
Journal of Operation and Automation in Power Engineering

vol. XX, no. XX, Dec. 2022, Pages: XXXX (Proofed)

http://joape.uma.ac.ir

Empirical Mode Decomposition and Optimization Assisted ANN
Based Fault Classification Schemes for Series Capacitor

Compensated Transmission Line

O. Koduri1,*, R. Ramachandran1, M. Saiveerraju2

1 Department of Electrical Engineering, Faculty of Engineering & Technology, Annamalai University,
Annamalainagar, 608002, Tamil Nadu, India.

2 Department of Electrical & Electronics Engineering, Sagi Rama Krishnam Raju Engineering College
Bhimavaram-534202, Andhra Pradesh, India

Abstract— This paper presents two intelligent classifier schemes for classifying the faults in a series capacitor compensated transmission
line (SCCTL). The first proposed intelligent classifier scheme is a particle swarm optimization-assisted artificial neural network (PSO-ANN).
The second, proposed one is a teaching-learning optimization-assisted artificial neural network (TLBO-ANN). For each type of fault, the
3-phase current signals are acquired at the sending end and processed through empirical mode decomposition (EMD), to decompose into
six intrinsic mode functions. The neighborhood component analysis is used to extract the best feature intrinsic mode functions. From the
identified best feature intrinsic mode functions, the energy of each phase of the line is computed. The energy of each phase is fed as
inputs for both PSO-ANN and TLBO-ANN classifiers. The practicability of the proposed intelligent classifier schemes has been tested on a
500 kV , 50Hz, and 300 km long line with a midpoint series capacitor using MATLAB/Simulink Software. The results demonstrate that
the classifier schemes are able to accurately classify faults in less than a half-cycle. Furthermore, the efficacy of the proposed intelligent
classifier schemes has been evaluated using Performance Indices including Kappa Statistics, Mean Absolute Error, Root Mean Square
Error, Precision, Recall, F-measure, and Receiver Operating Characteristics. From the results of Performance Indices, it is concluded that
the proposed TLBO-based artificial neural network classifier outperforms the PSO-based artificial neural network classifier. Finally, the
efficacies of proposed intelligent classifier schemes are compared to existing approaches.

Keywords—Artificial Intelligence: Particle swarm optimization-assisted artificial neural network, Teaching-learning-optimization-assisted
artificial neural network, Power System Faults: Identification, Series capacitor compensation line, Signal Processing: Empirical mode
decomposition.

NOMENCLATURE

KV Kilo Volts
Km Kilo meter
Hz System frequency
X(t) Input signal
n1 Mean of the signal
m(t) Number of IMFs
r(t) Residue
vk Velocity of the particle
pk Position of the particle
pk best Best position of particle at kth instant
gbest Global best
W Controlling parameter
S1 and S2 Arbitrary variables
c1 and c2 Weights control parameters
PSO Particle Swarm Optimization
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ANN Artificial Neural Network
TLBO Teaching Learning Based Optimization
m No of subjects
n No of learners
TF Teaching factor
Ytotal−pbest Teaching Best overall result
Ep Predicted samples
Eo Observed samples
Tp True Positive samples
Fp False Positive samples
FN False Negative samples
P Precision
R Recall
IMFs Intrinsic mode functions
EA Energy of Phase A
EB Energy of Phase B
EC Energy of Phase C
MSE Mean square error
ykl Target output
Ykl Actual output
N No of samples

1. INTRODUCTION

1.1. Motivation and incitement
Nowadays, the electricity load demand continually increases

across many regions of the world. The existing long transmission
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corridor capacity is scarce to meet the increased load demand
due to the thermal stability limit. The fixed series capacitor
compensated long line is considered a suitable solution to optimize
the transmission assets. Moreover, the advantages of fixed series
capacitor compensation lines improve the power transfer capability
and increase the system stability. However, due to the nonlinear
behavior of the series capacitor, the distance measurement changes
suddenly for a particular type of line faults, and it will affect
the relay functionality [1]. Conventional distance protection is a
challenging task as the variation of the impedance seen by the
relay is different from fault location before and after the series
capacitor [1, 2]. In [2], incorporating a series capacitor in the
transmission line introduces different challenges and problems,
including distance reach problems and directional discrimination
issues for distance relays. For the protection of transmission
systems, a model-based approach such an adaptive Kalman
filtering scheme was previously recommended. A Kalman filter
design was necessary for such a protection strategy, however
because of the chosen linear model, the filter may rapidly diverge
if the initial estimate of the state is off or the process is poorly
described. There have been numerous attempts to classify faults
using a travelling wave-based methodology in the past. However,
the travelling wave approach [3] requires a high sample rate and
has trouble distinguishing between waves reflected from the fault
and those from the distant end of the line. Fuzzy logic was used
to categorise the problems in relaying fault classifications [4].
The benefit of fuzzy logic is that it uses simple "IF- THEN"
relationships to directly convey information. However, logic-based
expert systems encounter the combinatorial explosion problem
when applied to large systems [4]. Again, the correctness of
fuzzy logic-based approaches cannot be guaranteed for highly
variable system parameters. Girgis and Johns [5] used a phasor
measurement unit (PMU)-based technique that was created in
[6] for fault analysis. These techniques have the drawback of
requiring phasor calculation. Artificial neural networks (ANNs)
have gained a lot of attention over the past two decades due
to their computational speed and robustness in fields such as
pattern classification, digital signal processing, intelligent control,
power system analysis, fault detection and classification, data
compression, analysis for solving power quality problems, power
quality assessment, protection, transient analysis, and others [7].
Even though there are many different neural network architectures,
only a few of them are used in industry. Back-propagation neural
network (BPNN), the most popular type of neural network design,
is built on a multi-layer perceptron and use supervised learning
to uncover complex, nonlinear, multidimensional mathematical
fits. The fault classification with high-quality accuracy in less
time is challenging. For accurate estimation of fault location, the
classification of faults is necessary, and this information is essential
for protection engineers to take up action against the quick repair
and maintenance work and restoration of lines to improve the
system’s reliability.

1.2. Literature Review

1) Commercial Approaches:
Phase angle between sequence current and voltage based approach
are generally utilized in commercially available relays for fault
type classification [8, 9]. The relay compares the relative angles
between pure-fault sequence currents available at the local end
and identifies the fault type in the network [8]. This approach is
effected by fault location and fault inception angle. Some relays
utilized the angle difference between negative and zero sequence
current only in [9], by avoiding adverse effect of positive sequence
phase angle variation. But this approach is effect by fault resistance
and fault location and fault inception angle variations.

