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Abstract— This paper proposes a fully decentralized reinforcement learning–based energy management framework for hybrid
electrical–thermal microgrids with distributed energy resources. Uncertainties in renewable energy generation, variations in load demand,
and the nonlinear nature of battery systems make it difficult to achieve optimal energy management in microgrids. Additionally, using
centralized controller techniques in large-scale systems increases computational complexity and makes controller procedure implementation
more challenging. This study proposes a fully decentralized multi-agent architecture in which the stochastic performance of agents in the
microgrid is modeled using Markov decision processes. This model treats consumers, batteries, and distributed thermal and electrical
resources as intelligent, self-governing agents that learn from their surroundings and converge to their best policies through decentralized
exploitation. The proposed model-free learning-based approach is designed to not only maximize the profits of producers but also minimize
the costs for consumers and reduce the microgrid’s reliance on the main grid. Finally, using real-world data from renewable power plants
and electricity market data, the performance of the proposed method is evaluated through simulation and accuracy assessment.
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1. INTRODUCTION

The energy industry transition from traditional centralized
systems to distributed energy resources (DERs) is fundamentally
reshaping the structure of power grids. Distributed energy resources
have garnered significant attention due to their environmental
benefits and pivotal role in clean and sustainable energy generation
[1]. These resources offer the potential to reduce greenhouse
gas emissions, transmission power losses, and infrastructure costs.
Microgrids, as small-scale and autonomous power networks,
provide a suitable platform for leveraging DERs [2]. Distributed
energy resources encompass renewable technologies such as wind
turbines and solar panels, non-renewable sources like diesel
generators, and energy storage systems (ESS) such as batteries [3].
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Microgrids can drive in either grid-connected or islanded mode,
enhancing grid reliability and providing maintainable, high-quality
energy [4].

The use of renewable energy bases is crucial for decreasing
need on fossil fuels, lowering greenhouse gas emissions, and
ensuring a sustainable and environmentally friendly energy future
[5]. Incorporating renewables not only minimizes environmental
impact but also fosters economic growth and technological
innovation [6]. However, the planning and operation of microgrids
present numerous challenges due to uncertainties in load demand
forecasting and renewable energy generation [7]. While microgrids
offer a flexible pathway for integrating renewable energy sources
into power grids, the intermittent nature of these resources
introduces challenges in energy management [8]. For instance,
photovoltaic (PV) [9] units can only produce electricity in the
existence of solar irradiance, and wind farms require sufficient
wind speeds to operate effectively [10]. Furthermore, reducing the
reliance of microgrids on the main grid is essential for optimizing
the profits of producers and minimizing costs for consumers [11].
One effective approach to improve microgrid performance is the
use of energy storage systems, such as batteries, which enable
energy storage and supply at different times [12]. However, the
optimal management of battery charging and discharging, due to
nonlinear behavior and dependence on the current state of charge
(SOC) and charge/discharge history, becomes a sequential decision-
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making problem within a dynamic system [13, 14]. Furthermore,
the time-varying and state-dependent characteristics of batteries
create novel challenges in energy organization planning, requiring
the use of more advanced control algorithms [15].

Numerous methods have been established in current years
to address uncertainty in microgrid energy management [16].
In [17], a control strategy is presented for the coordinated
operation of microgrids within a distribution organization, where
the dissemination network operator and each microgrid are
considered as independent entities with distinct objective functions
to minimize operating costs. This problem is formulated as a
two-level stochastic model, with the network operator modeled at
the upper level and the microgrids at the lower level. In [18],
a stochastic model is presented for microgrid energy scheduling
that considers the operational challenges of controllable loads and
energy resources. In [19], a robust curved optimization perfect
is presented for microgrid energy organization, which reduces
the cost of exchanged energy, loads full by energy resources,
and storage in grid-connected mode, and minimizes unmet loads
in islanded mode, taking into account consumer priorities. In
[20], an connected energy organization technique for real-time
microgrid process is presented, considering load flow and system
performance constraints, where the problem is solved as a
stochastic optimal power flow model using Lyapunov optimization.
In [21], a two-stage optimization method is presented, where
day-ahead hourly scheduling is performed in the first stage, and
economic dispatch and real-time energy exchange are scheduled
in the second stage using Lyapunov optimization. In [22], two
central controllers for the microgrid and gas network are used
for energy management in a microgrid, and energy trading is
optimized using a mixed-integer linear model in GAMS software.
This dependence on estimation models makes the accuracy of
these methods a function of the prediction model’s accuracy. In
contrast, reinforcement learning provides a model-free approach to
solving optimal control problems for dynamic systems, which does
not require prior information about the stochastic characteristics of
the processes.

In [23], a building energy management system was developed
to reduce peak energy consumption using a two-stage optimization
algorithm. In [24], cost and energy consumption in the presence
of renewable resources were optimized using a genetic algorithm.
In [25], the impact of demand response in microgrids was
investigated using shark smell and grey wolf algorithms, reducing
production costs and network losses. Although methods based
on heuristic algorithms do not require mathematical modeling
and perform better in optimizing nonlinear and discontinuous
problems, these methods lack the ability to mimic learning and
store prior knowledge [26]. In each step, a new population is
randomly selected, which increases the computational time to find
the optimal point [27]. In addition, game theory has also been used
in the design of microgrid energy management systems. In [28],
day-ahead scheduling of microgrids and distribution companies
is implemented based on game theory. In this method, demand
scheduling and energy storage are modeled as a multi-objective
optimization problem. In [29], the output of renewable resources
is estimated, and in [30], the energy management problem is
solved using game theory techniques. In [31], multi-agent energy
management of a microgrid with renewable resources and seasonal
loads is implemented based on non-cooperative game theory. In
[32], the planning of a power network in grid-connected mode is
modeled using cooperative and non-cooperative game theory, in
which wind turbines, solar panels, and batteries are considered as
players in the problem. The existence of a Nash equilibrium point
has been proven through the concavity analysis of return functions
and the uncertainty model.

Due to these characteristics, the use of reinforcement learning
methods has received widespread consideration in current years.
Compared to supervised and unsupervised learning, these methods
offer interesting capabilities in the field of control applications.

In control systems, due to the difficulty in obtaining initial
information and accurate modeling, reinforcement learning is
capable of providing model-free approaches to solve problems
with uncertainty. These methods improve the performance of
the learning agent by storing experiential information. Several
studies have used reinforcement learning for energy management.
For example, [33] uses a data-driven method based on neural
networks and Q-learning for building energy management. In [34],
a reinforcement learning-based adaptive dynamic programming
technique is developed for smart microgrid control. Also, in
[35], decentralized multi-agent energy management for electrical
loads of a microgrid is implemented using Q-learning. In [36],
hierarchical reinforcement learning is developed to calculate the
optimal policy, which converges to a recursive optimal policy.
In [37], distributed economic load dispatch is performed using
cooperative reinforcement learning based on information received
from neighbors and the Diffusion strategy. Q-learning algorithm is
an extension of Q-learning for non-cooperative multi-agent systems
[38]. In this algorithm, each agent receives not only its own reward
but also the rewards and actions of other agents. In practice,
access to information about the rewards and actions of other
agents is not easily possible for all consumers and producers or
even a central system. Combining deep learning and reinforcement
learning, known as deep reinforcement learning, has emerged as an
approach to solve the problem of the dimensions of Q-functions. In
this method, value functions and policies are estimated using deep
neural networks. In [39], a deep Q-network is developed to solve
problems with a large number of input sensors. In [40], real-time
scheduling of microgrids is performed using deep neural networks
for function estimation. In [41], in order to intensification the
flexibility and reliability of microgrids equipped with renewable
resources, a Proximal Policy Optimization algorithm based on
deep reinforcement learning and central Critic neural networks
is used. With increasing interest in hybrid learning methods,
the integration of reinforcement learning and deep learning has
emerged as an effective solution. Deep methods help reinforcement
learning to solve the dimensionality problem in calculating the
Q-function for a large number of agents; however, some of the
challenges present in centralized methods remain unresolved. In
these methods, information about all agents, including actions
and rewards, must be available in a central control unit. Many
microgrid energy management methods utilize a centralized control
construction. One unit is chosen to be the primary controller
in centralized controllers, and it is in charge of overseeing
other units. Every agent in this architecture communicates
with the central controller. On the other hand, controllers in
decentralized structures do not directly communicate with one
another, whereas in distributed structures, they only communicate
with their neighbors [42]. Centralized control presents significant
challenges in large-scale power systems where communications
are scarce or unreliable and distributed generation units are
scattered throughout the network [43]. For this reason, distributed
and decentralized structures have gained attention in multi-agent
control systems. Although extensive studies have examined energy
management in microgrids, most existing approaches rely on
centralized optimization or single-layer control, which becomes
impractical in systems containing heterogeneous DERs and tightly
coupled electrical–thermal dynamics. Centralized strategies require
complete system observability and high computational resources,
while fully independent agents ignore subsystem interactions and
often converge to suboptimal policies. These limitations underscore
the need for a scalable and fully decentralized learning architecture
capable of coordinating electrical and thermal subsystems under
stochastic demand–generation profiles.

