the initiation of RL j at time t, while zh, 7+ = 1 indicates
its cessation during the time interval t.

Within the context of modeling energy consumption in a smart
home, the duration for which the AC system operates to regulate
indoor temperature is treated as a manageable electrical load. In
this section, the binary variable associated with the AC system is
structured as follows:

1oopome > aht set (23)
0 ehome < eh oot — gmar gin Vh,t
I,L 1 otherwise

ono"e =
RS + (kg™ x (B2, — 0ro7S)] + (24)
khuman X nhuman (ehurnan - Gﬁf)t?fi)] +

kL x 09, % Ihyt,l] Vh,t

In this context, Ghome represents the temperature of the h-th
residence during the t- th time segment. Hfgsﬁt denotes the desired
temperature setting for that same interval, while 8™ 9" refers to
the constant that dictates temperature reduction. ky°°™ signifies
the thermodynamic property of the room, and Gh,tﬁl reflects
the external ambient air temperature from the previous interval
(t-1). Kruman describes the heat exchange coefficient between
individuals and their surroundings, whereas n*7"%" counts the
number of occupants in the room during the prior time segment
(t-1). 044uman indicates the body temperature of a person, and
kjfc represents the cooling system’s temperature effect coefficient.
6% is associated with the operational temperature margin and the
temperature reduction constant. Lastly, I} h,t—1 Serves as a binary
variable indicating whether the cooling system was active during
the previous interval (t-1).

In the framework of energy usage modeling for smart homes,

H EffSCh nd H Eh . HEVeh denote the energy needed to recharge

the ESS and PHEV during the time perlod t for each household.
ESS.p PHEV,,

Meanwhile, 1, and 1, represent the conversion

coefficients from AC to DC for the ESS and PHEYV, respectively.
Additionally, I, ESS“h and I EVen indicate the binary indicators
for the chargmg states of ESS ‘and PHEV during the specified time
interval t, where a value of 1 signifies that the ESS and PHEV are
in charging mode.

ESS store energy during off-peak times and release it during
high-demand periods, helping to lower energy costs and smooth
out consumption patterns. In economic contexts, the variation of
prices across markets plays a crucial role in boosting profitability
and efficiency. Consequently, charging ESS when energy prices
are low and discharging them during high-price periods can
significantly reduce expenses for smart homes [32]. When these
systems are managed effectively, they not only meet household
energy needs but can also enable the sale of surplus energy
back to the MG. Additionally, PHEVs enhance home energy
management by working with HEM systems to optimize their
charging and discharging schedules. However, if PHEVs are not
used thoughtfully, they may contribute to peak demand spikes
that disrupt the overall load balance, potentially causing technical
challenges for the grid [33]. Thus, the energy stored in PHEVs
can be utilized for home energy management while the vehicles
are stationary. The following equations outline the constraints on
the discharge capacity of both ESS and PHEV systems.
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HEffS]d??;; _'_HEESSduch _ 55
(n’ELJSSd”ph % HEESSd”"h « Iifsdisch) Vh,t 25)
HEPHEV{,Wh _|_HEPHEVdmh —
(n}ll:’HEdeLh « HEPHEVdmh x ]}I:fEVd““’L) Vh, 20
In this context, HEESS’”SC’L and HEPHEV"Z”Ch represent

the quantities of energy released by the ESS and the PHEV,
respectively. It is important to note that the ESS and the PHEV
cannot undergo charging and discharging simultaneously within
the same timeframe. Consequently, the subsequent modeling
approaches will take this limitation into account.

L7955 I 5 < 1 Yht @7
[}I:f[EVch X I,}:f[EVdisch S 1 Vh7t (28)

The SOE for the ESS and PHEV within each smart home
is represented by the following formulas, which reflect their
respective charging and discharging rates.

SOEESS HEESS znztzal+
¢ ESS. ESS(‘
> [(HE o I ‘h’) — (29)

(HEESSdmph X IESSdmrh)] Vh,t

SOEPHEV HEPHEVznztzal+
t
PHEV,y, PHEV,,
Zl [(HE "X h)— (30)

(HEPHEdesch X IPHEdesch>:| Vh,t

In this context, m represents the time interval index, while
HEy SSynitial gnd EFHEVtal denote the initial values of the
SOE for the ESS and PHEV at the outset of the planning phase
for smart home h. The discharge rates and capacity constraints for
both the ESS and PHEV are articulated through the subsequent
equations.