2) Data Driven Approaches with /without Signal Processing
Tools:

The protective relaying algorithms based on computational
intelligence are recommended for uncompensated lines in [10].
The magnitude of differential power feature-based decision tree
protection scheme for fault classification with a proper threshold
has been suggested for an uncompensated transmission line in [11].
In [12], wavelet analysis and statistical feature-based hybrid PSO-
ANN classifiers are reported. However, the scheme’s drawback
is to evaluate the two-stage algorithm, and hence the complexity
burden increases. In [13], the empirical mode decomposition-
based SVM model was introduced for fault classification of
the uncompensated line. However, this classifier scheme provides
less acceptable percentage accuracy. In [14], the empirical mode
decomposition-based artificial neural network has been proposed in
uncompensated transmission lines for fault diagnosis. Nevertheless,
this protection scheme requires an extensive data set to train
the network, leading to a computational burden. The wavelet
transform-based chebyshev neural network was introduced in [15]
for classifying the faults. In [16], the intelligent classifier scheme
is reported for fault classification. Nevertheless, the intelligent
classifier model is complex, and it provides less accuracy. The
Chebyshev Neural Network based inter fault classifier is reported
in [17]. However, the drawback of this method requires the large
training and testing data need for classification. The data mining
based Support vector machine fault classification for micro grid
is implemented in [18]. The advantage of this method is it
obtained the high accuracy with less time. The intelligent model
to forecast market clearing price using a multilayer perceptron
neural network, based on structural and weights optimization is
presented in [19]. The merits of this model is its obtained high
classification accuracy. In [20], the extreme learning machine
based fault detection and classification for transmission line is
implemented. The advantage of this method is shorter processing
time and reduced computational complexity. Fault classification
of transmission line using different machine learning techniques
are reported in [21]. Teager Kaiser energy operator (TKEO)
and extreme gradient boost (XGBoost) based fault detection and
classification in transmission line is implemented in [22]. In
[23], the multi-dimensional aggregation and decoupling network
(MADN) is proposed. However, this method needs the large data
set for training/testing leading to computational burden. Transfer
learning approach for fault classification in transmission line is
implemented in [24].

According to the literature review, the fault classification
is categorized as the commercial approaches and data driven
with/without signal processing approaches. In data driven with
signal processing approaches most of the research studies have been
presumed to classify the uncompensated and series-compensated
line faults. Compared to the uncompensated line, fault classification
is challenging for series-compensation lines due to the existence
of a series capacitor. The quick identification of faults is necessary
for maintain the security and reliability of the system. In this
connection, the fault classification study is essential for series
compensated lines.

In this article the Empirical Mode Decomposition and
optimization assisted ANN based Fault classification schemes
for series capacitor compensated transmission line is proposed.
The Empirical mode decomposition signal processing method is
used for feature extraction. The advantage of this method is it is
adaptive and applicable to non-stationary signals (Fault signals)
and swarm intelligence and metaheuristic based optimization ANN
methods are used to get the better accuracy. Finally, the proposed
EMD based PSO-ANN and TLBO-ANN classifiers are robust to
fault resistance, fault location, fault inception and load variations
etc.

The critical contribution of proposed optimization-assisted
intelligent classifier schemes is summarized as follows

• A framework based on combination of empirical mode
decomposition and optimization assisted two intelligent
classifier schemes (PSO-ANN and TLBO-ANN) are proposed
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to classify the faults.
• Features extracted from the empirical mode decomposition

and neighborhood component analysis algorithm is used to
train and test the proposed two classifier schemes.

• Proposed PSO-ANN and TLBO-ANN classifier schemes
achieve an accuracy of 99.92% and 99.98%, respectively,
with high speed and reduced memory.

• Performance indices were used to validate the proposed two
intelligent classifier schemes.

The structure of this manuscript is presented and, starting with
section 2, which deals with the description of the system
studied & methodology. As an extension, the empirical mode
decomposition technique is discussed clearly in section 3. Section
4 deliberates the theoretical framework of the proposed intelligent
classifier schemes and performance indices. Section 5 presents the
empirical mode decomposition, neighbourhood component analysis
based feature extraction, and simulation of proposed intelligent
classifier schemes. Section 6, simulation results, discussions of
proposed intelligent classifier schemes, and performance analysis
are presented. The evaluation of case studies and comparative
assessment with different existing methods along with critical
conclusions are placed in section 7 & section 8 respectively.

2. SYSTEM ANALYSIS AND METHODOLOGY

To validate the proposed two classifier schemes, all types of
fault simulations are performed using MATLAB/Simulink software
as shown in Fig. 1, with a significant system operating conditions.

2.1. Series Capacitor Compensation Line with Proposed
Intelligent Classifier Schemes
Fig.1 shows that, schematic single line diagram of 500 kV ,

50Hz, and 300 km long series capacitor compensated line with
sources at each ends. Bus1 and Bus2 are linked with the 300
long line and compensated with a 40 % compensation factor by
the series capacitor. A sampling frequency of 8 kHz is chosen
for simulation studies. The parameters for the system are given in
Appendix A.

As shown in Fig. 11, the steps for the EMD based optimization
assisted proposed intelligent fault classifier schemes are as follows.
Step1: Pre-processing:
For collecting fault current data, the various symmetrical and
unsymmetrical fault scenarios are considered on series capacitor
compensated line.
Step-2: Advanced signal processing technique:
The fault current signals are passed through EMD and extracted
into six intrinsic mode functions (IMFs).
Step-3: Neighborhood component analysis based best feature
extraction:
The NCA algorithm is used to identify the best feature IMFs from
the identified six intrinsic mode functions.
Step-4: Calculation of each phase energy:
The obtained best feature IMFs are used to calculate the phase
energy(s) EA, EB , and EC.

Step-5: Training phase:
The proposed two intelligent classifiers, PSO-ANN and TLBO-
ANN, are trained using the data obtained (EA, EB , and EC ) from
EMD and NCA under various symmetrical and unsymmetrical
fault scenarios.
Step-6: Fault type:

The output of the proposed classifier schemes provides the
classification of symmetrical and unsymmetrical types of faults.

3. EMPIRICAL MODE DECOMPOSITION (EMD)
ANALYSIS

Empirical mode decomposition (EMD) [25], is a modern
and robust method for analyzing non-linear and non-stationary

signals. Unlike wavelet transform, EMD has a self-adaptive signal
processing technique. EMD executes the operation that separates
a series into IMFs without ignoring the time domain. According
to [10], an EMD decomposes the signal into the corresponding
IMFs through the sifting process. According to [6], an IMF is any
function whose envelopes is symmetrical concerning zero, with the
same number of extreme and zeros crossings.

The decomposition of the measured input signal X(t) by EMD
is described as follows.

1. The measured signal X(t) identifies the local maxima and
minima and interpolates the extreme points to obtain upper
and lower envelopes from cubic splines.

2. The n1 represent the mean of X(t) upper and lower envelops.
3. CalculateS1using Eq. (1)

S1 = X(t)− n1 (1)

4. In this step theS11 is obtained as, the subtraction of S1 from
then11, and is expressed as Eq. (2)

S11 = S1 − n11 (2)

Here n11 represent the mean of S1 signal upper and lower
envelops.