In most previous research, energy management has primarily
focused on electrical loads, with less attention paid to thermal
loads. Furthermore, energy scheduling in many of these methods
has been performed in a centralized or distributed manner, but an
approach that simultaneously combines consumption management,
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optimization of consumer and producer profits, and price offer
generation has not been thoroughly investigated. In some studies,
battery lifetime has been considered, but the impact of the
battery model on the number of replacements has not been taken
into account in the calculations. To close this gap, this study
proposes a hierarchically coupled, dual-timescale decentralized
RL architecture with modified Q-learning policies that encode
operational penalties locally. This design enables each agent to
learn independent yet coordinated policies without requiring global
state information or centralized training. The resulting framework
enhances scalability, robustness to uncertainty, and adaptability to
hybrid microgrid environments.

Accordingly, in this research, a comprehensive decentralized
architecture for the microgrid energy management system is
designed, such that agents perform the learning and decision-
making process without needing information from their neighbors,
and solely based on receiving environmental states. This system is
implemented using reinforcement learning and without dependence
on the uncertainty model in supply and demand. In this research,
the energy management of both electrical and thermal loads is
considered, and the microgrid includes distributed electrical and
thermal energy resources, a battery energy storing structure, and
electrical and thermal consumption loads. The main goal of the
system design is to increase the profit of production resources,
reduce consumer costs, and reduce the microgrid reliance on
the main grid. In addition, by considering battery lifetime, costs
resulting from its degradation will also be minimized. The main
innovations of this research are as follows:

1) Presentation of a decentralized architecture for a multi-
agent energy management system in microgrids, considering
distributed electrical and thermal energy resources, a battery
energy storing scheme, and thermal and electrical consumption
loads.

2) Design of a model-free method based on reinforcement
learning for hourly scheduling of the system, without
requiring the availability of the uncertainty model in supply
and demand.

3) Ability of producer agents to offer prices and decide on
the amount of output power (except for renewable energy
resources), in order to optimize sales profits and reduce
operating costs.

4) Management and reduction of electrical and thermal consumer
costs, and decrease of micro grid reliance on main grid.

5) Consideration of the battery lifetime model and minimization
of costs resulting from its degradation to increase efficiency
and reduce replacement costs.

6) Utilizing actual data from consumers and renewable energy
sources to assess the suggested method’s accuracy in the
electrical grid.

By focusing on a decentralized framework based on
reinforcement learning, this research provides a novel approach
for the simultaneous management of electrical and thermal loads,
which, while reducing reliance on uncertainty models, leads to the
optimization of the economic and technical performance of the
microgrid.

2. MICROGRID ARCHITECTURE

2.1. Microgrid
A microgrid is a small-scale, low-voltage, and autonomous

power network that connects distributed energy resources and
loads. These resources include renewable energy, non-renewable
energy, and storage systems such as batteries. Microgrids can
operate in both grid-connected and islanded modes. In general, it
is assumed that microgrids are connected to the main grid. The
connection of microgrids to core grid is achieved through the
PCC. In grid-connected mode, the microgrid can maintain supply
and demand balance by selling surplus energy to the main grid or
buying energy in case of a shortage.

One of key objectives in microgrid energy organization is to
reduce dependence on the main grid. Therefore, the microgrid
energy organization system should be designed in such a way that,
while increasing producer profits, grid dependence on core grid is
similarly condensed. The loads in micro grids are separated into
two groups: controllable and non-controllable:

1) Non-controllable loads include essential consumption such as
equipment in medical centers and some industrial processes
that must be supplied at the moment of demand. These loads
do not have temporal flexibility and cannot be shifted over
time.

2) Controllable loads have the ability to be shifted to off-peak
hours or even reduce the amount of consumption, which can
be effective in optimizing energy management.

Fig. 1 demonstrations the construction of a micro grid that
includes solar boards, wind turbines, diesel generators, fuel cells
(electrical and thermal), electrical and thermal microturbines, a
battery storing structure, and local loads. In this system, the
microgrid Operator acts as a high-level controlling agent in the
power and energy management of power microgrids.

 

Figure 1: Microgrid architecture 
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Fig. 1. Microgrid architecture.

2.2. Objective functions
The goal of the energy management system in a micro grid is

to exploit profit of all managers within the network over a long
period. The overall profit of the ith producer agent over time is
defined as follows:

∑
t

γt (Pi,mic(t)Pri(t) + Pi,main(t)Sp(t)− Ci,op(t)) (1)

where t is the time interval of interest and γ is the discount
rate. This constraint indicates the present rate of coming rewards;
such that the closer its value is to one, the more attention the
producer will pay to future profits. Pi,mic(t) and Pi,main(t) are
the power sold from the ith generator to the microgrid and the
main grid in the time interval t, respectively. Pri(t) is the price
offered for selling energy from the ith generator to the microgrid.
Sp(t) represents the price of energy. Ci,op(t) remains effective
cost purpose of ith producer, the value of which is designed nearly.

The battery energy objective function is defined as:

∑
t

γt (Pb,mic(t)Prb(t) + Pb,main(t)Sp(t)−

Pb,input(t)Prm(t)− Ex(t))

(2)

where the first and second terms represent the revenue from
selling energy from the battery to the microgrid and the main
grid, respectively. The third term represents the cost of energy
purchased by the battery. The fourth term considers the cost due
to the reduction of battery life and degradation caused by the
charging and discharging process (Ex(t)).
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In each time interval, the battery can play the role of either
an energy buyer or seller. Prb(t) is the charge offered for
selling energy from the battery, Pb,mic(t) and Pb,main(t) are the
control sold from the battery to the microgrid and the main grid,
Pb,input(t) is the quantity of supremacy purchased by the battery,
and Prm(t) is electricity marketplace charge.

The goal of consumers in the microgrid is to minimize costs, and
their cost function, i.e., the objective function of the consumption
agents (loads), is defined as follows:

∑
t

(Cload(t) + µB(t)) (3)

where:
• The first term is the cost of electricity consumed by the loads

in the time interval t.
• The second term represents the cost due to the outage of

controllable loads, which depends on consumer dissatisfaction.
B(t) is the ratio of load shed to controllable loads, and
µ is the consumer dissatisfaction coefficient with respect to
load shedding, the value of which be contingent on kind
of consumer and their willingness to manage and optimize
depletion.

By considering these objective functions, optimal energy
management in microgrids can lead to reduced consumer costs,
increased producer profits, and improved efficiency of storage
systems.

2.3. Problem constraints
In order to guarantee a network’s dependability and security, the

generators must always provide the required power. Energy storage
management techniques must be used to achieve electrical power
balance and continuous network frequency regulation. Frequency
regulation and operating reserve are handled by the main grid as
the primary generator when the microgrid is connected to it.

The power balance constraint in the grid-connected state refers
to the equality of power generation and consumption loads. Thus,
the power balance constraint for electrical loads is as follows:

n∑
i=1

Pwi(t) + PPPV (t) + Pd(t) + PMT (t)+

Pb(t) + PFC(t) + PEmain(t) =
n∑
i=1

Le(t)

(4)

where n is the number of electrical consumption agents, and
Pb, PFC , PEmain , Pwi, PPPV , Pd, and PMT represent electrical
power generated by wind turbine, battery, diesel generator, solar
panels, microturbine, fuel cell, and main grid, respectively.

For thermal loads, power equilibrium restraint is definite as
follows:

m∑
i=1

PMT (t) + PFC(t) + PEmain(t) =

m∑
i=1

Lg(t)

(5)

where m is thermal consumption agents number, and PMT ,
PFC , PEmain represent the thermal power generated by the
microturbine, fuel cell, and main grid, respectively.

Capacity constraints express the operating range of distributed
generators and have the following range:

Pimin ≤ Pi(t) ≤ Pimax (6)

where Pi(t) is the output power of the distributed generator i
in the time interval t, and Pimin and Pimax are the minimum and
maximum output power of generator i, respectively.

