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Abstract-Recently due to technical, economical, and environmental reasons, penetration of renewable energy resources 

has increased in the power systems. On the other hand, the utilization of these resources in remote areas and capable 

regions as isolated microgrids has several advantages. In this paper, a hybrid microgrid, which includes photovoltaic 

(PV)/wind/energy storage, is investigated. It has been located in Iran-Khalkhal. The purposes of this study are optimal 

energy management and sizing of the microgrid. Since the magnitude of the harvested renewable energy deals severely 

and complexly with season and climate issues, planning of the system based on their specific values is an 

oversimplification. Therefore, in addition to conventional constraints such as environmental and operational ones, 

estimation of the wind speed at the site is considered. The Monte Carlo method is employed to model and estimate wind 

behavior. Also, for regulating production and demand in the microgrid the Demand Response (DR) program is 

conducted to improve the contribution of the renewable energy resources. The planning is constructed as an 

optimization problem. It is formulated as a Mixed Integer Linear Programming (MILP). By solving it, the size and 

production magnitude of energy sources, as well as storage conditions, are determined. Finally, the proposed method is 

simulated by GAMS for all seasons of two scenarios. The results show desirable energy management and cost reduction 

in the studied grid. 

Keyword: Demand Response, Hybrid Microgrid, Monte Carlo method, Mixed integer linear programming, Wind speed 

model.  

 

1. INTRODUCTION 

All life on earth depends in some way upon energy. The 

energy demand is increasing rapidly across the world. 

Today, it comes from renewable and non-renewable 

resources. Fossil fuels, as a part of non-renewable 

resources, seriously affect the environment. Also, it 

needs money for extraction from the ground, processing, 

and transportation to the end-user. Besides, the shortage 

of these resources has raised their prices. Also, there is a 

significant shortage of power supply in remote areas 

such as rural and island areas [1]. Therefore, the world 

needs some significant energy production modifications. 

The previously mentioned challenges lead the decision-

makers to think about a small-scale and decentralized 

group of electricity sources named HMGS. These can 

operate independently from power grids and provide 

electricity to a remote location. HMGS, including WT 

and PV, is an excellent solution for electrification while 

ensuring high reliability [2]. Furthermore, ESS is 

utilized as a system backup for compensating the 

intermittency and variability of RES. The first step 

design of HMGS is an investigation of the 

meteorological conditions to extract maximum wind and 

solar energy. The meteorological data, like wind speed 

and solar radiation, are dependent on weather conditions 

and geographical characterization. Therefore, weather 

forecasts are necessary to establish the optimal planning 

of MG systems. In Ref. [3], a general overview of the 

meteorological data effects on MGs was provided. This 

paper focused on the implementation of weather 

forecasts in MG energy management systems. As 

mentioned in this paper, a desirable test period is one 

year or at least three or four days with different 

meteorological situations. In Ref. [4], the forecasted 

meteorological impacts on fuel consumption and energy 

storage requirement were investigated. 

Numerous methods have been stated to overcome the 

challenges of wind speed forecasting. These methods 

utilized statistics, machine learning, and the majority of 

those are data-driven. For instance, in Ref. [5] 

multilayer feed-forward neural network (MLFFNN), 

support vector regression with a radial basis function 

(SVR-RBF), adaptive neuro-fuzzy inference system 
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optimized with a partial swarm optimization algorithm 

(ANFIS-PSO) are discussed to predict wind speed. In 

Ref. [6], a combination of mutual information, wavelet 

transform, evolutionary PSO, and the adaptive neuro-

fuzzy inference system for wind power forecasting has 

been presented. Other methods that have been discussed 

are based on the use of polynomial autoregression [7], 

and Gaussian processes (GP) with PSO [8], and kernel 

modeled Gaussian processes with a fuzzy driven 

multiplexer [9]. But these methods are very complicated 

and time-consuming, especially when the number of 

input variables is large. The area available for MG 

installations is another constraint for the optimal design 

of MG. We term it Available Space constraint. 

Determination of the maximum capacity of the HMGS 

is necessary for the optimal design of the HMGS. It is 

limited by the load demand on the site, the primary 

investment, and the available area [10-11]. 

Therefore, the area used by PV and WT must be 

considered. The maximum harvesting and management 

of RES are the next step in the planning of the MG 

system. Researchers have done many studies to 

minimize the energy production costs and optimal 

planning of hybrid MG systems. The optimum eco-

emission operation of MG, including thermal and 

electrical energy, through a bi-objective optimization 

model, has been investigated [12]. The fuzzy epsilon 

decision is employed for converting a bi-objective 

function to a single objective function. In Ref. [13], the 

generation cost and pollutant emission have been 

considered as objective functions. A recently developed 

Crow Search Algorithm (CSA) has been implemented to 

execute the optimization. The authors have compared 

the obtained results by several different soft computing 

techniques such as GA and PSO algorithms. In Ref. 