5. The above process is repeated j times, until S1j satisfies the
IMF situation. Then, it is chosen as the first IMF. b1 = S1j ,
The first IMF is subtracted from the input signal.
Then, calculate

R1 = X(t)− b1 (3)

6. R1 is chosen as the main signal and repeats the steps 1–5.
7. In this step, the above process is repeated until the Rn

becomes monotonic.
8. Finally, the measured signal is decomposed into m number

of IMFs and a residue r(t), as expressed in Eq. (4).

y(t) =

m∑
j=1

m(t) + r(t) (4)

The IMFs are extracted from current signals and condition is
satisfied, then check with residue is monotonic, if it is yes process
is terminated: the entire procedure [13], is represented in Fig. 2.

4. THEORETICAL FRAMEWORK OF PROPOSED
INTELLIGENT CLASSIFIER SCHEMES

4.1. PSO-ANN classifier scheme

A) Particle swarm optimization
The Back Propagation Neural Network (BPNN) method is the

most widely used neural network for solving nonlinear problems,
yet the early BP networks used to suffer mostly from slower
convergence because they used to become stuck at local minima.
The convergence behaviour is depends on initial weights, learning
rate and momentum. To overcome the above draw back swarm
intelligence algorithm is proposed.

The PSO is a population-based stochastic optimization algorithm
[26] that takes its inspiration from the intelligent group behaviour
of fish schools and bird flocks. This algorithm is a computational
technique and has many similarities with evolution algorithms. The
PSO is computationally superior compared to evolution algorithms
in terms of computer memory space and speed specifications.

Computational procedure of PSO-algorithm as follows [10].
Step1: Initialization Process
All particle velocity and position are arbitrarily initialized within
the pre-specified range.
Step 2: Velocity Updating Process
All particle velocities are updated with the following rule.

v
r
k(t + 1) = w · vr

k(t) + c1 · S1 · (−−−−→pk,best − x(t)) + c2 · S2 · (−−−→gbest − x(t))

x(t + 1) = x(t) + v
r
k(t + 1) (5)
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Fig. 1. Schematic diagram of proposed EMD based intelligent fault classifier schemes

  

Fig. 2. Flow diagram for empirical mode decomposition process
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Fig. 3. Flow chart for PSO-Algorithm

where vrk and pk are the velocity and position of the kth

particle.
−−−→pk,best is the position of particle at kth instant best object
value for one population.
−−→gbest is the position of a particle with the best global object
for the entire population.
w is the controlling parameter of the flying bird.
S1 and S2 are the arbitrary variable with range [0,1].
c1 and c2 are weights control parameters.
Step 3: Position Updating Process
According to the following rule, all particle positions are
updated.

−→pk ← −→pk +−→vk (6)

Step 4: Memory Updating Process
According to the following rule the −−−→pk,best and −−→gbest are
updated.

−−−−→pk,best ← −→pkif(−→pk) � f(−−−−→pk,best),
−−→gbest ← −→pk if (−→pk) � f(−−→gbest)

(7)

v
r
k(t + 1) = w · vr

k(t) + c1 · S1 · (−−−−→pk,best − x(t)) + c2 · S2 · (−−−→gbest − x(t))

x(t + 1) = x(t) + v
r
k(t + 1) (8)

Step 5: Checking procedure for termination.
The above process steps 2–4 are repeated until the

annihilation condition is met. Finally, the solution reports as
the −−→gbest and f(−−→gbest)

The computation process of the particle swarm
optimization technique is represented in followed flow
chart.

  

Fig. 4. Architecture for PSO-ANN classifier

4.2. PSO-ANN algorithm

In this work, the three-layered, three inputs and four
outputs feed-forward (i.e., MLP) [27], ANN with particle
swarm optimization assisted algorithm is considered for
fault classification. In this study, the ten numbers neurons
are selected in the hidden layer using the trial and error
approach. It should give the best performance. Therefore,
the total numbers of weights presented in architecture are
3 × 10 + 10 × 4 = 70 weights. For better accuracy of the
proposed classifier is obtained by the network weights are
optimized through the PSO algorithm.

For the PSO-ANN classifier scheme, the output value is
1 indicates the fault phase, and the value is 0 indicates the
healthy phase, as shown in Fig. 4.

4.3. TLBO-ANN classifier scheme

A) TLBO Algorithm
The algorithm specific parameters are required for all

the swarm intelligence and evolutionary-based algorithms.
Improper selection and tuning of the algorithm-specific
control parameters leads to the local optimal solution, which
is a significant factor influencing the efficiency of the
algorithm. The implementation of TLBO algorithm is more
easily because no tuning of algorithm-specific parameters is
needed [28]. To overcome the Back propagation algorithm
and PSO algorithm draw back, the meta- heuristics such as
TLBO algorithm is proposed.

B) Steps for TLBO Algorithm
1. Teacher Stage
Consider ’m’ number of subjects, ’n’ number of learners (i.e,
population size k = 1, 2, . . . , n) and the
Nj,i be the mean result of the learners in a particular subject
‘j’(j = 1, 2, . . . ,m).
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The best overall result is Ytotal−pbest i
.

The difference mean is calculated by using Eq. (9).

Difference_meanj,k,i = ri(Yj−pbest,i
− TFNj,i) (9)

where, Yj−pbest,i
is the result of the best learner in subject

j.
TF is the teaching factor, and ri is random number between
[0, 1].
The TF is either 1 or 2.
The TF is obtained from the Eq. (10).

TF = round[1 + rand(0, 1){2− 1}] (10)

The existing solution is updated in teacher phase according
to Eq. (11).

Y
′

j,k,i = Yj,k,i + Difference_meanj,k,i (11)

In this phase the updated value Y
′

j,k,i is accepted then it
gives the enhanced function value.
2. Learner Stage
The learner communicates with other learner spontaneously

during this process, a learner, while other learner has more
experience, learn new things. Selecting a population size
of ‘m’, the occurrence of the learning for this stage is
explained below.
Choose randomly R andS learners.
Such that Y

′

total−R,k 6= Ytotal−S,k (where, Y
′

total−R,k

and Y
′

total−S,k are the simplified function values of
Ytotal−R,k and Ytotal−S,k of R and S respectively at the
end of teacher phase.

Y
′′
l,R,k = Y

′
l,R,k + ri(Y

′
l,R,k − Y i

l,S,k) ifY
′
total−R,k ≺ Y

′
total−S,k

(12)

Y
′′
l,R,k = Y

′
l,S,k + rk(Y

′
l,R,k − Y i

l,S,k) ifY
′
total−R,k ≺ Y

′
total−S,k

(13)

The Y
′

l,R,k is accepted, if it gives a better function value.
The computation process of the teaching-learning

optimization algorithm is illustrated as shown in Fig.
5.