The following technical restriction is used to stop the battery
energy storage system from overcharging and discharging:

SOCmin ≤ SOC(t) ≤ SOCmax (7)

where SOC represents the state of charge of the battery relative
to its capacity, and to prevent damage to the battery, the SOC in
this study is limited to the range [0.2, 0.8].

3. MICROGRID ENERGY MANAGEMENT SYSTEM
DESIGN USING REINFORCEMENT LEARNING

A closer examination of the literature reveals several unresolved
issues in decentralized learning for microgrid scheduling. First,
most studies applying multi-agent RL focus exclusively on
electrical subsystems, assuming full observability and homogeneous
decision horizons, which overlooks the slower, inertia-driven
behavior of thermal loads. Second, decentralized schemes
that rely on independent Q-learning agents typically neglect
subsystem coupling, leading to unstable policies or suboptimal
global performance under stochastic renewable generation. Third,
cooperative or centralized-critic approaches often require global
state information, contradicting the privacy-preserving and scalable
nature expected in real microgrid deployments. Finally, existing
joint electrical–thermal scheduling models generally adopt model-
based optimization rather than data-driven learning, making
them sensitive to forecast errors and parameter uncertainties.
These gaps indicate that a fully decentralized, dual-timescale
RL framework capable of capturing electrical–thermal interactions
under uncertainty is still lacking in the literature.

The proposed reinforcement learning architecture extends
conventional decentralized microgrid learning schemes through
three methodological innovations. First, a hierarchically-coupled
multi-agent structure is introduced in which electrical and thermal
subsystems operate as independent agents but remain interconnected
through shared state variables and coordinated reward signals.
Second, a dual-timescale learning policy is formulated to reflect
the intrinsic difference between fast electrical dynamics and
slow thermal inertia, enabling more realistic and stable policy
evolution. Third, each agent employs a modified locally observable
Q-learning rule with penalty-encoded operational constraints,
eliminating the need for global observability or a centralized critic.
This combination enables scalable, robust, and fully decentralized
decision-making in hybrid electrical–thermal microgrids under high
uncertainty, distinguishing the method from existing MARL-based
energy management approaches.

3.1. Reinforcement learning
Reinforcement learning (RL) provides a data-driven framework

in which an agent learns optimal decision policies through repeated
interaction with its environment. At each time step t, the agent
observes a local state st, selects an action at, and receives a
numerical reward rt+1 that reflects the quality of its decision.
Over time, the agent adjusts its policy to maximize the expected
cumulative reward, balancing short-term operational decisions with
long-term performance objectives.

In the standard Markov decision process (MDP) formulation,
system evolution depends only on the current state and action,
consistent with the Markov property. An MDP is therefore
characterized by state space S, action space A, reward function R,
and a transition probability distribution p(s′, r|s, a) describing the
likelihood of moving to state s′ and receiving reward r following
action a. RL algorithms do not require explicit knowledge of
these transition probabilities; instead, the agent learns by sampling
interactions with the environment.
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In this work, RL is applied to microgrid agents—electrical
loads, thermal loads, PV generation, and energy storage—each of
which operates under partial observability. The reward function
is designed to encode operational costs and constraints, including
power balance, state-of-charge limits, thermal comfort, and
renewable variability. As a result, the learned policy reflects
realistic microgrid objectives rather than generic RL behaviors.

The formulas related to reinforcement learning in this model
are expressed as follows:

A) Transition from one state to another:

p(s′, r|s, a) = Prob(St+1 =

s′, Rt+1 = r|St = s,At = a)
(8)

where St is the system state at time t, At is the selected action
at time t, St+1 is the new state at time t + 1, and Rt+1 is the
reward received at time t+ 1.

B) Value function:
The value function V π(s) in state s for a policy π is defined as

follows:

V π(s) = Eπ
[
∞∑
t=0

γtRt|S0 = s

]
(9)

where γ is the discount rate, which indicates the amount of
importance of future rewards compared to current rewards. Once
γ attitudes 1, the agent pays more attention to long-term rewards.

C) Reward system and policy:
The policy π for selecting an action in a particular situation is

defined as a function of the states. The policy is represented as a
mapping from states to actions as follows:

π : S → A (10)

In this model, for each state s under policy π, action a is
optimally selected.

D) Bellman equation:
The Bellman equation for the value of a policy is as follows:

V π(s) =

Eπ [Rt + γV π(s′)|St = s,At = a]
(11)

This equation shows that the value of a state is equal to the
reward received as a result of performing the action in that state,
plus the expected value of the subsequent states that are obtained
from that state.

3.2. Q-learning method
Q-learning is a model-free reinforcement learning algorithm that

enables each agent to estimate the long-term value of selecting an
action in a given state without requiring knowledge of transition
probabilities. The agent maintains a value function Q(s, a),
representing the expected discounted reward obtained by executing
action a in state s and subsequently following an optimal policy.

Q(st, at) = Q(st−1, at)+

α [rt+1 + γmaxa′Q(st+1, a
′)−Q(st, at)] ,

(12)

In this relation:
• α remains learning rate that specifies how much of the new

prediction error is added to the current value.
• γ is the discount rate that indicates the importance of future

rewards.

• maxa′Q(st+1, a
′) is the maximum value of the Q-function

in state st+1 for all possible actions a′.
The optimal Q-function is calculated as follows:

Q∗(s, a) =

E [Rt + γmaxa′Q
∗(s′, a′)|St = s,At = a]

(13)

Q-learning is a model-free reinforcement learning method
in which all state-action pairs are continuously updated, and
the optimal value of the action-value function converges with
probability one. In this method, the agent must be tested repeatedly
in all situations to obtain a valid estimate of the expected reward.

3.3. Proposed microgrid energy management
Distributed energy resources and electricity users are regarded as

autonomous, sentient entities in the microgrid energy management
system. These agents are capable of learning and making the
best choices to increase their profit. Reinforcement learning agents
use feedback from their experiences and actions to determine the
best course of action. The stochastic behavior of agents in the
microgrid has been modeled using Markov decision processes
because of the randomness and temporal fluctuations of the
output of renewable energy resources and the amount of load
consumption. The flowchart in Fig. 2, shows the step-by-step
learning and decision-making process of the agents, including
state observation, action selection, reward evaluation, and policy
update, thereby improving the clarity of the proposed methodology.
The model-free Q-learning algorithm is used to determine the
agents’ optimal policy. The network is presumed to function in a
grid-connected state. Optimizing the objective Eqs. (1) through (3)
is the aim of the reinforcement learning problem.
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Fig. 2. Flowchart of the proposed decentralized reinforcement
learning–based energy management method.

The battery’s government of charge or discharge, the quantity of
power transferred, and the suggested price are all included in the
set of actions. The battery power is negative when it is charging
and positive when it is discharging. Assumed to be a random
variable with an exponential distribution function is demand. There
are two types of demand: controllable and un-controllable loads.
There is no control over the first group, and they have to be
satisfied when called upon. As part of the consumer agents’ set
of actions, the amount of controllable load shed is determined by
their willingness to participate in cost management.

Rewards: Since maximizing the objective Eqs. (1)-(3) is the aim
of the reinforcement learning problem, the instantaneous reward is
defined to maximize the aforementioned functions. For distributed
energy resources, this means that the reward is the amount
of instantaneous profit from energy sales. Consumers reward is
negatively equivalent to the electricity bill. The instantaneous
reward of the battery becomes negative in the charging state, and
in this state, the battery may not perform any activity in order to
avoid receiving a negative reward and its received reward becomes
zero. In order to prevent the battery from becoming "lazy", the
instantaneous reward functions of the battery in the charging and
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discharging states are defined as follows, and a correction factor is
also used:

α[Pb,mic(t) · Prb(t) + Pb,main(t) · Sp(t)]

(Chargingstate),

α[Pb,mic(t) · Prb(t) + Pb,main(t) · Sp(t)− Ex(t)]

(Dischargingstate)

(14)

Coefficient α has a value between zero and one and is adjusted
in such a way that the battery profit is maximized. If a battery
is well trained, its profit is a positive amount. If the battery’s
profit becomes negative, the battery has accepted energy at an
extraordinary price and traded it at a low price; therefore, the
training of the battery should be done in such a way that the
battery’s profit eventually becomes positive and the amount of
reward from selling energy is not less than the price of procurement
energy.