HEESSM(;L % IESSth < SOEfffl Vh,t > 2 a0
HE;iiLSdmch % Iiifdisch < EfSS,initial Vh,t=1
SOE;® < HE]"" "% vh,t 32)
HE;:ZEVdisch % IfZEVdisch) < SOE,?{{,ElV
Vh,2 <t<t, (33)
(HEifiEVdisch % IffiEVdi“h) < HE}I:HEV,initial
Vh,t=1
HEiiEvdmh % I}i:EVdigch) [SOEPHEV Hngﬁ‘ﬂ 34)
Vh,t > tgr

In this modeling, spanning from to, to tg, the PHEV is
positioned away from the residence and is unable to either charge
or discharge during this period. These timeframes are desllg)nated
by PHEV owners for effective energy management. H EOH v
shows the energy consumption of the PHEV while it is 0ut51de
the home, which varies across different smart homes. The SOE of

the PHEV battery prior to and following its departure from the
residence is represented as follows.

SOEEHEV < HEmaz PHEV

Vhot < to 35)

[SOEPHEV
Vh,t > tr

HE(};EIEX] S HE;naz,PHEV (36)

Where, H E,’:L”’P HEV denotes the peak capacity accessible for
the PHEV at smart home h. It is crucial that the PHEV battery
possesses adequate energy to enable its departure from the home.
Taking into account the energy usage patterns specified by smart
home owners while the PHEV is away, the SOE of the PHEV
battery just before it leaves the residence can be represented as
follows.

PHEV PHEV
HEL i < SOE), 1,71

Vh @7

The energy transfer cycle for each ESS and PHEV need to
occur within specified timeframes. Consequently, the minimum
and maximum rates for both charging and discharging of ESS and
PHEV are represented in the equations below.

HEESS < HEP5n < HEp o0
" tESS ESS Essmax (33)
HE dlbL}L < HE disch < HE disch
ht
HEPIEVE" < gl TeVen < gpf eVt
Vh, ﬁ,HEV,,,‘,, sy, prpvpes (39)
HEht disch <HE ch <HEht
Vh, t

In the architecture of advanced residential environments, the
inclusion of PV systems is an essential factor. The electricity
generated by these systems is harnessed to enhance energy
management within smart homes. The solar energy available at the
PV installation site during various time periods is represented using
a beta probability distribution function, informed by solar radiation
data specific to that location. The mathematical framework of PV
systems is detailed in previous studies [34, 35]. Subsequently,
the expected energy from the PV system is examined, with the
cumulative energy produced in each time segment for each smart
home being modeled in a specified manner.

Pvduch _

HEPVdL.SL}L +HE,

(m}:v,Dc Ac HEPV expected) Vh,t (40)
The formula indicates that the grOJected energy generated by the
solar PV system (H EP Viewpectedy o either consumed within the

smart home (HE), V“““") or transferred to the MG (HEPVd“L”)

where it can be shared among other residences. Furtherrnore n®
signifies the efficiency metric of the PV system.

The equations involved include those for modeling adjustable
household energy demands, BHS, and AC units aimed at regulating
indoor temperatures, as well as equations related to the charging
and discharging processes of ESS, PHEVs, and PV. An essential
consideration in this modeling is the limitation on energy flow
from the MG to smart homes and vice versa. The following
equation specifies the minimum and maximum volumes of energy
that can be exchanged between smart homes and the MG.
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buy buy maxBuy
0< HE"™ x I"Y < HE}™
Vh,t
0< HEfzet” % Iﬁet” < HEZL?:cSell
Vh,t ’ ’

(41)

Here, H E;:tazB “ and HE}'¢"%!" represent the peak quantities
of energy that can be transacted within the time frame t for each
smart home, which must be factored into the modeling based on
the MG’s stipulations. Additionally, various elements that need
to be addressed in the modeling are examined, particularly the
constraints on energy transfer from the main grid to the smart
MG. The subsequent equation delineates the thresholds for the
minimum and maximum energy that can be exchanged between
the smart MG and its upstream counterpart.

Np
0 S Z HEZuty STE;naxBuy,MG XI;naxBuy,]\/IG (42)
h=1 '

vt

Here, TE > PuW-MC denotes the peak quantity of smart MG
energy that can be acquired from the main grid during the specified
time frame t. I"** B*“Y"MS gerves as the binary variable associated
with the procurement of smart MG energy from the main grid; a
value of 1 signifies that energy is indeed being purchased from
this source. It is crucial to recognize in this model that the energy
transmitted from the main grid to the target MG must adhere to a
cap on energy injection. The lack of such a restriction on energy
consumption can lead to numerous technical challenges, such as
the emergence of peak loads or even fluctuations in load density
at various times throughout the day.