4.4. TLBO ANN Algorithms

In this work, the three-layered, three inputs and four
outputs feed-forward (i.e., MLP) [27], ANN with teaching
learning-based optimization-assisted algorithm is selected as
shown in Fig. 6. In this study process, the ten numbers of
neurons are selected in the hidden layer by trial and error
approach. It should give the best performance. Therefore,
the total numbers of weights presented in architecture are
3× 10 + 10× 4 = 70 weights. To obtain the better accuracy
of the proposed classifier, by optimizing the network weights
through the TLBO algorithm.

For the TLBO-ANN classifier scheme, the output value
is 1 indicates the fault phase, and the value is 0 indicates
the healthy phase, as shown in Fig. 6.

4.5. Performance indices

A) Kappa Statistics (KS)
It is used to calculate the accuracy of expected and

observed data sets and is expressed by Eq. (14).

K =
P (OF )− P (EF )

1− P (EF )
(14)

where P (OF ) is the probability that a system would
experience an observed fault, whereas P (EF ) is the
probability that a predicted fault may inadvertently occur in
the system [29].

B) Mean absolute error (MAE) and Root mean square
error (RMSE)

It is defined as the difference between the predicted and
observed samples of a classifier [29].

MAE =
|
∑n

i=1 (EP − EO)|
n

(15)

RMSE is the average deviations of the predications from
the observations, and it is given by

RMSE =

√∑n
i=1 (EP − EO)

2

n
(16)

where EO is the observed and EP is the predicted samples.
C) Precision (P)

It is ratio of true positive samples to the sum of true
positive and false positive samples [29].

Precision =
TP

TP + FP
(17)

D) Recall (R)
It is a ratio of the true positive samples divided by the

total number of true positive and false negative samples
[29].

Recall =
TP

TP + FN
(18)

E) F-measure
It is ratio of twice the product of precision and recall to

the sum of precision and recall [29],

F −Measure =
(2× P ×R)

P + R
(19)

F) Receiver Operating Characteristic (ROC)
The area under the ROC curve represents the classification

capability of the algorithm, it approaches to one, indicates
that the classification prediction was the most precise and
accurate [29].

5. EMPIRICAL MODE DECOMPOSITION,
NEIGHBOURHOOD COMPONENT ANALYSIS BASED

FEATURE EXTRACTION AND SIMULATION OF
PROPOSED INTELLIGENT CLASSIFIER SCHEMES

5.1. Pre-processing of current signals through Empirical
Mode Decomposition and IMF extraction

The three-phase line current signals, Ia, Ib, and Ic are
measured at the sending end of the SCCTL line. These
current waveforms during normal and AG fault conditions
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Fig. 5. Flow chart for Teaching Learning Optimization algorithm
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Fig. 6. Architecture of TLBO-ANN classifier

 

Fig. 7. Line currents waveforms during AG fault, the fault created at
t=0.1sec.

are shown in Fig. 7. In this study, for demonstration
purposes, an AG fault is created at t=0.1 sec and processed
through EMD to extract the six IMFs for each phase, which
are shown in Fig 8-Fig 10.

5.2. Neighborhood Component Analysis

The NCA is non parametric feature ranking scheme that
was maximizing an objective function [30]. The weighted
distance is defined as follows

DW (xi, xj) =

n∑
m=1

Wm
2 |xim − xjm| (20)

where wm is the mthfeature’s assigned weight. The
probability Pij in terms of the weighted distance Dw is
defined as follows

Pij =
k (Dw (xi, xj))∑n

j=1,j∼i k (Dw (xi, xj))
(21)

where k is the kernel function.

  

Fig. 8. The IMFs variation of phase A of the AG fault at t=0.1 sec. It
consists of the 6 IMFs of the Phase A current. It can be observed that
higher order IMFs contain lower frequency components than lower order
IMFs.

  

Fig. 9. The IMFs variation of phase B of the AG fault at t=0.1 sec. It
consists of the 6 IMFs of the Phase A current. It can be observed that
higher order IMFs contain lower frequency components than lower order
IMFs.

  

Fig. 10. The IMFs variation of phase C of the AG fault at t= 0.1 sec. It
consists of the 6 IMFs of the Phase A current. It can be observed that
higher order IMFs contain lower frequency components than lower order
IMFs.
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Fig. 11. Best feature IMFs identification schematic diagram

  

Fig. 12. Best feature selection of IMFs for AG fault

The probability of correctly classifying xi can now be
written as

Pi =

n∑
j=1,j 6=i

PijYij (22)

The Yi = Yj does Yij indicate one.

5.3. Selection of best feature IMFs

Each phase current signal is passed through the EMD and
decomposed into six IMFs. The best features are identified
by applying the NCA to the six IMFs. Fig. 11 depicts the
entire process.

For each fault type, the EMD extracts the six IMFs, and
these IMFs data sets fit the NCA method defined by Eq.(21),
the best features are selected from the higher feature weight
values. For demonstration purpose, the best IMFs features
for various fault are shown in Fig 12 to Fig 14 below.

The IMF’s (Feature Index) with the highest degree of
feature weight is considered the best feature. From Fig
12 to Fig 14, of different fault cases, the best features
are selected as IMF2 (Feature Index2) and IMF3 (Feature
Index3). Likewise, for the remaining fault cases also the
best features are IMF2 and IMF3.

  

Fig. 13. Best feature selection of IMFs for AB fault

  

Fig. 14. Best feature selection of IMFs for ABG fault

5.4. Calculation of each phase energy

The IMF2 and IMF3 energy of each phase current is
determined by considering the one-cycle post-fault current
samples. The two energy(s) are then added to get the energy
of each phase (EA, EB , and EC).

The energy of each phase is calculated as follows:
Energy of phase A

EA =

N∑
i=1

|IMF2(t1) + IMF3(t2)|2 (23)

Energy of phase B

EB =

N∑
i=1

|IMF2(t1) + IMF3(t2)|2 (24)

Energy of phase C

EC =

N∑
i=1

|IMF2(t1) + IMF3(t2)|2 (25)

5.5. Simulation of training and testing data for proposed
intelligent classifier schemes

The extensive simulations are carried out in Fig. 1, using
MATLAB simulation software to generate the training data
set. The data set consists of a 18 different inception angles
between 0 to 360◦, 16 different locations between 0-300 km,
and 17 different fault resistances between 0-200 Ω. For each
fault, the totals of 18× 16× 17 = 4896 training samples are
thus generated. Table 1 displays the total training data set
size for all 11 types of faults.
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(a)

  

(b)

  

(c)

Fig. 15. Variation of phase energy(s) for various distances and fault
inception angles values during AG fault a. EA b. EB c. EC

  

Fig. 16. Convergence characteristics of PSO-ANN classifier

The phase energy EA, EB , and EC of all types of faults,
training data set samples are normalized and fed as input
to proposed two classifier schemes with associate targets
as shown in Fig. 1. For the PSO-ANN and TLBO-ANN
classifier schemes, each input sample updates the optimized
weights through the respective algorithm during the network
training process. In each iteration, the error is determined
between the output and the target. This algorithm is repeated
until it covers all training input samples and is terminated
after achieving a specified Mean square error value. The
Mean square error is calculated as follows.