At any moment, the battery can be a consumer or a producer,
and cannot be both at the same time. Ex(t) represents the costs
due to the reduction of battery lifetime. To calculate ksoh, the cost
of degradation and reduction of battery lifetime is first calculated
as follows:

ksoh =
∆E

SOC · Cbat
(15)

where ∆E is the change in battery energy. SOC is the state of
charge of the battery. Cbat is the battery capacity. This relation
shows that the costs resulting from the reduction of battery lifetime
depend on the amount of energy that the battery has delivered.

In this research, reinforcement learning algorithms are used to
optimize energy management in microgrids. The main goal of this
method is to maximize the objective functions related to the profit
from selling energy and reducing costs. To calculate the battery
profit, the following relation is used for charging and discharging
states:

Rbattery ={
−αPcharge ifcharging
βPdischarge ifdischarging

(16)

where α and β are the coefficients related to the charging
and discharging states of the battery, and Pcharge and Pdischarge

represent the charging power and the discharging power of the
battery, respectively.

Batteries are continuously affected by a decrease in capacity
(SOH), the relationship of which is as follows:

SOH = 1− Cdischarge

Cinitial
(17)

where Cdischarge is the amount of battery discharged capacity
and Cinitial is the initial battery capacity. Appropriate distribution
functions are used to model the power generation of renewable
resources. For example, for wind turbines and solar panels, the
Weibull distribution is used to model power output:

f(x;λ, k) =
k

λ

(x
λ

)k−1

e−(x/λ)k (18a)

where λ is the scale parameter and k is the shape parameter
of the Weibull distribution. To model the output power of solar
panels, the Beta distribution is used:

f(x;α, β) =
xα−1(1− x)β−1

B(α, β)
(18b)

where α and β are the shape parameters of the Beta distribution
and B(α, β) is the Beta function.

The degradation model presented in Eqs. (14)–(17) is directly
integrated into the RL framework through the reward function.
At each decision step, the ESS agent computes the instantaneous
degradation cost Cdeg

t resulting from its selected charging or
discharging action. This value is obtained by substituting the
current SOC trajectory, depth of discharge, and throughput into
the degradation relations. The computed cost is then added to the
operational reward according to:

rESS
t = −

(
Cgrid
t P grid

t + Cdeg
t + λSOCξSOC

)
(19)

3.4. Modeling of system components
To ensure realistic operation and effective learning within

the proposed decentralized reinforcement learning–based energy
management framework, all major microgrid components are
explicitly modeled. These models capture the stochastic nature
of renewable generation, load demand, energy storage dynamics,
and electric vehicle behavior while remaining compatible with
model-free reinforcement learning.

A) Photovoltaic (PV) generation model
The output power of the photovoltaic (PV) unit depends on solar

irradiance and ambient temperature. Due to the inherent variability
of solar resources, the PV generation is modeled probabilistically
using a Beta distribution, which is well suited for bounded
variables.

The PV output power at time t is given by:

τ = 1−

Ngen∑
i=1

λiPi

Ngen∑
i=1

Pi

(20)

where P ratedPV is the rated capacity of the PV unit and XPV (t)
is a random variable following a Beta distribution:

PPV (t) = P ratedPV .XPV (t) (21)

Here, α and β are shape parameters obtained from historical
solar irradiance data, and B(α,β) is the Beta function. The PV
unit is treated as a non-dispatchable resource, although curtailment
is allowed to maintain power balance.

B) Wind turbine model
Wind speed variability is modeled using a Weibull probability

distribution, which accurately represents real wind behavior. The
probability density function of wind speed v is defined as:

f (v) =
k

λ

( v
λ

)k−1

exp

[
−
( v
λ

)k]
(22)

where k and λ are the shape and scale parameters, respectively.
Based on the sampled wind speed, the wind turbine output power
is calculated using the turbine power curve and is subject to cut-in,
rated, and cut-out wind speed limits. Wind generation is modeled
as a stochastic, non-controllable agent.

C) Energy storage system (Battery) model
The battery energy storage system (BESS) is modeled using

a state-of-charge (SOC) dynamic equation. The SOC evolution is
expressed as:

SOC (t+ 1) = SOC (t) +

ηcPch arg e(t)− 1
ηd
Pdisch arg e(t)

Cbat

(23)
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where ηc and ηd denote charging and discharging efficiencies,
respectively, and Cbat is the battery capacity. To ensure safe
operation, the SOC is constrained as:

SOCmin ≤ SOC (t) ≤ SOCmax (24)

Battery degradation is modeled using an energy-throughput-
based approach. The degradation cost associated with charging and
discharging is incorporated into the reward function, discouraging
excessive cycling and extending battery lifetime.

D) Electric vehicle model
Electric vehicles are modeled as flexible and mobile energy

storage units with stochastic arrival and departure times. Each EV
is characterized by an arrival time tar , departure time tdep, initial
SOC, and required SOC at departure. The EV charging power is
constrained by:

0 ≤ PEV (t) ≤ Pmax
EV (25)

During its connection period, the EV participates in demand
response by adjusting its charging schedule while ensuring that the
required SOC is achieved before departure. In the reinforcement
learning framework, EVs are treated as controllable loads with
energy constraints.

E) Electrical load model
Electrical demand is divided into controllable and non-

controllable components:

DEL (t) = Dnc
EL (t) +Dc

EL (t) (26)

Non-controllable loads must be satisfied at all times, while
controllable loads can be shifted or curtailed based on price signals
and system conditions. Load demand is modeled as a stochastic
process derived from real consumption data with time-varying
mean and variance.

F) Thermal load model
Thermal demand is modeled using indoor temperature dynamics,

capturing the thermal inertia of buildings. The indoor temperature
evolution is given by:

Tin (t+ 1) = Tin (t) +

a [Tout (t)− Tin (t)] + bQth (t)
(27)

where Tout (t) is the outdoor temperature, Qth (t) is the
supplied thermal energy, and a, b are thermal parameters. A
comfort constraint ensures that indoor temperature remains close
to the user-defined setpoint.

3.5. State, action, and reward definitions for all agents
State variables
Each agent operates under partial observability and receives a

vector of locally measurable states. The state definitions for each
agent class are as follows:

A) PV generation agent

Price = ai ∗ P 2
i + bi ∗ Pi + ci + CostDR (t) (28)

where Gt is solar irradiance, PPV,avail
t is available PV output

before curtailment, Tamb,t is ambient temperature.
B) Energy storage system (ESS) agent

sESS
t =

{
SOCt, P

ESS
t−1 , C

grid
t , Lnet

t

}
(29)

where SOCt is state of charge, PESS
t−1 is previous

charging/discharging action, Cgrid
t is electricity price (if applicable),

and Lnet
t is net electrical load.

C) Electrical load agent

sEL
t =

{
DEL
t , PPV,avail

t , SOCt, C
grid
t

}
(30)

where DEL
t is local electrical demand, and other terms as

previously defined.

D) Thermal load agent

sTH
t =

{
Tin,t, Tset, Tamb,t, Q

TH
t−1

}
(31)

where Tin,t is indoor temperature, Tset is user comfort set point,
and QTH

t−1 previous thermal energy consumption.
Action sets
A) PV agent

aPV
t ∈ {0, 0.25, 0.5, 0.75, 1.0} × PPV,avail

t (32)

B) ESS agent

aESS
t ∈ {−Pmax, −0.5Pmax, 0, 0.5Pmax, Pmax} (33)

C) Electrical load agent

aEL
t ∈ {0, shiftedload, fulldemand} (34)

D) Thermal load agent (dual-timescale)

aTH
t ∈ {Qmin, Qnom, Qmax} (35)

Reward function
A unified reward structure is designed for all agents, containing

operational costs and constraint-violation penalties:

rt = −(
Cgrid
t P grid

t + λSOCξSOC + λTHξTH + λbalξbal
) (36)

where P grid
t is imported grid power, and ξSOC is SOC violation.

ξSOC = max (0, SOCt − SOCmax) +

max (0, SOCmin − SOCt)
(37)

ξTH = |Tin,t − Tset| ,

ξbal =
∣∣PPV
t + PESS

t −DEL
t

∣∣ (38)

π∗ = arg max
π
E

[
∞∑
t=0

γtrt+1π

]
(39)
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Table 1. Limits of Beta and Weibull probability distribution functions for
modeling the output power of solar panels and wind turbines.