[14], a mathematical model has been proposed for the 

MG generation cost function. The load has been 

considered to be variable and unpredictable. To reduce 

costs, an economic strategy based on forecasting has 

been proposed by using the neural network. Besides, 

optimal load distribution has been calculated by 

economic analysis [15].  

An overview of advanced methods for modeling the 

uncertainty in the distribution network design has been 

conducted [16]. In Ref. [17], operational cost and 

environmental pollution are formulated as the objective 

functions. The Multi-Objective Group Search 

Optimization algorithm solved the energy management 

problem. Forecasted values of uncertain parameters are 

utilized to generate a two-dimensional conditional PDF 

using a copula. In Ref. [18], the social spider optimizer 

has been presented for determining the optimal size of 

MGs. The energy cost has been considered as an 

objective function. In Ref. [19], energy and power 

autonomy, payback period, and capital costs aim to be a 

multi-objective function. Azimuth angle, converter 

ratings, capital investment, and electricity tariff have 

been chosen as variables. A two-stage stochastic MILP 

method has been applied for determining the optimal 

size of MGs [20]. The economic benefits and resilience 

performance has been considered as the objectives. In 

Ref. [21], a nonlinear optimization method has been 

presented to investigate the battery size to support a 

grid-connected and standalone grid. Also, in Ref. [22], 

Mixed-Integer Nonlinear Programming (MINLP) has 

been proposed for planning MGs. The probability 

density functions of load and output power of MGs have 

been integrated into the model. 

Recently, Demand Response (DR) programs are 

suggested for energy efficiency enhancement and 

operation cost reduction of the MGs. Various projects 

have been carried out to solve the optimal energy 

management of MGs with demand response. In Ref. 

[23], capacity sizing and operation scheduling of 

isolated MG, considering demand response, have been 

evaluated. Dynamic pricing has been considered for 

improving the flexibility of the system. A direct load 

control DRP has been proposed in Ref. [24] for 

satisfying the reliability index in MGs. In Ref. [25], 

minimization of the diesel generator fuel consumption 

has been considered as an objective function. To 

overcome this challenge DR plan has been presented. 

As aforementioned, due to the intermittent property 

of RES, generated power in MGs depends on weather 

and climate conditions. This fact causes an increasing 

complexity of the consumption-generation balance 

problem. ESS could reduce the uncertainties nature of 

RES by storing and releasing the energy. Hence, 

Optimal scheduling of the ESSs and RESs is one way to 

reduce the cost and uncertainty of MGs. A complete 

review of the issues related to energy storage systems in 

active networks has been provided in Ref. [26]. The 

location, measurement, economic, social effects, energy 

security, planning, and implementation of energy 

storage resources in the main networks have been 

investigated. The sizing and placement of battery power 

systems and wind turbines to reduce cost and loss are 

presented [27]. In Ref. [28], the location and daily 

charge/discharge of ESS are investigated in the active 

distribution networks with integrated PV systems. The 

results show that the over-voltage and energy losses are 

reduced by using the storage. Also, environmental 

pollution is decreased, and economic profitability is 

increased. In Ref. [29], different ESS has been 
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considered and the operation of the proposed system in 

combination with electrical and thermal demand-

response programs and the three-mode CAES (TM-

CAES) unit has been evaluated. 

The load supply is the main priority of the system, 

even under any circumstances. In this paper, a reliable 

HMGS is proposed to electrify a remote area. Regarding 

the potential of this region for wind and solar power 

harvesting, the proposed MG includes the WT/ PV/ 

ESS. For this aim, wind speed data, which have been 

collected for 10 years, are utilized. Monte Carlo 

statistical strategy with autocorrelation is used to 

estimate wind speed. Also, this method is compared 

with the Weibull probability density function. The 

objective of the optimization is total cost-minimizing 

with satisfying the constraints. Besides the conventional 

constraints such as environmental and operational ones, 

other new constraints such as the available budget and 

available area constraints are considered.  

 Four days of the year (one day per season) are 

considered to investigate the seasonal effects. Also, the 

load shifting DRP is implemented in MG operation. 

Finally, the number of optimum PV panels, WTs, and 

ESS are determined. The proposed MG can supply the 

remote area load by renewable sources without the 

diesel generator for the whole year. In other words, the 

proposed MG is environment friendly. The main 

contributions of this paper can be summarized as follow. 

1. The studied system is an environment-friendly 

isolated HMGS, including PV/wind/ESS, which is 

design for a remote area at Khalkhal-Iran. 