MSE =
1

N

n∑
l=1

p∑
k=1

(ykl − Ykl)
2 (26)

Here the N represents the number of training samples,
ykl represent the target output and Ykl represent the actual
output. For both classier schemes, the MSE is an objective
function that needs to be minimized during training and
testing operations.

Finally, the proposed protection classifier schemes enable
the classifier unit and it intern to enable the control unit and
issue trip signal to associate circuit breaker CB as shown in
Fig. 1.

6. SIMULATION RESULTS, DISCUSSIONS OF PROPOSED
INTELLIGENT CLASSIFIER SCHEMES AND

PERFORMANCE INDICES ANALYSIS

6.1. PSO-ANN classifier scheme test results

Fig. 1 demonstrates the proposed PSO-ANN classifier
relaying scheme. The Table 2 gives the parameters of the
PSO algorithm.

From Table 1, the total training samples (53856) are
used to train the proposed PSO-ANN classifier, and testing
samples (19008) are used to test the proposed PSO-ANN
classifier. 15% of training data is used to validate the
proposed classifier. Finally, the PSO terminates whenever
the gbest values should be less than a predefined value and
reached the maximum iteration.

A) Test results of PSO-ANN based classifier scheme with
fault location before and after series capacitor

The number of faults properly identified among the total
number of faults is known as the classification accuracy of
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Table 1. Parameters for creating the data set

Parameters Training data set Testing data set

Types of fault All 11 types of faults and no-fault cases All 11 types of faults and no-fault cases

Fault resistance in Ω 1.12, 24, . . . , 200 with increment of 12. 5, 30, 60, 100, 160 and 200

Fault inception angle in [0] 0, 20, 40, . . . 340◦ with increment of 20. 10, 25, 50, 100, 150, 210, 260 and 335◦

Fault location before and after series capacitor [km]. 12, 30, 48, . . . , 282 with increment of 18. 25, 50, 75, . . . , 275 with increment of 25.

Compensation level [%]. 40% 25%, 50% and 75%

Total patterns 11 × 17 × 18 × 16 = 53856. 11 × 6 × 8 × 12 × 3 = 19008.

Table 2. PSO parameter values

PSO- Parameters W C1 C2 No of particles(s) PopulationSize No of iterations

PSO- Parameters values Between 0.1 to rand*0.45 1.5 2.5 70 200 150

  

Fig. 17. PSO-ANN classifier output in time domain during AG fault at
25km from sending end with fault resistance 5 Ω, at t=0.1 sec.

classifier, and is expressed by Eq. (27).

Classification Accuracy (CA) =

number of accurately classified faults
Total number of faults

× 100% (27)

From Table 3, it is observed that the fault classification time
in (T1) ms of the proposed PSO-ANN method is less than
a half cycle for fault case tested.

The AG fault is created at 0.1 sec with a fault distance
of 25 km from the sending end on series capacitor
compensated line with fault resiatnce is 5 Ω. Fig. 17
indicates that the PSO-ANN classifier has to effectively
classify the fault with less than one cycle (4 ms).

The ABG fault is created at t=0.14 sec with a fault
distance of 200 km from the sending end (i.e., after series
capacitor) on series capacitor compensated line with fault
resistance is 30 Ω. Fig.18 indicates that the PSO-ANN
classifier has to rapidly classify the fault with less than one
cycle(6 ms).

PSO-ANN classifier output in time domain during ABG
fault at 200 km from sending end with fault resistance 30
Ω ,at t=0.14 sec.

The confusion matrix of the PSO-ANN classifier scheme
is shown in Table 4.

  

Fig. 18. PSO-ANN classifier output in time domain during AG fault at
25km from sending end with fault resistance 5 Ω, at t=0.1 sec.

 

Fig. 19. Convergence characteristics of TLBO-ANN classifier

6.2. TLBO-ANN classifier scheme test results

The proposed TLBO-ANN classifier relaying scheme is
shown in Fig. 1. The Table 5 gives the parameters of the
TLBO algorithm.

From Fig. 16 and Fig. 19 it is observed that, the TLBO-
ANN classifier scheme is achieved better convergence
characteristics and improved accuracy as compared to
PSO-ANN classifier.

When the fault occurs on the transmission line, the fault
detection unit is activated first, and then it activates the
classification unit. From Table 1, the total training samples
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Table 3. Sample test results of PSO-ANN based classifier scheme

Fault Type Fault location Fault resistance Fault inception Fault classification Output of
in km in Ω angle (◦) time (T1) (ms) PSO-ANN

A B C G

AG 25 5 10 4 1 0 0 1

ABG
Before Series

50 30 25 5 1 1 0 1

AB Capacitor 75 100 100 8 1 1 0 0

ABC 125 60 210 7 1 1 1 0

AG 175 100 50 8 1 0 0 1

ABG
After Series

200 30 100 6 1 1 0 1

AB Capacitor 225 160 260 8 1 1 0 0

ABC 275 200 335 9 1 1 1 0

Table 4. Confusion matrix and percentage accuracy of proposed PSO-ANN
classifier scheme for all 11 types of faults

Fault 1 2 3 4 5 6 7 8 9 10 11 Proposed PSO-ANN
%Accuracy

1 1 0 0 0 0 0 0 0 0 0 0 100%

2 0 1 0 0 0 0 0 0 0 0 0 100%

3 0 0 0 0 4 0 0 0 0 0 0 99.91%

4 0 0 0 0 0 0 2 2 0 0 0 99.91%

5 0 0 0 0 0 0 2 4 0 0 0 99.87%

6 0 0 5 0 0 0 0 0 0 0 0 99.89%

7 0 0 0 3 0 0 0 0 0 0 0 99.93%

8 0 0 0 0 4 0 0 0 0 0 0 99.91%

9 0 0 0 0 0 0 0 0 1 0 0 100%

10 0 0 0 6 0 0 0 0 0 0 0 99.87%

11 0 0 0 0 0 5 0 0 0 0 0 99.89%

Overall classification accuracy 99.92%

Table 5. TLBO-Common parameters values

TLBO-common parameters Population Size Number of generations

TLBO-common parameters values 200 150

(53856) are used to train the proposed TLBO-ANN network,
and the total testing samples (19008) are used to test the
TLBO-ANN network. The 15% training data set is used to
validate the proposed classifier.

A) Test results of TLBO-ANN based classifier scheme
with fault location before and after series capacitor

The number of faults properly recognized among the total
number of faults is known as the classification accuracy of
classifier, and is expressed by Eq. (27).

From Table 6, it observed that, the fault classification
time in ms (T1) of the proposed TLBO-ANN method is less
than a half cycle for all fault cases tested.

The AG fault is created 50 km from the sending end at
t = 0.1 sec on series capacitor compensated line with fault
resistance is 5 Ω. Fig. 20 indicates that the TLBO-ANN

  

Fig. 20. TLBO-ANN based classifier output in time domain during AG
fault at 50 km from sending end with fault resistance 5 Ω ,at t=0.1 sec.