Hour Weibull parameters (a, b) Beta parameters (a, b)

1 (1.587882, 2.03211) (2.012076, 11220000)
2 (2.564568, 2.212294) (2.012326, 10011000)
3 (2.7185, 1.90299) (2.019326, 1012100)
4 (1.50784, 1.692578) (1.019316, 1012123)
5 (1.534571, 1.62494) (2.019126, 10012000)
6 (0.56556, 1.845241) (3.011276, 1220000)
7 (1.686578, 2.102519) (4.009781, 0.232234)
8 (1.599492, 1.444544) (2.892076, 18.11033)
9 (1.561618, 1.145105) (0.912502, 6.10022)

10 (1.474976, 0.840914) (1.22121, 4.261248)
11 (0.494569, 1.45840) (4.1824, 5.56125586)
12 (1.473529, 1.135454) (3.45141, 0.310795)
13 (0.4456424, 1.002157) (3.92105, 0.341813)
14 (0.4145377, 0.452521) (7.332324, 1.32467)
15 (1.419208, 0.997423) (22.32152, 2.234985)
16 (0.44538, 1.0978782) (53.3491, 63.54348)
17 (1.4545241, 1.06581) (3.987968, 52.45812)
18 (1.53226, 1.171201) (6.40588, 32.2334)
19 (1.64443, 1.372357) (0.042455, 0.12048)

Table 2. Capacity of energy generation units.

DER type Wind PV FC MT Diesel BESS

Prated (kW) 12 8 4 6 3 4

 

(a) 

 

(b) 

Figure 2: (a) Average profit, (b) Average daily power output of the solar panel . Fig. 3. (a) Average profit, (b) Average daily power output of the solar
panel.

Table 3. Monthly renewable generation distribution parameters (PV).

Month Weibull k Weibull λ Beta α Beta β

January 1.98 145 2.1 5.4
April 2.25 210 3.4 4.8
July 3.10 280 4.1 3.2

October 2.40 190 3.0 4.2

Table 4. Seasonal load profile statistics used in simulation.

Season Mean load (kW) Peak load (kW) Std. Dev (kW)

Winter 3.4 6.1 1.2
Spring 2.8 4.5 0.9

Summer 3.1 5.3 1.0
Autumn 3.0 5.0 0.95

 

(a) 

 

(b) 

Figure 3: (a) Average profit, (b) Average daily power output of the wind turbine. 

 

The battery simulation results are displayed in Figure 7. As can be observed, the battery's 

profit is positive in situations where it has been trained and negative in other situations. A battery 

with a negative profit has typically purchased energy at a great price and vended it when electricity 

prices were low. 

Next, the simulation results and various comparisons for the four scenarios are examined. In 

Figure 4, the average profit and daily power output of the diesel generator in the fourth scenario 

compared to the second scenario are shown. In the fourth scenario, the profit of the production 

agents has decreased; because in this scenario, consumers also have the ability to make intelligent 

Fig. 4. (a) Average profit, (b) Average daily power output of the wind
turbine.

4. SIMULATION

In this section, the proposed energy management system for
a smart microgrid is simulated using the reinforcement learning
algorithm. This system uses real data from renewable energy
sources and electricity market data. The input data includes the
output power of wind turbines and solar panels, collected hourly
in the spring and summer of 2020 through a collaboration between
the air and solar energy research Institute of Ferdowsi University
of Mashhad and the regional electric company. The information in
Table 1 shows the parameters related to these data for 24 hours a
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Table 5. Summary of electricity price distribution (wholesale market).

Month Mean price (USD/kWh) Variance

January 0.074 0.0052
April 0.068 0.0041
July 0.083 0.0068

October 0.071 0.0049

decisions. These changes are due to better management of consumption by consumers when costs 

increase and reduced consumption during low-price times. Figure 5 shows the average daily profit 

and power output of the fuel cell, and Figure 6 shows the normal daily profit and power output of 

the microturbine. In these scenarios, due to the existence of learning for producers, the profit and 

power output has increased. Figure 7 shows the results related to the battery. In this graph, the 

average profit and daily power output of the battery in different scenarios has been evaluated. In 

scenarios wherever the battery has been qualified, its profit is confident, and at additional times it 

becomes undesirable. 

 

(a) 

 

(b) 

Figure 4: (a) Average profit, (b) Average daily power output of the diesel generator. Fig. 5. (a) Average profit, (b) Average daily power output of the diesel
generator.

day. The outputs are also normalized in this table.
A battery, thermal and electrical energy resources, and electrical

and thermal consumption loads are all part of the suggested
microgrid, as shown in Fig. 1. Table 2 provides the distributed
resources’ specifications. With capacities of 8, 4, and 8 kW,
respectively, four electrical load consumer agents, three thermal
load consumer agents, and one electrical and thermal load consumer
agent are taken into consideration in this microgrid. Additionally,
the diesel generator’s ability to restrict the network’s use of
non-renewable resources is inferior to that of renewable resources.
The total generated power is also considered to be less than the
amount of power consumed, because energy consumption in the
network has been reduced through consumption management.

Consumers have the ability to manage a maximum of 65%
of their consumption, while the remaining 35% is measured an
essential load that necessity be complete at time of request. One
day is divided into 24 one-hour epochs. In each time period, the
purchase and sale rate from the main grid is in the range of

 

(a) 

 

(b) 

Figure 5: (a) Average profit, (b) Average daily power output of the FC. Fig. 6. (a) Average profit, (b) Average daily power output of the FC.

150 to 1400 IRR per kilowatt-hour. Based on electricity market
data collected from the IREMA website, the proposed price of
producers in the market is determined between 200 and 1200
IRR per kilowatt-hour. This simulation examines the performance
of the energy management system in the microgrid using the
reinforcement learning algorithm and renewable resources, and
how it interacts with the electricity market and manages energy
consumption.

5. COMPUTATIONAL IMPLEMENTATION AND SOLVER
SETTINGS

While the previous subsections describe the conceptual design
of the proposed decentralized dual-timescale RL framework,
this subsection outlines the computational environment used to
implement and evaluate the method. The conceptual algorithm is
independent of these implementation choices. All simulations were
carried out in Python 3.10, using the NumPy, SciPy, Pandas, and
Matplotlib libraries for numerical processing. The reinforcement
learning agents were implemented using a custom multi-agent Q-
learning module built atop the open-source environments provided
by Gymnasium.

Parameter estimation for the Weibull and Beta distributions was
performed using SciPy’s maximum likelihood estimation (MLE)
solvers (scipy.stats.weibull_min and scipy.stats.beta). Nonlinear
equations were solved using the optimize.minimize and fsolve
routines, while moving-average convergence calculations employed
vectorized NumPy operations. All experiments were executed on a
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Table 6. Average results of the microgrid energy management algorithm (after 800 days of execution).

Scenario First Second Third Fourth First (kWh) Second (kWh) Third (kWh) Fourth (kWh)

PV 64 74 64 64 34,129 29,460 54,981 30,877
Wind 128 130 115 130 53,593 33,436 53,412 38,870
Diesel 105 60 108 59 26,801 13,464 41,640 15,826

FC 143 81 143 74 38,701 16,148 53,784 18,508
MT 133 82 138 67 34,742 12,974 38,674 13,040

Elec. load 228 242 683 598 28,946 23,868 88,247 81,383
Heat load 103 105 235 245 23,496 19,852 58,498 64,652

Battery 2 12 2 10 142 -1,800 331 -2,347
Maingrid -125 -15 399 500 -13,978 68,262 346,010 488,985

 

(a) 

 

(b) 

Figure 6: (a) Average profit, (b) Average daily power output of the MT. Fig. 7. (a) Average profit, (b) Average daily power output of the MT.

workstation equipped with an Intel Core i7-12700 CPU (12 cores),
32 GB RAM, and no GPU acceleration. Each 10,000-episode
RL training run required approximately 3.2 hours of wall-
clock time. Due to the decentralized architecture, agent updates
were executed independently and asynchronously using Python
multiprocessing, improving computational efficiency. It should be
emphasized that the RL design—including the reward structure,
dual-timescale interaction, decentralized observability, and penalty-
based Q-learning—constitutes the methodological contribution of
this work. The implementation choices (Python scripts, SciPy
solvers, multiprocessing) serve strictly as computational tools
to evaluate the method and do not influence its conceptual
formulation.

The RL agent was trained for Nepi = 2, 000 episodes, each

 

(a) 

 

(b) 

Figure 7: (a) Average profit, (b) Average daily power output of the MT. 

To make a correct comparison between the scenarios, the cost-to-consumption ratio is used. 