3. SIMULATION STUDIES: NUMERICAL RESULTS AND
PERFORMANCE VALIDATIONS

3.1. Input data

The methodology presented in this paper features a sophisticated
MG comprising 500 smart homes, categorized into four unique
types. Each type varies in the quantity of responsive and non-
responsive electrical loads, as well as DERs. Specifically, 20%
of the homes are classified as type 1, 10% as type 2, 40% as
type 3, and 30% as type 4. Table 2 details the RLs available in
each category, considering the comfort of the inhabitants and their
recommended timeframes. This strategy entails a comprehensive
examination of the smart residential MG throughout a 24-hour
period, divided into 96 intervals of 15 minutes each.

The table illustrates that a washing machine is among the
identified RLs. This appliance requires approximately six cycles,
totaling around ninety minutes each day. Its energy usage is
estimated at 1.5 kWh per day, translating to roughly 0.25 kWh per
cycle. Washing machines are commonly found in various smart
home setups, while other responsive devices, like slow cookers,
may only be present in select smart homes.

In this work a table is presented illustrating the timeframes
proposed by homeowners, focusing on the comfort levels of
residents within various types of smart homes, each accompanied
by its unique recommendations. Utilizing GAMS software, the
suggested intervals for each smart home are analyzed to optimize
the timing for every RLs effectively. The time intervals proposed
by the inhabitants of smart homes for the HEM system are
illustrated in the Table 3. It is essential for smart home occupants
to notify the HEM system regarding their usage patterns of the
BHS beforehand. Consequently, as indicated in this table, each
smart home utilizes the BHS with an energy consumption rate of
0.325 kWh per interval throughout every designated period.

The Table 4 illustrates the AC systems and various DERs
evaluated for smart homes. As indicated, not every smart home
incorporates all available DERs. To ensure diversity among these

homes, the table details the inclusion or exclusion of AC systems
and other DERs for each category of smart home.

The Fig. 2 illustrates the count of smart home inhabitants
throughout various intervals on a summer day in a tropical locale.
Based on the modeling developed for the AC system, the quantity
of occupants significantly influences the system’s efficiency in
maintaining the home’s temperature.

15 811141720232629323538414447505356596265687174778083 86899295

Period
o= Home_Typel HomeﬁTypeZcﬂ_ Home_Type3 ==o==Home_Type4

Fig. 2. The number of residents of smart homes.

In the outlined simulation, the energy usage of the AC system
is 0.225 kWh per interval for smart home type 1, 0.25 kWh per
interval for type 2, and 0.275 kWh per interval for type 3. The
variable 075", representing the AC temperature during the time
frame t, is set at 25C. The variable ™79, denoting the fixed
temperature decrease, is established at 10C. Additionally, k,°°™,
reflecting the room’s thermodynamic constant, is uniform at 0.1
across all types. Lastly, 02™ pertains to the external air conditions
surrounding the smart home, as illustrated in the accompanying

figure below.

35
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20
15

10

1 3 5 7 9 11131517 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47
period

Fig. 3. Ambient air temperature outside the smart home.

In the ongoing exploration of AC system simulation, Kpuman
represents the thermal exchange coefficient between individuals
and their surroundings, fixed at 0.005. Meanwhile, n/“7**" denotes
the count of occupants in the room during the previous time
period (t-1). 0}, ,,mar reflects the average human body temperature,
standardized at 37 degrees Celsius. kfﬂlw signifies the cooling
system’s temperature impact factor, set at -0.9, while 69
represents the temperature decrement constant, valued at 2.

The modeling incorporates ESSs and PHEVs within each smart
home, as detailed in the following tables. This analysis assumes
uniformity in the type and capacity of ESS units across all smart
homes, albeit with varying initial charge levels. Additionally, the
minimum charge and discharge rates for both ESSs and PHEVs
are estimated at 26% of their maximum capabilities for each time
interval.

The PV system allocated for each smart home delivers a uniform
capacity of 1000 watts and is constructed from five solar panels,
each producing 200 watts. The n*" panels boast an efficiency
rating of 18.6%, and the space required for installation in every
smart home is 6 square meters. Solar irradiance varies between
22 and 78, influencing the energy yield for all smart homes. The
diagram below depicts the power output generated by the PV
systems in these smart homes.