  

Fig. 21. TLBO-ANN based classifier output in time domain during ABG
fault at 225 km from sending end with fault resistance 60 Ω ,at t=0.14 sec.

classifier has to effectively classify the fault with less than
one cycle (4ms).

The ABG fault is created at t=0.14 sec with a fault
distance of 225 km from the sending end (i.e., after series
capacitor) on series capacitor compensated line with fault
resistance is 60 Ω. Fig. 21 indicates that the TLBO-ANN
classifier has to rapidly classify the fault with less than one
cycle (6ms).

The confusion matrix of the TLBO-ANN classifier scheme
is shown in Table 7.

6.3. Performance Analysis of Proposed Classifiers

From Fig. 22, the kappa statistic (KS) for the PSO-ANN
classifier is 0.995, and for the TLBO-ANN classifier, it was
improved to 0.998, suggesting that the classifier is accurate
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Table 6. Sample test results of TLBO-ANN classifier scheme

Fault Type Fault location Fault resistance Fault inception Fault classification Output of TLBO-ANN
in km in Ω angle (◦) time (T1) (ms) classifier scheme

A B C G

AG 25 100 25 6 1 0 0 1

ABG
Before Series

50 5 100 4 1 1 0 1

AB Capacitor 75 60 150 6 1 1 0 0

ABC 125 160 210 7 1 1 1 0

AG 175 100 25 4 1 0 0 1

ABG
After Series

200 30 50 4 1 1 0 1

AB Capacitor 225 60 335 6 1 1 0 0

ABC 275 200 260 9 1 1 1 0

Table 7. Confusion matrix and percentage accuracy of proposed TLBO-
ANN classifier scheme for all 11 types of faults

Fault 1 2 3 4 5 6 7 8 9 10 11 Proposed TLBO-ANN
%Accuracy

1 1 0 0 0 0 0 0 0 0 0 0 100%

2 0 1 0 0 0 0 0 0 0 0 0 100%

3 0 0 1 0 0 0 0 0 0 0 0 100%

4 0 0 0 0 0 0 0 2 0 0 0 99.95%

5 0 0 0 0 0 0 0 0 0 0 2 99.95%

6 0 0 0 0 0 0 0 0 0 1 0 99.97%

7 0 0 0 0 0 0 1 0 0 0 0 100%

8 0 0 0 0 0 0 0 1 0 0 0 100%

9 0 0 0 0 0 0 0 0 1 0 0 100%

10 0 0 0 2 0 0 0 0 0 0 0 99.95%

11 0 0 0 0 0 1 0 0 0 0 0 99.97%

Overall classification accuracy 99.98%

and robust. From Fig. 23, the PSO-ANN classifiers MAE
(0.122) and RMSE (0.214) and MAE (0.119) and RMSE
(0.212) of the TLBO-ANN classifier were lower than those
of the PSO-ANN classifier, indicating that the classifier is
superior.

From Fig. 24, the precision and recall results for PSO-
ANN classifiers are 0.9/0.94 and the TLBO-ANN classifier
improves it by 0.94/0.98. From Fig. 25, the F-measure and
ROC result for the PSO-ANN classifier show 0.883/0.95
and TLBO-ANN classifier has been improved to a level of
0.99/0.97, higher than the PSO-ANN classifier.

From the above performance analysis evaluation, the
TLBO-ANN intelligent classifier scheme is superior
over PSO-ANN intelligent classifier scheme in terms
of classification accuracy and indices efficiency.

  

Fig. 22. Kappa statistics of PSO-ANN and TLBO-ANN classifiers

  

PSO-ANN  classifier
TLBO-ANN

classifier

MAE 0.122 0.119

RMSE 0.214 0.212

0

0.05

0.1

0.15

0.2

0.25

Fig. 23. MAE and RMSE statistics of PSO-ANN and TLBO-ANN
classifiers

7. EVOLUTION OF CASE STUDIES AND COMPARATIVE
ASSESSMENT WITH DIFFERENT EXISTING METHODS

7.1. Performance during variation in load angle of generator
with capacitor switching

The 20MVR capacitor load is switched at Bus-2
of Fig.1.creates the switching transients in the current
waveform. With the variation of generator load angle of 10◦,
and 20◦ the capacitor switching transients are generated as
shown in Fig 26–Fig 27 and tested with proposed intelligent
classifier schemes.

The proposed scheme’s efficiency is also tested against
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PSO-ANN
classifier

TLBO-ANN
classifier

Precision 0.9 0.94

Recall 0.94 0.98
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Fig. 24. Precision and Recall statistics of PSO-ANN and TLBO-ANN
classifiers

  

PSO-ANN
classifier

TLBO-ANN
classifier

F-Measure 0.91 0.95

ROC 0.92 0.94
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Fig. 25. F-Measure and ROC statistics of PSO-ANN and TLBO-ANN
classifiers

different load angles, such as 10◦ ,20◦ and 30◦. Table 9
and Table 10 show the outcomes of the tests. The proposed
schemes are robust to variations in the load angles.

7.2. Performance during changing the compensation level of
series capacitor

The proposed classifiers scheme’s efficiency is also tested
against various compensation levels, such as 10%, 25%,
50%, and 75%. The results of the tests are shown in Tables
11 and Table 12. The proposed schemes are resistant to an
extensive range of compensation levels.

Table 8. Loading condition of the system

Location BUS-2

Loading 10MW +20MVR

Generator load angles 10◦ ,20◦ and 30◦

7.3. Performance during the power fluctuations

Due to continues load variations on series capacitor
compensation transmission line the power fluctuations
occur. This effect on proposed methods is evaluated in Table
13 and 14.

7.4. Performance during the load connection and disconnec-
tion

Due to sudden load injection and load dispatch happen
on the series capacitor compensated line. This effect on
proposed methods is evaluated in Table 15 and 16.

7.5. Performance during the change of line parameters

Due to aging and environmental conditions on series
capacitor compensated line. The line parameters like
resistance and inductance are changes. This effect on
proposed methods is evaluated in Table 17 and 18.

7.6. Performance during the change in the operation mode
of the series capacitor

Due to series capacitor compensation the interaction of
the reactance of series capacitor and 300 km transmission
line distributed parameters will result in mode (Hz) is occur.
This effect on proposed methods is evaluated in Table 19
and 20.

Similarly, for the remaining fault cases, the corresponding
mode(Hz) is show in Table 19.

7.7. Performance during the noisy conditions

To validate the efficacy of the proposed methods, the
different noisy test data sets with the SNR of 20, 30, and
40 dB is considered. Few test outcomes are listed in Table
21 and 22 that represents the performance of the proposed
methods under distinct noisy environment.