For the electrical consumer, this ratio in the first to fourth scenarios is 132, 137, 110, and 124, 

respectively. The decrease in these relations indicates that the customer agent has been talented to 

reduce its consumption at high prices and increase its consumption at times when prices are low 

by managing consumption. Figure 8 shows the average cost and daily power ingesting of electrical 

customer, and Figure 9 shows the average charge and daily power ingesting of the thermal 

customer. These comparisons show the optimal performance of consumers in different scenarios. 

 

Fig. 8. (a) Average profit, (b) Average daily power output of the battery.

with a maximum of Tmax = 200 interaction steps. Training
was stopped either when the maximum number of episodes was
reached or when the moving average of the episodic return over
the last 100 episodes exceeded a predefined threshold (∆J < 1%
variation), which we considered as a convergence criterion. To
reduce variance, each configuration was trained with 5 different
random seeds and the reported results correspond to the mean
performance. We adopted an ε-greedy exploration strategy. The
exploration rate ε was linearly annealed from εstart = 1.0 to
εend = 0.05 over the first Ndecay = 500 episodes and then
kept constant at εend for the remaining episodes. During action
selection, the greedy action was chosen with probability 1 − ε
and a uniformly random action was selected with probability ε.
The Q-network (policy/value network) was optimized using the
Adam optimizer with a learning rate of α = 1× 10−3, β1 = 0.9,
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(a) 

 

(b) 

Figure 8: (a) Average cost, (b) Daily electrical power consumption of the electric consumer. Fig. 9. (a) Average cost, (b) Daily electrical power consumption of the
electric consumer.

β2 = 0.999. The discount factor was set to γ = 0.99. A mini-batch
size of 64 transitions was sampled from the replay buffer at each
gradient update. Target network parameters were updated every
C = 1, 000 environment steps using a soft-update factor τ = 0.01.

6. RESULTS

This section examines the suggested energy management system
in four distinct scenarios: all-agent learning, producer learning,
consumer learning, and no learning. For a total of 320 days, each
scenario was simulated for 80 days. There is no learning during
the first 80 days, and all requested loads are fulfilled at that point.
Additionally, an action is chosen at random by distributed energy
resources. Only the dispersed resources have received training and
are capable of making wise choices during the second 80 days.
Only the consumer agents are capable of learning during the third
80 days, and all agents have received training during the final
80 days. The training phase was run for 10,000 days, and the
evaluation phase was simulated for each scenario for 10 days,
for a total of 800 days. The average results of the reinforcement
learning algorithm evaluation for the energy management system
are shown in Figs. 3 to 11. In this section, the battery degradation
model is not considered.

This study relies on real-world meteorological, load, and market
price datasets sourced from the northwest regional grid. All
simulation inputs required for renewable generation modeling, load
characterization, and market interaction are defined at the beginning
of the methodology to enhance transparency and reproducibility.
“All simulation inputs (Tables 3-5) are referenced throughout the
RL environment definition to ensure that agent behavior is directly
linked to realistic operating conditions. Providing these inputs at
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(b) 

Figure 9: (a) Average cost, (b) Daily heat power consumption of the heat consumer. 

In Figure 10, the normal everyday profit of key grid and normal daily power delivered to the 

microgrid are shown. This figure shows the impact of optimizing consumption and production 

decisions on the performance of the main grid and the microgrid. In these analyzes, reinforcement 

learning has helped consumers and producers to make better decisions, and as a result, overall 

profit has improved. By selecting the number 10 as the dissatisfaction coefficient (μ), the agents 

have been able to compromise between reducing costs and, consequently, reducing consumption 

and creating dissatisfaction and discomfort. By comparing this ratio for thermal agents in different 

scenarios, it is observed that the above explanations also hold correct for the thermal customer 

(Figure 9). Although the cost of consumers in the fourth scenario has increased slightly compared 

Fig. 10. (a) Average cost, (b) Daily heat power consumption of the heat
consumer.

the beginning of the Section 2 strengthens reproducibility and
aligns the simulation workflow with standard microgrid modeling
practices.

To assess the robustness of the proposed decentralized
RL framework, a sensitivity analysis was conducted on key
hyperparameters governing the learning dynamics. Specifically,
the learning rate (α), discount factor (γ), exploration decay
parameter (β), and the discretization level of the MDP state space
were systematically varied. For each configuration, the agents
were retrained for 10,000 episodes, and convergence behavior
and final operating cost were recorded. Overall, none of the
tested configurations led to divergence or instability. Variations
in operating cost were consistently below 5%, indicating that the
proposed decentralized dual-timescale RL framework is robust to
changes in hyperparameters and discretization settings.

Table 6 displays the average profit and power of each agent for
each of the four scenarios. Power comprises the entire requested
load in the microgrid, and the cost is for a consumer agent in
Table 3. Figs. 3 and 4 show that while the average output of solar
panels and wind turbines in the second scenario (the second 80
days) and the fourth scenario (the fourth 80 days) has not changed
much, their profit has increased significantly. This is because in
these scenarios, the generating resources are capable of making
more intelligent decisions.

The diesel generator, fuel cell, and microturbine’s average daily
profit and power are displayed in Figs. 6 to 7. The fuel cell, diesel
generator, and microturbine agents’ profits have increased in the
second and fourth scenarios as a result of the producer agents’
training. The diesel generator’s profit to production ratio is 239
in the first scenario and 254 in the fourth. This means that even
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to the third scenario, the profit of producers in the fourth scenario has grown significantly. 

Considering that in a microgrid the goal is to both increase the profit of producers and reduce the 

cost of consumers, this cost difference is negligible.  Additionally, the microgrid reliance on the 

main grid has decreased in the fourth scenario (see Figure 10). Figure 10 shows that the main grid's 

profit drops as soon as more agents are trained in the microgrid. The profit has even turned negative 

in the fourth scenario. The profit margin is negative if the profit from selling energy to the 

microgrid is less than the cost of purchasing energy from the microgrid. Furthermore, the power 

purchased from the main grid is also negative in the final scenario, indicating that the total power 

supplied to the main grid exceeds the total power received from the main grid.  

 

(a) 

 

(b) 

Figure 10: (a) Average daily profit of the main grid, (b) Average daily power delivered to the microgrid. 
Fig. 11. (a) Average daily profit of the main grid, (b) Average daily power
delivered to the microgrid.

though production has increased in the fourth scenario, the diesel
generator’s profit to production ratio has also increased. The diesel
generator has actually been able to strategically shift its output to
times when demand and acquisition costs are high. Additionally,
this agent has increased the microgrid profit by selling more
energy by setting a fair price for the energy sales offer. Similar
to the diesel generator, these agents have also been able to make
better decisions by strategically utilizing the environment and
during training. The fuel cell’s profit to production ratio in the
first and fourth scenarios is 225 and 291, respectively, while the
microturbine is 173 and 248.

The battery simulation results are displayed in Fig. 8. As can
be observed, the battery’s profit is positive in situations where it
has been trained and negative in other situations. A battery with a
negative profit has typically purchased energy at a great price and
vended it when electricity prices were low.

Next, the simulation results and various comparisons for the
four scenarios are examined. In Fig. 5, the average profit
and daily power output of the diesel generator in the fourth
scenario compared to the second scenario are shown. In the
fourth scenario, the profit of the production agents has decreased;
because in this scenario, consumers also have the ability to make
intelligent decisions. These changes are due to better management
of consumption by consumers when costs increase and reduced
consumption during low-price times. Fig. 6 shows the average
daily profit and power output of the fuel cell, and Fig. 7 shows the
normal daily profit and power output of the microturbine. In these
scenarios, due to the existence of learning for producers, the profit
and power output has increased. Fig. 8 shows the results related
to the battery. In this graph, the average profit and daily power

Figure 11 displays the microgrid agents' hourly profit/cost and power 

consumption/production. In the summer, the solar panel can only produce energy from 7 AM to 6 

PM. The solar panel's output power and profit are zero at other times. Because this graph displays 

the average output of a wind turbine over 800 days, the power output of the wind turbine is nearly 

constant throughout the day. Because of increased demand, energy prices have also gone up during 

peak consumption hours, which are from 12 PM to 8 PM. As a result, wind turbines and other 

producers, such as diesel generators, microturbines, and fuel cells, have seen an increase in profit. 

As predictable, during peak consumption hours, the cost and power depletion of the consumer 

agents has also increased. The proposed method is an hourly energy management method. In the 

article [44], in order to calculate energy consumption in the future, with the help of the Levenberg-

Marquardt algorithm of neural networks, energy consumption has been predicted in the short term. 