2. The seasonal weather information of Khalkhal is 

used as a case study for evaluating the distribution 

of wind speed and output power of solar irradiance. 

3. Wind speed distribution and solar radiation are 

estimated by Monte Carlo simulation. It is based on 

the past metrological data and considering 

autocorrelation effects. 

4. MILP model is presented for optimal scheduling 

considering technical and economic ties to find the 

component size and energy management.  

5. The demand response program is applied in HMGS. 

Its effects are investigated on operation cost, charge 

and discharge of the ESS, and renewable source 

efficiency. 

This paper is structured as follows. Wind speed 

estimation is presented in section 2. Section 3 and 4 give 

the construction of HMGS and optimization problem 

formulation. In sections 5 and 6, the input data model 

and MILP optimization results are presented and 

discussed. 

2. THE STATISTICAL METHOD FOE WIND 

SPEED ESTIMATION AND SOLAR RADIATION 

2.1. MC simulation for Wind speed  

Many researchers have discovered that wind speed is 

the most critical parameter of wind power. Therefore, an 

appropriate determination of the wind speed distribution 

function is an essential parameter to measure before 

measuring the wind-harvested energy. Researchers have 

suggested numerous probability density functions 

(PDF). One of the most frequently utilized distribution 

is the Weibull distribution [30]. The Weibull distribution 

can be presented as follow: 

( )1( ) exp

A
A

A

A v
p v v

kk

−
    

= −           

(1) 

where v is the wind speed, A is the shape factor (unit 

of speed), and k is the dimensionless scale parameter. 

As aforementioned, the wind speed has an 

intermittent nature and changes annually and seasonally. 

Hence, using statistical methods to simulate the wind 

speed should be more effective than the Weibull 

method. In Weibull results, each estimated value is 

independent of all other values, and the autocorrelation 

of data is not considered. MC method and the statistical 

characteristics of wind speed like autocorrelation are 

assumed to obtain an appropriate model in this paper. 

The advantage of this method is its simplicity and 

generality. It can be used in each site with the past 

meteorological data of wind speed [31]. For estimation 

of wind distribution by MC, the following steps have 

been considered: 

1. Past wind speed data acquisition of the site. 

2. Calculation of Autocorrelation for 12 months of 

wind speed data. Fig. 1 shows one sample of the 

autocorrelation in July in the mentioned site. 

3. Finding the repeating patterns in wind data and 

autocorrelation becomes non-influential for lag d. 

The smallest lag, under 0.02, is determined as the 

lag where the autocorrelation becomes none 

influential. 

4. Regrouping wind speed data’s at the site into D-day 

blocks. Therefore, instead of simulation wind speed 

data independently, correlated wind speed data will 

be simulated.  

5. Each year is divided into (365/D) blocks. 

6. N years of actual wind data for the intended site are 

considered. 

7. Scenarios are obtained by sampling from the 

corresponding blocks in the previous N years. 

8. Each of the 365/D blocks is sampled from the 

corresponding blocks in the past N years for L (at 

least 1000) times, within a year. The sampling is 
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performed with equal probability equation (1 / N). 

9. Finally, we have matrices with L in 52560 (365 × 

24 × 60) dimensions, in which the correlation of the 

N years data are maintained. 

Fig. 2 and 3 show the MC and Weibull simulation 

versus real data at the site. The probability density of the 

MC simulation presents an excellent fit to real data. 

Also the neuro-fuzzy simulation, machine learning 

method, has been used to compare the results in Fig. 4. 

In the Weibull and neuro-fuzzy simulation curve, a 

slight deviation at the top is more than the MC 

simulation. The benefits of MC are the speed of 

response and accuracy of using real data and the 

correlation between data. This method is based on real 

wind data. As the meteorological data is measured as 

data with a specific period and is discrete, the estimation 

fluctuations increase with measurement frequency 

increasing. As the number of data increases, these 

fluctuations will be decreased. MC simulation shows the 

marginal pdf of the simulated samples gives a good 

match to the pdf of the observed data. The benefits of 

MC are fast response and accuracy. The reasonable 

estimate estimation of the MC method is due to 

correlated data. The statistical properties of the MC, 

Weibull and neuro-fuzzy method are calculated and 

summarized in Table 1. The results validate that the MC 

wind speed simulation is in good agreement with the 

observed data. 