In the analysis of the examined issue, the inclusion of fixed
loads from smart homes, which do not adjust in response to
demand, is taken into account. The figure illustrating the behavior
of these fixed loads for each category of smart home is presented
in Fig. 5.
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Table 2. Pseudo code for shuffled bat optimization algorithm.

List of smart appliances Energy consumption

Necessary time (h)

Recommended intervals for using smart appliances

kWh/day kWh/period Typel Type2 Type3 Typed
Laundry 1.5kWh/day 0.25kWh/period 1.5 32-96 40-96 50-88 32-96
Dish Washer 1kWh/day 0.25kWh/period 1 76-96 - 80-94 72-88
Clothes dryer 1.4kWh/day 0.35kWh/period 1 - 1-32 - 6-60
Slow cooker 1.2kWh/day 0.2kWh/period 1.5 - 36-50 - 36-76
Microwave 0.8kWh/day 0.2kWh/period 1 64-84 60-96 68-96 -
Robot vacuum cleaner 0.9kWh/day 1.5 0.15kWh/period 1.5 1-96 1-96 1-96 -
Kitchen Hood 0.5kWh/day 0.25kWh/period 0.5 80-96 - 76-96 68-92
Table 3. Suggested periods for smart homes to use the BHS. Table 5. ESS’s information.
Energy consumption  Typel Type2 Type3 Typed I“fg"g?ﬁg“ . Typel Type2 Type3 Typed
0325 KWhida 72-96 60-80 56-96 40-88 HE, ™™ i 0.531 kWh - 0.7965 kWh  1.062 kWh
’ y 6 period 6 period 8 period 10 period HmETaI R 4.25 kWh
HEPSSw | gt ydisen 0.2655 kWh/period
ESSgiien :
Table 4. AC system and DERs for smart homes. HE) "t 0.2655%%26=0.06903 kWh/period
ESSgisch  ,,ESSch
M My, 0.96
Typel Type2 Type3 Typed
AV vV V- s informat
Table 6. PHEV’s information.
PHEV  / v -
ESS -
PV \_/ \/ g \\é Information Typel Type2 Type3 Typed
g pTAEV initial 0.85 kWh  0.425 kWh - 0.425 kWh
Out of home intervals 36-56 28-60 - 32-52
HEFHEY 425kWh 5.1 kWh - 5.95 kWh
02 HE - PHEV 6.8 kWh
s HE, PV ] TP iisen 0.425 KWh/period
HEL BV P EVdisen 0.426%%26=0.1105 kWh/period
Z ol n]}:HEVd”C,,, W:HEV,h 096
0.05 ‘
0 IIII”” ||||III||
14 7101316192225283134374043 464952555861 64677073 76798285889194 =
Period o
Fig. 4. The generated power of the PV system. g
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Fig. 5. Fixed loads curve of smart homes.

The subsequent analysis explores the outcomes of the modeling,
considering the input data.

3.2. Numerical results and performance validation

A key function of the HEM system is to strategically schedule
the efficient functioning of DERs and smart appliances. Table
7 illustrates the ideal timing for utilizing RLs across various
categories of smart homes.

The effective scheduling of the BHS usage, reflecting the
timeframes proposed by smart home proprietors, is outlined in
Table 8. These designated periods are structured to guarantee that
energy expenses are kept to a minimum for smart homes. This
prompts owners to engage the BHS during these advantageous
times. Utilizing IoT technology, smart home systems can seamlessly
relay these optimal timeframes to homeowners, empowering them
to undertake essential measures within the specified intervals to
optimize energy efficiency.

Strategizing the most efficient operation of the AC system
involves considering factors such as ambient temperature, the

(a): Smart home-Type 1

bam
o
o
1 10192837465564 738291
Period
(b): Smart home -Type 2
&=
@]
]

1 917253341495765738189
Period

(c): Smart home -Type 3
Fig. 6. Optimal planning of AC system.

household’s population, and all elements outlined in the AC
system’s model, as illustrated in Fig. 6 for various categories of
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Table 7. Optimum planning of smart home RLs.