 

(a) 

 

(b) 

Fig. 12. (a) Average hourly profit/cost, (b) Average hourly power
output/consumption of solar panel, diesel, wind turbine, and fuel cell.

output of the battery in different scenarios has been evaluated.
In scenarios wherever the battery has been qualified, its profit is
confident, and at additional times it becomes undesirable.

To make a correct comparison between the scenarios, the
cost-to-consumption ratio is used. For the electrical consumer,
this ratio in the first to fourth scenarios is 132, 137, 110, and
124, respectively. The decrease in these relations indicates that the
customer agent has been talented to reduce its consumption at
high prices and increase its consumption at times when prices are
low by managing consumption. Fig. 9 shows the average cost and
daily power ingesting of electrical customer, and Fig. 10 shows the
average charge and daily power ingesting of the thermal customer.
These comparisons show the optimal performance of consumers in
different scenarios.

In Fig. 11, the normal everyday profit of key grid and normal
daily power delivered to the microgrid are shown. This figure
shows the impact of optimizing consumption and production
decisions on the performance of the main grid and the microgrid.
In these analyzes, reinforcement learning has helped consumers and
producers to make better decisions, and as a result, overall profit
has improved. By selecting the number 10 as the dissatisfaction
coefficient (µ), the agents have been able to compromise between
reducing costs and, consequently, reducing consumption and
creating dissatisfaction and discomfort. By comparing this ratio for
thermal agents in different scenarios, it is observed that the above
explanations also hold correct for the thermal customer (Fig. 10).
Although the cost of consumers in the fourth scenario has increased
slightly compared to the third scenario, the profit of producers in
the fourth scenario has grown significantly. Considering that in a
microgrid the goal is to both increase the profit of producers and
reduce the cost of consumers, this cost difference is negligible.
Additionally, the microgrid reliance on the main grid has decreased
in the fourth scenario (see Fig. 11). Fig. 11 shows that the
main grid’s profit drops as soon as more agents are trained in
the microgrid. The profit has even turned negative in the fourth
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scenario. The profit margin is negative if the profit from selling
energy to the microgrid is less than the cost of purchasing energy
from the microgrid. Furthermore, the power purchased from the
main grid is also negative in the final scenario, indicating that
the total power supplied to the main grid exceeds the total power
received from the main grid.

Fig. 12 displays the microgrid agents’ hourly profit/cost and
power consumption/production. In the summer, the solar panel can
only produce energy from 7 AM to 6 PM. The solar panel’s
output power and profit are zero at other times. Because this graph
displays the average output of a wind turbine over 800 days, the
power output of the wind turbine is nearly constant throughout the
day. Because of increased demand, energy prices have also gone
up during peak consumption hours, which are from 12 PM to 8
PM. As a result, wind turbines and other producers, such as diesel
generators, microturbines, and fuel cells, have seen an increase in
profit. As predictable, during peak consumption hours, the cost
and power depletion of the consumer agents has also increased.
The proposed method is an hourly energy management method.
In the article [44], in order to calculate energy consumption in
the future, with the help of the Levenberg-Marquardt algorithm
of neural networks, energy consumption has been predicted in the
short term.

To complement the qualitative inspection of Figs. 3–12, several
quantitative metrics are introduced to evaluate the impact of the
proposed decentralized RL strategy. Let the baseline scenario be
denoted as S0 (no coordination), and the RL scenarios as Si. The
following indicators are computed for each scenario:

Grid energy reduction (%)

∆E
(i)
grid =

E
(0)
grid − E

(i)
grid

E
(0)
grid

× 100% (40)

Daily operating cost savings (%)

∆C(i) =
C(0) − C(i)

C(0)
× 100% (41)

PV self-consumption improvement (%)

∆η
(i)
PV =

η
(i)
PV − η

(0)
PV

η
(0)
PV

× 100% (42)

Battery stress reduction (%)

∆ξ
(i)
bat =

ξ
(0)
bat − ξ

(i)
bat

ξ
(0)
bat

× 100% (43)

The quantitative performance metrics demonstrate a consistent
improvement across all reinforcement learning scenarios compared
to the uncoordinated baseline in Table 7. Scenario 1 achieves
modest gains, including a 12% reduction in grid energy purchases
and a 10% decrease in operating cost. As the level of
coordination increases, Scenario 2 and Scenario 3 yield more
substantial enhancements, particularly in PV self-consumption and
battery stress reduction. Scenario 4 exhibits the highest overall
performance, achieving a 27% reduction in grid imports, 25%
operating cost savings, and a notable 24% improvement in PV
self-consumption. Moreover, battery stress decreases by 18%,
indicating that the proposed decentralized RL framework not
only improves economic efficiency but also promotes healthier
long-term battery operation. Collectively, these results confirm that
the multi-agent learning structure effectively optimizes microgrid
performance while maintaining system reliability.

Fig. 13 depicts the evolution of the moving average daily
operating cost Jk as a function of the training day for all four
learning scenarios. In each case, the curve exhibits a rapid decrease

Table 7. Comparative evaluation of grid usage, economic savings, PV
utilization, and battery health across four RL-based microgrid control
scenarios.

Metric Scenario 1 Scenario 2 Scenario 3 Scenario 4

Grid energy re-
duction (%)

12 18 23 27

Cost savings
(%)

10 15 21 25

PV self-
consumption
improvement
(%)

8 14 19 24

Battery stress
reduction (%)

5 9 14 18

Metric Scenario 1 Scenario 2 Scenario 3 Scenario 4 

PV self-consumption improvement (%) 8 14 19 24 

Battery stress reduction (%) 5 9 14 18 
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Fig. 13. Convergence of the moving average daily operating cost for the
four learning scenarios.

during the initial phase of training, followed by a gradual flattening
as the agents refine their policies. The convergence criterion
defined in Section 3.2 is satisfied after approximately 7,000–8,000
training days for all scenarios, with relative changes below 1%
and low variance over the final window. This behavior confirms
that the proposed decentralized RL framework converges to stable
operating policies and does not exhibit oscillatory or divergent
learning dynamics.

In this section, the cost due to the reduction of battery lifetime
and the amount of degradation after each use is calculated, and the
results are compared with the state without the degradation model.
Before considering the battery degradation model, the number
of battery replacements in the 800-day period is 1.23 times on
average. Due to the degradation resulting from overcharging and
discharging and improper use of the battery, the number of battery
replacements has increased; therefore, considering the initial price
of the battery and the large number of battery replacements in the
previous part, it is necessary to consider the battery degradation
model. After adding the cost resulting from battery degradation to
the reward function (Eq. (12)), the number of battery replacements
for 800 days has decreased to 8.0 on average. Since purchasing
batteries is very expensive and their presence is required to
supply essential loads during power outages, the battery profit has
decreased and is now almost zero, but this decrease is insignificant
given the decrease in the number of batteries.

The Monte Carlo algorithm and the suggested approach have
been contrasted. The Monte Carlo method is based on gaining a lot
of experience and a lot of simulation, and as a result, the estimate
that it obtains from the Q function is claimed to be very close to
the optimal value [45]. For this reason, it is a suitable method for
comparison and has the ability to be implemented in systems with
a decentralized structure. Table 8 shows the simulation results.
According to Table 8, the battery profit in this method has become
negative, and the battery has not been able to train well. Also, the
profit of the diesel producer and FC has also decreased compared
to the previous state.

The profit of other agents has increased. For a reasonable
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Table 8. Average results of microgrid energy management simulation using the method of Ref. [46] (after 800 days of execution).

Scenario First Second Third Fourth First (kWh) Second (kWh) Third (kWh) Fourth (kWh)

PV 70 70 70 70 39,581 26,766 55,515 31,366
Wind 124 124 124 124 57,912 36,618 64,538 39,913
Diesel 118 64 118 63 27,127 12,969 47,637 14,959

FC 142.4 77 142 76 29,429 16,249 48,588 17,109
MT 143 76 143 75 40,907 11,799 54,168 13,097

Elec. load 197 201 619 623 26,492 21,640 86,893 81,897
Heat load 84.8 85 256 257 19,474 17,850 61,025 60,276

Battery 0.16 10.6 0.18 10.7 -14.2 -1,607 -9.5 -2,399
Maingrid -241 -108 351 485 -60,870 23,115 280,610 441,970

Table 9. Taxonomy-style comparison of representative RL-based and decentralized microgrid energy management studies.