 
Fig. 1. The autocorrelation of wind data in July 

 
Fig. 2. The Monte Carlo simulation result 

Table 1. The statistical results 

 Mean[m/s] Median [m/s] Std [m/s] 

Weibull simulation 8.50 7.73 5.09 

Monte Carlo simulation 8.51 8.00 4.99 

Neuro-fuzzy simulation 8.57 8.15 4.94 

Measured wind speed 8.53 8.04 4.98 

Table 2. The statistical results 

 Mean[m/s] Median [m/s] Std [m/s] 

The Monte Carlo 

simulation 
267.059 83 314.125 

Measured solar 
radiation 

267.19 84 314.188 

 
Fig. 3.  The Weibull simulation results 

 
Fig. 4.  The Neuro-fuzzy simulation results 

 
Fig. 5. The Monte Carlo simulation result for solar radiation 

 
Fig. 6. The Schematic of the hybrid MG 

2.2. MC simulation for Solar radiation 

The modeling, simulation, and analysis of PV is an 

essential phase before mount PV system at any location. 

The operating properties and performance of PV 

systems are unpredictable due to the solar radiation 

variation. Therefore in this section the statistical method 

for solar radiation considering weather variability is 

proposed based on the MC simulation. The model uses 

the statistical characteristics of solar radiation like 

autocorrelation to obtain an appropriate model. The 

simulation process is similar to wind speed simulation. 

The simulation results in Fig. 5 and Table 2 show that 

the proposed model provides accurate model. 

3. THE MODEL OF HMGS 

The HMGS consists of the production and consumer 

subsystems. In this configuration, PV panels and WTs 
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are used for generating energy, as production 

subsystems, and ESS (battery). If the generation of a 

hybrid system is not enough to satisfy the load, the 

power stored in batteries discharged to meet the total 

energy. The schematic configuration of MG is shown in 

Fig. 6. It is a low-voltage distribution network to supply 

220 V, 50 Hz, AC electricity. Each part of the grid is 

explained with details in the continuation. 

3.1. PV panels 

The extractive power of PV is dependent on the solar 

radiant intensity, panel area, cell temperature, and 

absorption capacity, which is calculated as following 

[32-34]: 

[1 (( (0.0256 )) )]pv out N pv t amb ref

ref

G
P P K T G T

G
− −=   + +  −  (2) 

where Ppv-out (kW) is the output power of PV, Gref is 

reference radiation equal to 1000 W/m2, Tref is 25 

centigrade, PN-pv is rated power under reference 

conditions, G is solar radiation (W/m2), Kt is the 

temperature coefficient of the PV panel which 

considered -3.7×10-3(1/°C) and Tamb is the ambient 

temperature. 

3.2. Wind generation 

The aerodynamic characteristics of WT, such as wind 

speed, specify the output power of WT. A linearized 

equation of WT power is as following [35]: 

- -
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where, v is the wind speed at turbine hub altitude, vr 

nominal speed, vcut-in, and vcut-out are cut-in and cut-out 

speeds.  

3.3. Energy storage 

In hybrid energy systems, energy storage devices store 

energy during high generation and low consumption and 

provide energy during low generation and high 

consumption. The battery capacity is calculated by the 

following equation: 

 
batt

inv bat

load average
S

dod  
=

 
 

(4) 

where dod is the depth of charge, ƞinv is invertor 

efficiency, and ƞbat is battery efficiency. Therefore the 

maximum charge quantity of the battery bank (Ebat.max) 

takes the value of battery capacity (Sbatt) and the 

minimum charge quantity of the battery bank (Ebat.min) 

are obtained as following [36]: 

 
(5) 

.min (1 )bat battE S dod=  −
 (6) 

4. OPTIMIZATION PROBLEM FORMULATION 

The planning, integration, and operation of HMGS are 

complicated because of the higher cost and stochastic 

nature. Therefore, it is essential to determine the proper 

sizes of HMGS and connected ESS for effective, 

economical, and secure operation. The mathematical 

formulation is discussed in this section. 

4.1. Objective function 

The short-term scheduling problem of MG is expressed 

as a MILP. The objective function comprised capital 

cost (a cost incited on the buying of land, structure, and 

facilities at the start of the project) and the cost related 

to operating and maintaining (the annual cost). The 

Capital Recovery Factor (CRF) is used to convert the 

capital cost to the annual capital cost. In this regard, the 

objective function is as follows: 

.cos MG tMinimizing F  (7) 

.cos . .cosF K K
MG t NET P tF N=

 
(8) 

. .cos .cos ( , )Annual capital t capital tF F CRF i n= 
 

(9) 
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n

n

i i
CRF

i

+
=

+ −  

(12) 

where N is the decision variable consists of the values 

of the size, and the power output of the components of 

MG (WTs, PVs, and ESSs) over a 24h time interval. 

FMG.cost is the total cost of the kth component, Fcapital.cost 

is the capital cost of the kth component, FOP.cost is the 

operation cost of the kth component, FMI.cost is the 

maintenance cost of the kth component, Fannual.capital.cost 

is the annual capital cost of the kth component, and 

FNET.P.cost is the net present cost of the kth component. i 

is the real interest rate, and n is the system life period. It 

is usually equivalent to the life of the PV panel, because 

of its long life expectancy as compared to other 

components of HMGS. 