Smart home Laundry Dishwasher Clothes dryer Slow cooker Microwave Robot vacuum cleaner Kitchen hood
Typel 75-80 77-80 - - 77-80 91-96 95-96
Type2 75-80 - 24-27 45-50 93-96 24-29 -
Type3 75-80 91-94 - - 93-96 57-62 90-91
Typed 75-80 76-79 57-60 57-62 - - 90-91

Table 8. Optimum planning of BHS.
Typel Type2 Type3 Typed

BHS planning  80,90,91,92,9596  61,62,77,78,79,80  62,63,75,76,77,78,79,80  57,58,60,61,74,75,76,77,79,80

OHome-Typel

BHome-Type2 OHome-Type3 | @Home-Typed

0.6

Period

Fig. 7. Energy interactions between smart homes.

smart homes.

Fig. 7 illustrates the level of energy interactions among smart
homes within the MG for various time intervals. As depicted,
certain periods exhibit no energy transfers between the smart
homes, indicating that, during these times, the smart homes lack
surplus energy to share with others. Conversely, in other intervals,
energy interactions are evident, reflecting the dynamics of energy
trading within the MG. Notably, the total energy consumed by the
homes matches the total energy supplied, highlighting a balanced
system of energy distribution among the smart homes.

BHome -Typel BHome-Type2 BHome -Type3 O Home -Typed

kW

b v . ') ..m 2 ,'
Ww 10 13 I(\ 19 22 25 28 3‘%‘?‘4\?43 46 49 57 55 58 61 Ww 76 79 N&X 91 94

Period

Fig. 8. Energy consumption curve of smart homes.

The energy profile for each smart home, as managed by HEM,
is illustrated in Fig. 8. This illustration reveals that during certain
intervals, energy is transferred among the smart homes because
the energy consumption dips into negative values.

The illustrations in Fig. 9 depict the suitable timeframes
for charging and discharging ESS and PHEV within smart
homes. Based on the parameters analyzed, ESS is excluded from
consideration in home type 2, while PHEV is not factored into
home type 3.

In the illustration depicting the functionality of PHEVs, it is
evident that charging and discharging do not occur while the
vehicles are away from their smart homes. Furthermore, prior to
departing from home, PHEVs must acquire the necessary energy,
which is stored in the EV’s battery, based on the predetermined
strategy established by the HEM system tailored for each smart
household.

The findings indicate that the HEM systems in each smart home
have successfully optimized energy usage in alignment with the
objectives established for smart MGs. It is important to highlight
that the data illustrated in Figs. 5 to 9 and Tables 6 and 7 is
valid under conditions where HEM systems function independently
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Fig. 9. Optimal charging and discharging of ESS and PHEV.

to achieve effective energy management within individual homes.
Specifically, when the control of energy loads and DERs is
managed by HEM, the outcomes depicted in those figures and
tables hold true. However, this study acknowledges that the MG is
currently operating in a disrupted state, with all loads and DERs
being managed by the MGO. Consequently, to enhance the MG’s
resilience and maximize the distribution of available energy, the
MGO aims to allocate resources equitably among all smart homes.

Table 9. Results of smart MG resilience.

MG_ENSEI=NO | 72217 kWh
MG_ENSET=YES 26293 kWh
MG_RI 63.59%
! e WO _El et W_EI Home_Type2 " Home_Typel
e WO_E] e W_E]
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Fig. 10. ENS of smart homes.
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Fig. 11. The percentage of supplied energy.

The examination of electrical energy strategies within a MG
aims to bolster its resilience. When the smart MG becomes
disconnected from the main grid for any reason, the functionality
of DERs in smart homes, combined with the HEM system,
can significantly lower the ENS. As illustrated in Table 9, a
comparison is made between scenarios where smart homes do not
participate in energy interactions (EI=NO) and those where they
do (EI=YES), showcasing the improvement in MG resilience. The
findings reveal that ENS decreases from 7221.7 kWh to 2629.3
kWh, representing a 63.59% enhancement. This underscores the
importance of strategically planning DERs to maximize their
effectiveness within the MG before any disruptions take place.

The information in this table highlights how the sharing of
energy among smart homes allows for the harnessing of surplus
energy from DERs to fulfill the energy needs of other households.
This collaboration boosts the share of energy supplied by MGs. It
is essential to recognize that if there is a disruption in the MG, the
energy management systems of smart homes are managed by the
MGO. All HEM systems are set up to function under the direction
of this operator, focusing on enhancing the resilience of the MG.

The data reflected in the previous table pertains to the durability
of the MG and lacks insights into the effects of energy interaction
during a MG disruption. Fig. 10 depicts the ENS values for
different categories of smart homes over various time frames. It
is evident from this figure that when smart homes are capable of
engaging in energy interactions (W_EI) with one another, their
ENS levels in each period are lower compared to situations where
they cannot interact (WO_EI).