7.8. Comparative assessment of the proposed classifiers with
different existing methods

From Table 4, the fault classification success accuracy
of the proposed PSO-ANN classifier method ranges from
99.87% to 100%, with 99.92% average percentage success
along with all operating conditions of the system. Similarly,
from Table 7, the fault classification success accuracy of
the proposed TLBO-ANN classifier ranges from 99.95% to
100%, with an average percentage success of 99.98% along
with all operating conditions of the system. Compared to
existing techniques, the advantage of the proposed classifier
schemes is that the input features are 3. The sampling
frequency is 8 kHz, is selected for one cycle post fault
samples, and fault classification response time is less than
a half cycle. Table 23 reveals that all existing approaches
for fault classification use the signal processing method for
feature extraction but in proposed methods of classification
use the advanced signal processing and NCA method for
feature extraction. Furthermore, the performance indices are
evaluated on proposed classifiers. Compared to all existing
methods, the proposed classifier methods obtained the high
percentage success accuracy for the classification of faults
in the series capacitor compensated transmission line.
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Fig. 26. Three current waveform for 10MW active load switching and 20MVR capacitive load switching at bus-2 with 10◦ generator load angle switching.

  
Fig. 27. Three phase current waveform for 10MW active load switching and 20MW capacitive load switching at bus-2 with 20◦ generator load angle
switching.

Table 9. The performance during variation in load angles for PSO-ANN classifier

Load angles Fault Type Fault location Fault resistance Fault inception Fault classification Output of PSO-ANN
in (km) in (Ω) angle (◦) time (T1) in (ms) classifier

10◦

AG 25 5 10 4 AG

ABG 150 160 50 8 ABG

AB 50 60 25 5 AB

ABC 225 100 150 9 ABC

20◦

BG 25 5 210 3 BG

BCG 175 60 260 5 BCG

BC 100 30 100 4 BC

ABC 250 160 210 9 ABC

30◦

CG 50 5 335 3 CG

CAG 75 100 150 6 CAG

CA 125 60 25 4 CA

ABC 250 200 260 9 ABC

Table 10. The performance during variation in load angles for TLBO-ANN classifier

Load angles Fault Type Fault location Fault resistance Fault inception Fault classification Output of TLBO-ANN
in (km) in (Ω) angle (◦) time (T1) in (ms) classifier

10◦

AG 50 5 25 4 AG

ABG 100 30 10 6 ABG

AB 25 100 150 7 AB

ABC 225 160 100 9 ABC

20◦

BG 25 5 210 3 BG

BCG 175 60 335 5 BCG

BC 100 30 260 4 BC

ABC 250 160 50 9 ABC

30◦

CG 25 5 25 3 CG

CAG 75 160 335 7 CAG

CA 150 30 260 4 CA

ABC 225 200 160 9 ABC
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Table 11. Performance during variation of compensation level for PSO-ANN classifier

Xc(%) Fault Type Fault location Fault resistance Fault inception Fault classification Output of PSO-ANN
in (km) in (Ω) angle (◦) time (T1) in (ms) classifier

10%

AG 30 30 30 4 AG

ABG 180 160 60 6 ABG

AB 80 60 120 8 AB

ABC 270 200 240 9 ABC

25%

AG 25 30 25 4 AG

ABG 175 160 50 8 ABG

AB 75 60 100 7 AB

ABC 250 200 210 9 ABC

50%

BG 25 5 335 3 BG

BCG 150 60 150 5 BCG

BC 100 100 10 8 BC

ABC 225 160 25 9 ABC

75%

CG 50 5 335 3 CG

CAG 75 60 260 6 CAG

CA 125 160 100 9 CA

ABC 250 100 210 8 ABC

Table 12. Performance during variation of compensation level for TLBO-ANN classifier

Xc(%) Fault Type Fault location Fault resistance Fault inception Fault classification Output of TLBO-ANN
in (km) in (Ω) angle (◦) time (T1) in (ms) classifier

10%

BG 20 10 320 8 BG

BCG 150 50 180 4 BCG

BC 60 120 30 5 BC

ABC 250 180 60 6 ABC

25%

AG 25 30 10 4 AG

ABG 175 160 50 8 ABG

AB 75 60 100 5 AB

ABC 250 200 210 9 ABC

50%

BG 25 5 150 3 BG

BCG 150 60 335 6 BCG

BC 100 100 260 8 BC

ABC 225 160 10 9 ABC

75%

CG 50 5 25 3 CG

CAG 75 60 50 6 CAG

CA 125 160 210 9 CA

ABC 250 100 260 8 ABC

Table 13. Performance during power fluctuations for PSO-ANN classifier

Power Variations Fault Type Fault location Fault resistance Fault inception Fault classification Output of PSO-ANN
20MW (%) in (km) in (Ω) angle (◦) time (T1) in (ms) classifier

30

AG 60 10 10 4 AG

ABG 75 80 40 5 ABG

AB 100 30 140 7 AB

ABC 180 140 220 6 ABC

30

AG 75 20 240 5 AG

ACG 120 80 160 4 ACG

AC 180 100 40 6 AC

ABC 240 150 80 7 ABC
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Table 14. Performance during power fluctuations for TLBO-ANN classifier

Power Variations Fault Type Fault location Fault resistance Fault inception Fault classification Output of TLBO-ANN
20MW (%) in (km) in (Ω) angle (◦) time (T1) in (ms) classifier

30

AG 80 10 30 5 AG

ABG 100 50 60 4 ABG

AB 150 40 120 6 AB

ABC 230 140 200 7 ABC

30

AG 100 30 220 6 AG

ACG 50 50 180 5 ACG

AC 150 120 30 4 AC

ABC 270 180 60 7 ABC

Table 15. Performance during load connection and disconnection for PSO-ANN classifier

Load 10MW and Fault Type Fault location Fault resistance Fault inception Fault classification Output of PSO-ANN
20MVR at Bus2 in (km) in (Ω) angle (◦) time (T1) in (ms) classifier

Load Connection

AG 50 20 30 7 AG

ABG 100 100 60 5 ABG

AB 180 50 120 6 AB

ABC 230 160 200 8 ABC

Load Disconnection

AG 60 30 260 7 AG

ACG 150 60 140 4 ACG

AC 90 120 30 6 AC

ABC 270 170 60 5 ABC

Table 16. Performance during load connection and disconnection for TLBO-ANN classifier

Load 10MW and Fault Type Fault location Fault resistance Fault inception Fault classification Output of TLBO-ANN
20MVR at Bus2 in (km) in (Ω) angle (◦) time (T1) in (ms) classifier

Load Connection

AG 60 10 10 6 AG

ABG 120 120 80 4 ABG

AB 180 40 100 5 AB

ABC 250 140 220 7 ABC

Load Disconnection

AG 75 20 240 6 AG

ACG 180 40 120 4 ACG

AC 100 140 40 5 AC

ABC 240 180 80 7 ABC

Table 17. Performance during change of line parameters for PSO-ANN classifier

Change in line Fault Type Fault location Fault resistance Fault inception Fault classification Output of PSO-ANN
parameter (%) in (km) in (Ω) angle (◦) time (T1) in (ms) classifier