4.2. Constraints 

The following constraints must be considered to solve 

the optimization problem. 

• Kirchhoff law or system power balance: 

The generated power and consumption power should be 

equal for the stable power system.  

( ) ( ) ( ) ( ) ( ) ( ) ( )WT WT PV PV d load cN t P t N t P t P t P t P t +  + = +  (13) 

where NWT(t), NPV(t) are the number of WTs, and the 

number of PVs, respectively. PWT(t) and PPV(t) are the 

rated power of WT, and PVs. Pc(t) and Pd(t) are the 

charge and discharge power, and Pload (t) is the load 

power. 

.maxbat battE S=
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• Energy storage constraints: 

The constraints of ESS are considered as follows:  

( ) ( 1) ( ) ( ) /c c d dSOC t SOC t P t P t = − + −  (14) 

where SOC(t) and SOC(t-1) are the ESS state of 

charge (SOC) at the times t and t-1, respectively. ƞc is 

the charging efficiency and ƞd is the discharging 

efficiency.  

The initial SOC, the constraints of charge and 

discharge are as follow: 

(0) maxSOC SOC Eb b= 
 (15) 

( ) maxSOC t N Eb b= 
 (16) 

( ) minSOC t N Eb b= 
 (17) 

where SOCb is 0.2, and Ebmax is the maximum 

capacity of ESS. SOC(0) is the initial state of charge. Nb 

is the number of ESS. Eqns. (18)-(19) prevent the 

synchronous charge and discharge of the ESS: 

( ) ( )P t M ieec tc    (18) 

( ) ( )P t M ieed td    (19) 

 ( ) ( ) 1     0,1ieec t ieed t ieec and ieed+  
 (20) 

M is the large positive number; ieec and ieed are the 

charge and discharge status of ESS at the time t, 

respectively. 

• Economic constraints: 

Cost limitation of PV panels, WTs, and energy storage 

is considered, which the installation cost of components 

should not exceed assuming maximum available budget: 

. . . . . .capital cost pv PV capital cost b b capital cost WT WT bgf N f N f N C +  +    
(21) 

Cbg is the maximum available budget. 

• Land availability constraints: 

Land availability estimations are important in assuming 

the boundaries to the development of WT and PV. 

Therefore, these constraints are considered: 

maxwind bN A A 
 (22) 

maxPV bN S S 
 (23) 

where Ab and Sb are the base ground area, Amax and 

Smax are the available area for WT and PV, respectively. 

• Capacity constraints of MGs: 

min

PVN , 
max

PVN , 
min

WTN , and 
max

WTN  are the minimum and 

maximum number of the WTs and PVs. These can be 

calculated as follow. α, β, γ, and λ are scaling factors. 
24
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(25) 

4.3.  Load shifting demand response program (LS-

DRP) 

Demand Response programs are the group of methods 

for reducing or shifting electricity consumption at the 

demand side. Generally, it can be defined as the method 

for improvement of the energy system at the side of 

consumption. The goal of LS-DRP is to minimize the 

peak load and move them to off-peak hours. As a result, 

the load profile will be flat and causes lower total 

operating costs. This demand elasticity (E) is 

corresponded to electricity price (EP) and defined as: 























=

EP

P

P

EP
E L

L0

0

 

(26) 

where 0EP  and 0LP  are primary electricity price and 

load demand respectively. EP  and LP  demonstrate 

the variation in electricity price and load demand from 

their primary values respectively. Inflexible loads 

cannot shift their request from one period to another 

with the price variation. They are sensitive to a single 

period only and are named as self-elasticity. Moreover, 

some flexible loads that can change from peak hours to 

low load periods having sensitivity to multi-period can 

be defined as cross flexibility. To consider the DR the 

following equation is attached to the model stated in 

Section 4.1, as 

)()()()( tDRtDRtDtP doup
refLoad −+=

 
(27) 

where Dref is demand submitted by the load at the 

time t without demand response; DRup demand increase 

of load at the time t due to demand response, DRdo 

demand decrease of load at the time t due to demand 

response.  