According to Fig. 10, the ENS value reaches zero during certain
periods, regardless of whether energy interactions occur. This
indicates that DERs in smart homes can completely meet their
energy demands. However, in other time frames, an increase in
the ENS value suggests active energy exchanges among the smart
homes. When the MG is isolated from the main grid, all consumers
and DERs fall under the jurisdiction of the MGO. To enhance
resilience and minimize ENS levels, the operator uniformly
manages all DERs across the smart homes. The outcomes of this
enhanced energy management strategy are illustrated in the figure
above.

To facilitate a deeper analysis, Fig. 11 presents a comparison
of the load distribution percentages affected by disruptions in
the MG, examining two cases: one involves energy collaboration
among smart homes, and the other does not. When smart homes
are capable of sharing energy generated by DERs, the MGO
regulates the HEM systems, ensuring an equitable load allocation
to bolster the MG’s resilience. By evaluating these load distribution
percentages over various intervals, it becomes evident that efficient
energy coordination and collaborative sharing among smart homes
can enhance the load distribution for each home during disturbances
within the MG and increase the MG’s resilience.

The data indicates that the percentage of energy supplied

diminishes during specific timeframes, even as energy is exchanged
among smart homes. This phenomenon occurs when the MG
becomes isolated from the main grid, placing all HEM systems
under the control of the MGO. In this state, the operator focuses on
enhancing the MG’s performance to minimize ENS. Consequently,
during these periods, while some smart homes experience a drop
in energy supply, others see an increase, balancing out at a
certain level. Under normal conditions, each HEM system operates
independently; however, in disrupted situations, they collectively
serve the MGO’s goals, primarily aimed at bolstering the MG’s
resilience.

The assessment of energy supply ratios among smart homes with
energy interactions demonstrates particular advantages, depending
on house type. Among the three smart home types—Type 1, Type
2, and Type 3—energy interaction ratios are 1.04, 1.19, and 1.26,
respectively. A ratio of 0.91 represents the energy dynamics of
Type 4 smart homes, as these homes receive little benefit from
these interactions, thus releasing more energy into the system.
Some homes may experience a reduction in ENS, while others may
notice an enhancement of ENS levels. These energy interactions
lead to increased resilience of the MG.

4. CONCLUSION

Strategic energy management at the demand level and active
participation are vital elements for reaching the technical goals
of upcoming distribution networks. This research examines smart
homes that encompass both responsive and non-responsive loads,
including bath-heating systems (BHS), air-conditioning (AC),
plug-in hybrid electric vehicles (PHEVs), energy storage systems
(ESSs), and photovoltaic (PV) installations. Results from the
simulation were thoroughly evaluated based on the implemented
modeling framework using relevant tables and figures. Each result
was carefully analyzed and compared with others. As the microgrid
operator oversees all energy assets alongside smart residences, the
operator ensures the implementation of optimal energy strategies
that utilize available resources from homes. The simulation
findings illustrate that an optimized home energy management
(HEM) framework, coupled with improved energy exchanges,
can substantially lower the Energy Not Supplied (ENS) in a
microgrid (MG) and enhance its overall resilience. In conclusion,
the topology development in this research provides an autonomous
MG system independent of the main grid while focusing on the
resilience requirements of isolated systems and energy management
strategies. By integrating advanced strategies for smart homes and
DERs, the proposed framework not only enhances the resilience
of the energy supply in the face of potential disruptions but also
promotes sustainable practices through the optimized utilization
of DERs. The model results demonstrate that implementing HEM
technology in smart homes alongside energy trade among them in
a smart MG leads to exceptional enhancements in MG resilience.
The implementation of demand-side management (DSM) achieves
a maximum resilience improvement of 63.59%, which reflects its
significant role in enhancing the technical performance of smart
MGs. Empowering communities through innovative solutions will
enable the effective use of local DERs, leading to a more
independent, sustainable energy future. As fully discussed in the
article, the main focus of this study is on how the MG’s resilience
can be improved through energy interactions between smart homes
when the MG becomes disconnected from the main grid for any
reason (natural disasters, physical attacks, cyber-attacks, etc.). The
proposed modeling assumes that if the MG faces a disruption
due to any high-impact, low-probability (HILP) event, its ability
to continue supplying power to smart homes must be assessed.
This assessment focuses on the energy-sharing infrastructure
among smart devices. The impact of HILP disasters on the main
components of the system will be addressed in future studies due
to the large volume of cases examined in this study.
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