+10

AG 50 10 10 6 AG

ABG 120 120 80 4 ABG

AB 200 40 100 7 AB

ABC 80 180 220 8 ABC

-10

AG 40 5 280 6 AG

ACG 130 40 160 5 ACG

AC 75 100 20 4 AC

ABC 230 160 80 7 ABC
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Table 18. Performance during change of line parameters for TLBO-ANN classifier

Change in line Fault Type Fault location Fault resistance Fault inception Fault classification Output of TLBO-ANN
parameter (%) in (km) in (Ω) angle (◦) time (T1) in (ms) classifier

+10

AG 60 5 30 6 AG

ABG 100 100 60 5 ABG

AB 175 30 120 4 AB

ABC 230 140 230 7 ABC

-10

AG 75 30 60 5 AG

ACG 150 60 140 6 ACG

AC 30 120 40 4 AC

ABC 200 160 100 7 ABC

  
Fig. 28. Impedance measurement for AG fault occur at 30 km with fault resistance of 10 Ω and 30◦ deg inception angle.

Table 19. Performance during the series capacitor mode(Hz) for PSO-ANN classifier

Xc(%) Mode(Hz) Fault Type Fault location Fault resistance Fault inception Fault classification Output of PSO-ANN
in (km) in (Ω) angle (◦) time (T1) in (ms) classifier

30%

400 AG 30 10 30 5 AG

352 ABG 100 60 60 6 ABG

424 AB 175 100 120 8 AB

424 ABC 230 150 210 7 ABC

40%

424 BG 50 5 300 4 BG

424 BCG 120 80 140 7 BCG

370 BC 180 120 30 5 BC

424 ABC 250 150 40 9 ABC

60%

424 CG 50 5 225 4 CG

424 CAG 75 60 120 6 CAG

424 CA 200 160 80 7 CA

424 ABC 250 100 60 8 ABC
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Table 20. Performance during the series capacitor mode(Hz) for TLBO-ANN classifier

Xc(%) Mode(Hz) Fault Type Fault location Fault resistance Fault inception Fault classification Output of TLBO-ANN
in (km) in (Ω) angle (◦) time (T1) in (ms) classifier

30%

400 AG 30 10 30 4 AG

352 ABG 100 60 60 6 ABG

424 AB 175 100 120 8 AB

424 ABC 230 150 210 7 ABC

40%

424 BG 50 5 300 4 BG

424 BCG 120 80 140 6 BCG

370 BC 180 120 30 8 BC

424 ABC 250 150 40 9 ABC

60%

424 CG 50 5 225 5 CG

424 CAG 75 60 120 6 CAG

424 CA 200 160 80 8 CA

424 ABC 250 100 60 9 ABC

Table 21. Performance during the noisy conditions for PSO-ANN classifier

SNR (dB) Fault Type Fault location Fault resistance Fault inception Fault classification Output of PSO-ANN
in (km) in (Ω) angle (◦) time (T1) in (ms) classifier

20

AG 40 20 20 5 AG

ABG 200 100 40 7 ABG

AB 75 20 140 9 AB

ABC 250 150 220 8 ABC

30

BG 10 15 280 8 BG

BCG 120 60 150 6 BCG

BC 80 100 30 4 BC

ABC 200 120 60 5 ABC

40

CG 30 30 300 7 BG

CCG 180 80 150 8 BCG

CC 60 110 40 4 BC

ABC 230 150 80 5 ABC

Table 22. Performance during the noisy conditions for TLBO-ANN classifier

SNR (dB) Fault Type Fault location Fault resistance Fault inception Fault classification Output of TLBO-ANN
in (km) in (Ω) angle (◦) time (T1) in (ms) classifier

20

AG 50 10 30 6 AG

ABG 175 120 60 8 ABG

AB 100 30 120 5 AB

ABC 200 160 230 7 ABC

30

BG 30 25 200 9 BG

BCG 130 75 120 8 BCG

BC 150 120 40 5 BC

ABC 230 165 80 4 ABC

40

CG 75 10 240 6 BG

CCG 200 70 120 9 BCG

CC 100 120 60 7 BC

ABC 175 160 100 4 ABC
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Table 23. Comparative assessment of proposed classifier schemes with existing classifiers techniques

Ref [3] [4] [5] [8] Proposed Classifier Schemes

Type of transmission line Uncompensated line Uncompensated line Series capacitor compensated line. Uncompensated line Series capacitor compensated line

Signal processing technique Wavelet transform – Wavelet transform Wavelet transform Empirical mode decomposition

Type of classifier PSO-multilayer perceptron MLP Decision tree Hybrid-PSO-artificial neural network Chebyshev neural network PSO-ANN and TLBO-ANN

Number of input features 4 6 11 4 3

Fault classification Yes Yes Yes Yes Yes

Number of cycles used One cycle One cycle – One cycle One cycle

High resistance in ohm (Ω) 0-200 Ω 0-300 Ω 0-200 Ω 0 -150 Ω 0-200 Ω

Fault types 10 10 11 10 11

Fault inception angle (◦) 0-360◦ 0-900 - 0-1150 0-3600

Fault location (km) 0- 300 km 0-290 km 0-900 km 0-300 km 0-300 km

Capacitor switching event – – – Yes Yes

Different compensation levels – – – Yes Yes

Load angles variations (◦) – 10◦ – 30◦ – 10◦-30◦ 10◦-30◦

Fault patterns 48,960 18,100 1,650 23,400 53,865

Percentage Accuracy 99.91% 100% 99.71% 98.56% 99.92% and 99.98%

Fault classification time – less than half cycle – less than half cycle less than half cycle

Evolution of performance indices (PI) – – – – Yes

“Yes” =Considered and “–“= Not mentioned.

8. CONCLUSIONS

The following conclusions are drawn from several fault
simulation cases with a wide range of the system operating
conditions.

• The proposed classifier schemes capturing the sending
end currents, and hence it is free from synchronization
errors

• The proposed classifier schemes utilize the current
signals, thus voltage inversion has no impact on
performance.

• The volume of memory required for feature extraction
by the empirical mode decomposition and neighborhood
component analysis is low because it extracted two
best feature Intrinsic mode functions out of six intrinsic
mode functions.

• To evaluate the energy values of each phase using the
best features intrinsic mode functions is simple.

• The TLBO-ANN classifier offers superior classification
accuracy 99.98% than the classification accuracy of
PSO-ANN classifier 99.92%.

• From the performance indices evaluation results, the
TLBO-ANN classifier is significantly superior to the

PSO-ANN classifier.
• The robustness of the proposed two classifiers has been

validated with capacitor switching event and different
compensation level conditions.

• The proposed two classifiers have been classified the
faults in rapid time, less than a half cycle.

• The efficacy of the proposed two classifier schemes is
higher than the existing approaches.
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Appendix-A

Test Power System Simulation data
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