 
Fig. 7. Generalization of the proposed method 
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Fig. 8. Daily load profile 

 
Fig. 9. Power supplied by the panels 

 
Fig. 10. Mean wind power generation 

Table 3.  MG utilized components 

Wind 

VCUT-IN 2.5 m/s 
VCUT-OUT 13 m/s 

Cint-wind 3200$/unit 

vr 9.5 m/s 
Pr 5 kw 

CCWind 3200 $/unit 
&wind windOP MI  100 $/year 

Life span 20 years 

Available area for wind 80 m2 

PV 
PV

NP  1 kw 

&PV PVOP MI  5 $/year 

pvCC  1800$/unit 

Life span 25 year 

PV  0.85 

Available area for PV 1.7 

Cint-pv 1800$/unit 
Budget available 5000000$ 

inv  0.95 

i (interest rate) 0.06 

Battery 

Voltage 12v 

maxbE  70 kwh 

minbE  13.2 kwh 

batt  85% 

batCC  130$/unit 

Life span 5 years 

dod 0.8 

0soc  13.2kwh 

&bat batOP MI  5 $/year 

Cint-bat 130$/unit 

5. CASE STUDY 

The general structure of the proposed method is 

summarized as a flowchart in Fig. 7. Weather and 

geographical data of Khalkhal are applied to study the 

scheduling of HMGS. Khalkhal is located in the 

northwest of Iran and extends on the geographical 

coordinates of 37°37′08″N 48°31′33″E. 

Khalkhal is in one of the coldest areas in Iran. Essential 

meteorology data of Khalkhal are presented in Refs. 

[37-38]. Four days of a year (one day per season), which 

correspond to the conditions of wind speed and solar 

radiation in their season, are investigated to obtain the 

amount of power produced in these seasons. Fig. 8 

shows the hourly load profile with 5 kW peak load. The 

grid supplies 15 households. Techno-economical 

features of HMGS are tabulated in Table. 3. Fig. 9 and 

10 show the PV output power and WT power generation 

in different seasons in the mentioned site.  

6. RESULTS AND DISCUSSION 

The power management strategy for HMGS is 

performed by GAMS software and the MILP method. 

The objective function is the cost-minimizing to achieve 

the most suitable configuration of the system and the 

continuous electrification. The solution deals with the 

optimum size of the grid components. By considering 

the maximum and minimum number of MGs, which 

stated in the previous section, the minimum number of 

WT and PV have resulted in 10 and 50, and the 

maximum number are 65 and 170, respectively. To 

emphasize on the budget and available area constraints 

effects on MG size optimization, also to evaluate MG 

scheduling with DR, 3 different scenarios are simulated.  

Scenario1: Cost minimization without considering 

the budget and available space constraints. 

Scenario2: Cost minimization by considering all 

constraints. 

Scenario3: Cost minimization by considering all 

constraints and demand response. 

One sample day in each season of the year is 

considered for seasonality variability of wind speed and 

solar radiation. In this short-term planning problem, 

because of choosing four days, which represent four 

seasons in a year, there is no continuity between days. 

So, energy interchange between ESS and the load-

generation system must be settled in each day. The 

results show that MILP provides optimum wind, PV, 

and ESS ratings. The obtained results and associated 

costs are presented in Tables 4 and 5. The optimization 

results for the sample days are shown in Figs. 11 to 18. 
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Table 4. Optimal component size and total cost for scenario 1 

scenario 1 

 Spring Summer Fall Winter 

Number of WT 10 20 65 15 

Number of PV 55 153 170 140 

ESS 2 2 2 2 

Cost (×103$) 1022.795 1065.678 1079.790 1053.253 

 
Fig. 11. Generation and consumption power in Sci. 1 for spring 

 
Fig. 12. Generation and consumption power in Sci. 1 for summer 

Fig. 11 shows the power profiles during the spring 

season, where 10 WTs, 55 solar panels, and 2 ESS are 

installed. During this season, the wind speed is very 

high (more than 12 m/s). Also, it exists during the night, 

when the PV system does not generate electricity. 

Thereby, The PV provides up to 20 % of the total 

requested energy. WT provides a significant portion of 

the total energy demand. The ESS provides 10 % of the 

total energy at night. ESS is charged during the day 

when the wind turbine generates power more than the 

demand and is discharged at night, when the wind speed 

is lower. Fig. 12 shows the power profiles during the 

summer season. The length of the night and day are 

approximately the same in summer and spring, but the 

wind speed conditions in this season are not favorable, 

as shown in Fig. 10 So, the number of WTs is increased 

to 20. WTs produce 55% of the total energy. 

Nevertheless, summer radiation is the most favorable 

weather conditions. Days are long, and PV panels 

produce 35% of total energy. Thereby, 2 ESS units are 

used to store energy during the day and discharge during 

the night. 

Fig. 13 shows the results of the fall season. During 

the fall season, the optimization solution recommends 

that using 65 WTs, 170 panels, and 2 ESS units. Due to 

the low energy generation of PVs during cloudy days in 

the fall, the number of recommended WTs is the highest 

for this season. Wind power produces 53% of the total 

generation. Also, besides, days start getting smaller, and 

PVs produce 40 % of the generation. 7 % of total energy 

is consumed by charging ESS during the day that PV 

and wind generate power. Also, discharging happens at 

night when PV does not provide power. Fig. 14 shows 

that during the winter season, 15 WTs are sufficient for 

satisfying load consumption. Moreover, 140 PV panels 

must be installed. ESS units compensate for low PV 

production similar to the fall, but wind generation is 

more than the generation of fall. It is essential to 

mention that the budget and area constraints have not 

been considered for the results, which are achieved so 

far. 