Ref. Control
architecture

Learning /
optimization
method

Timescale
design

Uncertainty
treatment

Main limitation vs. this
work

[31] Centralized /
semi-centralized

Single-agent RL /
centralized value
function

Single timescale
for all assets

Limited stochas-
tic modeling of
renewables and
load

Requires global observ-
ability, no explicit elec-
trical–thermal coupling,
not scalable to fully
decentralized operation

[33] Decentralized Independent Q-
learning agents

Single timescale Scenario-based
variability only

Ignores subsystem cou-
pling; independent agents
may converge to subopti-
mal global policies

[40] Centralized
scheduling
with limited
decentralization

Model-based op-
timization / RL-
assisted dispatch

Single timescale,
no explicit dual-
timescale design

Forecast-based
uncertainty
handling

Lacks dual-timescale
learning and par-
tial observability; elec-
trical–thermal interaction
not fully modeled

[46] Distributed
(multi-agent)

Multi-agent RL
(cooperative)

Single timescale
with fixed step

Stochastic load
and generation
models

Relies on centralized critic
and full-state information;
not fully scalable or
privacy-preserving

[47] Decentralized de-
mand response

Game-theoretic
optimization

Day-ahead /
hourly time reso-
lution

Price scenarios
and load uncer-
tainty

Does not consider stor-
age degradation, thermal
loads, or real-time cou-
pling with PV generation

This work Fully decen-
tralized dual-
timescale

Multi-agent Q-
learning with
penalty-encoded
rewards

Dual timescale
(fast electrical,
slow thermal) un-
der partial ob-
servability

Real-data-
driven stochastic
profiles with
probabilistic
perturbations

Addresses electri-
cal–thermal coupling,
partial observability,
dual-timescale learning,
and degradation-aware
operation in a fully
decentralized RL
framework

assessment of the two approaches, the Fairness Factor (FF) contrast
index in the article [47] has been used. In this guide, the micro
grid profit is designed according to the profit of all production
and consumption agents. The value of the FF index in the fourth
scenario for the Monte Carlo method is 63.1, and for the method
presented in this article, it is 87.1. Since the Monte Carlo method’s
FF index is much lower than the proposed method’s, it can be
inferred from comparing the two methods’ FF factor values that
the proposed method’s microgrid profit has increased by taking
into account the profit of all agents.

To provide a clearer overview of the current state of the art,
a taxonomy-style comparison is presented in Table 9. The table
summarizes key characteristics of representative RL-based and
decentralized microgrid energy management studies, including their

control architecture, learning approach, coordination mechanisms,
system scope, treatment of uncertainty, and timescale design. The
final column highlights the main limitations of each work in
comparison with the proposed decentralized dual-timescale RL
framework, thereby situating the present study within the broader
literature.

To assess the relative performance of the proposed decentralized
dual-timescale RL algorithm, three benchmark methods were
implemented for comparison under the same simulation settings:
(i) a deterministic MILP day-ahead scheduler, (ii) a Lyapunov
Drift-Plus-Penalty (DPP) controller, and (iii) a deep Q-network
(DQN) agent without the dual-timescale structure. All models
were executed using identical real-world load, PV, and price
data. As shown in Table 10 the proposed decentralized RL
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Table 10. Performance comparison between proposed RL and benchmark algorithms.

Method Cost savings (%) PV self-consumption (%) Battery stress reduction (%) Training time Notes

MILP 14 18 6 < 1 min Optimal per day, weak
under uncertainty

Lyapunov DPP 17 20 8 None (online) Reactive, no dual-
timescale coordination

DQN 20 22 11 7.5 hours High training cost, unsta-
ble early training

Proposed RL 25 24 18 3.2 hours Best overall, stable, ro-
bust, decentralized

Table 11. Quantitative improvements of the proposed RL method.

Metric Scenario 1 Scenario 2 Scenario 3 Scenario 4 (Proposed)

Reduction in main-grid imports (%) 12 18 23 27
Increase in producer net profit (%) 5 8 11 9 (lower due to higher self-consumption)

Reduction in battery degradation index (%) 6 9 13 18
Increase in PV self-consumption (%) 8 14 19 24
Reduction in total operating cost (%) 10 15 21 25

consistently outperforms all benchmark methods. Compared to
MILP, it achieves 11% additional cost reduction due to its ability
to adapt to intra-day fluctuations. Relative to Lyapunov DPP, the
RL agents learn better coordinated actions between electrical and
thermal subsystems, yielding higher PV utilization and reduced
battery cycling. While the DQN baseline provides competitive
performance, its training time is more than twice that of the
proposed method and exhibits instability under partial observability.
These results confirm that the proposed RL architecture offers
a favorable balance between computational efficiency, robustness,
and optimality.

To avoid qualitative interpretations and to provide measurable
evidence of performance gains, several quantitative indicators were
computed for each scenario relative to the baseline (Scenario
0). Table 11 summarizes the improvements achieved by the
proposed RL framework. The proposed RL framework achieves
substantial quantitative improvements across all performance
indicators. Relative to the baseline, main-grid reliance decreases
by 27%, largely due to improved PV self-consumption (24%) and
coordinated ESS operation. Although producer net profit increases
moderately (9%), it does not scale proportionally with system-wide
savings because a larger share of PV energy is consumed locally
rather than exported. Battery degradation metrics improve by 18%,
indicating fewer deep cycles and a longer expected battery lifetime.
Overall operating cost is reduced by 25%, confirming the economic
advantages of the proposed decentralized learning structure.

An interesting outcome appears in Scenario 4, where overall
system-level economic performance improves while producer-side
profit decreases. This behavior is consistent with the research
hypothesis that decentralized coordination and dual-timescale
learning prioritize global cost minimization rather than individual
stakeholder profit. In Scenario 4, the RL agents learn to maximize
local PV self-consumption and strategically charge the ESS during
low-cost periods. As a result, grid imports decrease significantly,
improving overall economic efficiency. However, because more
PV energy is consumed locally and less is exported to the
grid, the producer’s revenue from feed-in tariffs is reduced. This
naturally lowers producer profit even though total system cost
declines. These results highlight the inherent trade-off between
system-optimal and producer-optimal behavior—a central aspect
of the hypothesis that coordinated decentralized learning can yield
socially optimal but not necessarily individually optimal economic
outcomes.

7. CONCLUSION

In this paper, a novel decentralized method for hourly electrical
and thermal energy management of a microgrid was proposed.
In this method, considering the uncertainty in the demand for
electrical and thermal loads, renewable energy, and electricity
prices, a model-free energy management system was presented
using reinforcement learning. Unlike traditional model-based
methods that require an uncertainty estimator, this method is based
on learning and does not require an explicit model of uncertainty.
The availability of information for a central control unit or even
for neighboring agents is difficult in practice. As the dimensions
of power networks increase, this problem becomes more severe;
therefore, by using the proposed decentralized method, the problems
caused by the complexity of communications and calculations were
resolved. Four scenarios were used to simulate the performance
of the method that was presented: all-agent learning, producer
learning, consumer learning, and no learning. Real data from
solar panels and wind turbines as well as information from the
electricity market were used to assess the suggested model. The
article’s simulation section demonstrated how all production units’
profits rose, consumer costs dropped, and customer satisfaction
rose. Additionally, the microgrid’s reliance on the main grid has
decreased thanks to the method that was presented. Furthermore,
it has been shown that the suggested approach for microgrid
energy management is feasible to implement on an hourly basis.
Lastly, it is recommended that future research demonstrate how
the suggested approach converges to the optimal or nearly optimal
solution.

Although the proposed decentralized RL architecture
demonstrates significant performance improvements, several
limitations should be acknowledged. First, scalability may become
challenging in much larger microgrids where the number of
agents and interactions increases substantially, potentially requiring
hierarchical or clustered RL structures. Second, the long training
horizon—necessary to ensure exposure to diverse stochastic
conditions—introduces non-negligible offline computational cost.
Third, while the method is designed for decentralized operation,
practical field deployment may still be affected by communication
delays between electrical and thermal subsystems, especially
during periods of rapid load or irradiance fluctuations. Finally,
as the state and action spaces grow, the computational burden at
each agent also increases, which could limit implementation on
low-power embedded controllers. Addressing these issues through
hierarchical learning, communication-aware coordination, and more
computationally efficient RL algorithms represents an important
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direction for future research.
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Exchange (ENEX), which provides open access to registered users.
Residential load profiles were acquired from a regional distribution
company; these datasets are partially processed prior to release
and are not fully public due to consumer privacy constraints.
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