In the following, the results of scenario 2, which 

includes comprehensive constraints, are presented. 

MILP yields component size and related costs for this 

scenario, which are given in Table 5. According to these 

results, Figs. 15 to 18 show the energy balance of MG 

for all seasons. In terms of net consumption and the 

energy storage constraints, simulation results are 

presented in Tables 6 and 7 for the spring in two 

scenarios. 

 
Fig. 13. Generation and consumption power in Sci. 1 for fall 

 
Fig. 14. Generation and consumption power in Sci. 1 for winter 

 
Fig. 15. Generation and consumption power in Sci. 2 for spring 
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Table 5. Optimal component size and total cost for scenario 2 

scenario 2 
 Spring Summer Fall Winter 

Number of WT 10 23 64 17 

Number of PV 50 134 147 104 

ESS 3 2 2 2 

Cost (×103$) 1019.974 1048.077 1070.824 1026.763 

 
Fig. 16. Generation and consumption power in Sci. 2 for summer 

 
Fig. 17. Generation and consumption power in Sci. 2 for fall 

 
Fig. 18. Generation and consumption power in Sci. 2 for winter 

To compare two scenarios, the percentage of power 

production by PV, WT, and ESS in the scenarios are 

demonstrated in Fig. 19. Although in both scenarios, the 

load is satisfied, in scenario-2, WT and PV counts have 

reduced deals with considering area and budget 

constraints. It causes to minimize the total cost. The 

reason for cost reductions in the second scenario is the 

optimum selection of the number of PV, WT and ESS. 

As shown in Tables 4 and 5, the number of PV and WT 

is decreased but the number of ESS is increased. 

Finally, the last decision for counts of WTs and PVs are 

64 and 147. The decision is made based on the worst 

season of the year with the lowest wind speed and 

sunshine. Therefore, the total cost is 1070.824 ×103$. 

Also, in Table 8, the obtained results are compared by 

the results of Ref. [39]. As shown, the MILP 

optimization model produces appropriate sizing and less 

total cost compared to MOPSO optimization.  

Table 6. The numerical result of power generation and 

consumption in the first scenario for spring season 

Time PWT PPV Pdischarge Pcharge PLoad 

T1 23.9241 0 0 1.4241 22.5 

T2 21.46631 0 0 6.4663 15 

T3 22.3450 0 0 14.8450 7.5 

T4 21.1263 0 0 13.6263 7.5 

T5 21.3644 0 0 6.3644 15 

T6 20.0082 0.01232 10.007 0 30 

T7 28.2632 0.7344 1.12 0 30 

T8 38.1443 2.8290 0 3.473406 37.5 

T9 33.3279 16.3943 0 12.2223 37.5 

T10 34.8573 20.3167 0 9.9892 45 

T11 40.4454 36.2458 0 31.6912 45 

T12 47.5 38.9472 0 11.4472 75 

T13 47.5 38.8625 0 20.3625 66 

T14 42.4798 25.9079 0 8.3878 60 

T15 45.1859 19.7027 0 12.3886 52.5 

T16 47.5 22.7464 0 25.2464 45 

T17 40.5859 11.8096 0 22.3956 30 

T18 32.5847 1.7879 3.1443 0 37.5 

T19 23.4552 0.2905 21.2541 0 45 

T20 24.0152 0 21.0942 0 45 

T21 23.9396 0 28.5603 0 52.5 

T22 26.8009 0 25.6990 0 52.5 

T23 30.0111 0 7.0624 0 37.5 

T24 33.5093 0 0 3.4241 30 

Table 7. The numerical result of power generation and 

consumption in the second scenario for spring season 

Time PWT PPV Pdischarge Pcharge PLoad 

T1 23.9241 0 0 1.4241 22.5 

T2 21.4663 0 0 6.4663 15 

T3 22.3450 0 0 14.7883 7.5 

T4 21.1263 0 0 13.6263 7.5 

T5 26.3644 0 0 11.3644 15 

T6 26.8243 0.1120 3.0635 0 30 

T7 35.2632 0.6676 0 5.9308 30 

T8 38.1443 2.5718 0 3.2162 37.5 

T9 33.3279 14.9039 0 10.7319 37.5 

T10 35.8573 19.1970 0 10.0543 45 

T11 40.4454 32.9507 0 28.3961 45 

T12 47.5 35.4066 0 7.9066 75 

T13 47.5 35.3296 0 16.8296 66 

T14 42.4798 23.5527 0 6.0325 60 

T15 45.1859 17.9115 0 10.5974 52.5 

T16 47.5 20.6786 0 23.1786 45 

T17 40.5859 10.7360 0 21.3220 30 

T18 30.5847 1.0625 7.4812 1.3220 37.5 

T19 23.4552 0.0854 21.4592 0 45 

T20 23.8152 0 21.1847 0 45 

T21 21.7632 0 30.7367 0 52.5 

T22 26.8009 0 25.6990 0 52.5 

T23 30.1113 0 7.6241 0 37.5 

T24 35.5093 0 0 5.4241 30 

 
Fig. 19. Gercentage of generated power by HMGS in the scenarios 
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By considering the two scenario results, an essential 

portion of the generation is WT, which is dependent on 

the wind speed. Fig. 20 shows wind power generation of 

all-season in scenario 1. As the results show, the worst 

season in wind generation is fall, and this season 

determined the optimal number of MGs. Therefore, the 

precise estimation of wind power is a critical problem in 

the power scheduling of HMG. As shown in the results, 

the implementation of more constraints in the simulation 

significantly optimized the results. The energy stored in 

ESS increased in the second scenario, and it causes the 

number of PV and WT to reduce. Also, this can reduce 

operation and maintenance costs associated with the WT 

and PV. 

Table 8. Comparing the total cost by [39] 

 Nahavand [39] Rafsanjan [39] Khash [39] Khalkhal 

Cost 
$/kWh 

1.87 0.32 0.35 0.148 

Table 9. Total Cost with and without DR, scenario 3 

 Total Cost 

 Without DR With DR 

Cost (×103$) 1070.824 1021.719 

 
Fig. 20. The wind power generation in the first scenario 

 
Fig. 21. Consumed loads profiles (with and without DR) 

 
Fig. 22. The contribution of HMGS without DR, scenario3 

 
Fig. 23. The contribution of HMGS with DR, scenario 3 

 
Fig. 24. The charge and Discharge states of batteries with and 

without DR, scenario 3 

In scenario 3, the simulation and results of MG 

optimization with DR are presented in the fall season 

which is the worst season in the viewpoint of the 

weather condition. Fig. 21 shows the impact of running 

LS-DR on the load profile. As shown in this figure, by 

implementing the DRP, peak loads are reduced and the 

loads are shifted to other periods (mid-load and low load 

period). Fig. 22 and 23 illustrate the percentage of 

participation of RESs and ESSs in covering the load 

after and before DR, respectively. By the proposed 

methodology the PV system covers 39% of the load 

while 51% of the required energy will be covered via 

the WT. Also, batteries participate by 10% of the 

demand power before DR. While, after DR, shifting 

load can be an opportunity to increase wind penetration 

in the system and improve its management. Therefore, 

the PV system, WT, and batteries cover 37%, 58% and, 

5% of the demand power after DR. Also, as presented in 

Table 9, the total operational cost of MGs in the case, 

which the DR is run, is $1021.719. It is less than the 

cost of without DR condition. 

The charge state and discharge state of batteries in 

cases without DR and with DR are shown in Fig. 24. As 

illustrated, the total amount of the charging/discharging 

active power in the case with DR is less than the case 

without DR. As mentioned before, batteries saved the 

energy in off-peak hours and injected it into the MG 

during peak hours. Therefore, by implementation DR 

and shifting the loads, the stored energy will be reduced 

significantly. The simulation results demonstrate that 

the proposed energy management with the 

implementation of DR not only decreases the 

operational costs but also decreases the stored energy. It 

causes to increase the MG efficiency. 

7. CONCLUSION 

The penetration of renewable energy sources in 

electrification with its advantages in the field of 

environmental pollution and reduction of dependence on 

fossil fuel sources offers important challenges for 

energy networks. These issues need to be addressed by 

appropriately energy management, sizing of RES along 

with BESS due to their alternate nature of solar, and 
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wind energy resources. For determining the optimal size 

of PV, WT, and energy storage, a MILP formulation has 

been proposed based on flexible demand response. A 

novel stochastic method for the prediction of wind 

power using Monte Carlo scenarios is presented. The 

outputs of the appropriate size of HMGS and overall 

cost of the system are indicated the proper performance 

of the proposed strategy despite all strict constraints 

such as geometric constraints, climate changes, capacity 

constraints of RES, and demand response management 

constraints. The DR program cause to minimize the total 

MG cost as well as the stored energy of batteries. Also, 

it maximizes RES harvesting and MG efficiency. The 

same approach can be executed for each remote area to 

plan and design hybrid MG. 
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