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ABSTRACT 
Optimal Reactive Power Dispatch (ORPD) is a multi-variable problem with nonlinear constraints and 
continuous/discrete decision variables. Due to the stochastic behavior of loads, the ORPD requires a probabilistic 
mathematical model. In this paper, Monte Carlo Simulation (MCS) is used for modeling of load uncertainties in the 
ORPD problem. The problem is formulated as a nonlinear constrained multi objective (MO) optimization problem 
considering two objectives, i.e., minimization of active power losses and voltage deviations from the corresponding 
desired values, subject to full AC load flow constraints and operational limits. The control variables utilized in the 
proposed MO-ORPD problem are generator bus voltages, transformers’ tap ratios and shunt reactive power 
compensation at the weak buses. The proposed probabilistic MO-ORPD problem is implemented on the IEEE 30-bus 
and IEEE 118-bus tests systems. The obtained numerical results substantiate the effectiveness and applicability of the 
proposed probabilistic MO-ORPD problem. 
 
KEYWORDS: Monte Carlo simulation, Multi objective optimal reactive power dispatch, Real power loss, 
Voltage deviation.   
 
NOMENCLATURE 
 

k k-th network branch that connects 
bus i to bus j  puJ  

Normalized objective 
function 

/i j  
Bus number where 
, 1, 2, , Bi j N= …   max min/r rJ J Maximum /minimum value 

for r-th objective function 

kg
 

Conductance of the line i-j  1w  
Weight of objective 1 (real 

power loss) 

iV  Voltage magnitude of bus i  2w  
Weight of objective 2 

(voltage deviation) 

iθ
 

Voltage angle at bus i  PL Real power loss 

x  
Vector of dependent variables  VD Voltage deviation 

u  Vector of control variables  DN  Set of load bus 

J  Total objective function  BN  Number of buses 

1J
 

First objective function (PL=Real 
power loss)  kψ  Set of buses adjacent branch k 

2J
 

Second objective function 
(VD=Voltage deviation)  GiP  Active power in bus i 
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G iQ  
Reactive power generation in bus i 

iDP
 

Real power of the i-th bus 

iDQ
 

Reactive power of the i-th bus 

ij ij ijY G jB= +
 

ij-th element of system Ybus matrix 

SA  power flow of A -th transmission lin

maxSA  
Maximum value of power flow of 
A -th transmission line 

min max/i iV V  
Minimum/ Maximum value for 
voltage magnitude of the i-th bus 

min max/Gi GiQ Q  
Minimum/ Maximum value for 
reactive power of the i-th bus 

 

 
1. INTRODUCTION 

Optimal Power Flow (OPF) affects both security 
and economy of power systems, and hence, it has to 
be considered as an integral part of power system 
operation and planning studies. The OPF can be 
divided into two sub-problems, Optimal Reactive 
Power Dispatch (ORPD) and optimal real power 
dispatch [1], [2].  
 
1.1. Literature review 
The ORPD problem is a complex problem in power 
systems and has attracted great attention in recent 
years, because it is strongly related to both economy 
and security of the system [3]. In most cases, the 
aim of ORPD is to optimize the following objective 
functions: 

• Minimization of the network real power losses 
(as an economical objective). 

• Optimization of voltage profile of the network, 
by minimizing voltage deviations from their 
nominal values in the load buses.  

The aforementioned objectives are attained by 
regulating generator bus voltages, VAr compens-
ators switching on/off, and optimization of transfor-
mer tap settings, with respect to various operational 
constraints such as load flow equations [4].  

The ORPD problem is extensively studied in the 
literature. For instance, management and reschedu-
ling of reactive power support via an ORPD model 
is presented in [3]. The objective function in [3] is to 
maximize voltage stability margin, at the same time 
as taking care of the economic dispatch of active 
power, by rescheduling the reactive power injection 
of synchronous generators and synchronous conde-
nsers. An objective function which depends on a 
voltage stability index is offered in [4], for solving 
ORPD problem. A model for ORPD is proposed in 
[5] for minimization of  total costs, including energy 

loss of transmission network and costs of adjusting 
the control devices. A solution for the ORPD 
problem by Particle Swarm Optimization (PSO) 
based on multi-agent systems is proposed in [6]. A 
Seeker Optimization Algorithm (SOA) is suggested 
for ORPD taking into consideration static voltage 
stability [7]. In [8], a harmony search algorithm is 
proposed for partially solution of ORPD problem. A 
steady-state voltage stability constrained ORPD 
model is studied in [9]. In [10], an evolutionary-
based approximation is presented for ORPD 
solution. This approach uses a differential evolution 
algorithm in order to determination of optimal 
settings of ORPD control variables. A particle 
swarm optimization, combined with a feasible 
solution search used for dealing with the ORPD 
problem in the presence of Wind Farms (WF) is 
presented in [11]. The proposed approach optimizes 
the reactive power dispatch, considering the reactive 
power requirement at the WF point of connection. A 
hybrid approach based on the evolutionary planning 
and particle swarm optimiz-ation is proposed in [12] 
to solve the ORPD problem. In [13], the behavior of 
different constraint controlling methods such as 
superiority of feasible solutions, self-adaptive 
penalty, ε-constraint, stochastic ranking, and the 
ensemble of constraint handling techniques on 
ORPD are investigated. A heuristic  algorithm is 
introduced in [14] by combining modified teaching 
learning algorithm and double differential evolution 
algorithm until to handle the ORPD problem. 
Furthermore, in [15], a reliable and effective 
algorithm based on hybrid modified imperialist 
competitive algorithm and invasive weed 
optimization is proposed for solving the ORPD 
problem. Furthermore, a hybrid algorithm 
combining firefly algorithm and Nelder mead 
simplex method is represented in [16] for solution of 
ORPD problem. 
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A number of literatures study Multi Objective 
ORPD problem, considering the uncertainties. For 
example, a strength Pareto evolutionary algorithm is 
proposed in [17] to handle the MO-ORPD. A 
hierarchical clustering algorithm was suggested to 
provide a representative and manageable Pareto-
optimal set. In [18], a reformed version of NSGA-II 
was applied by incorporating controlled elitism and 
dynamic crowding distance strategies in NSGA-II. 
The approach is utilized to solve the MO-ORPD 
problem by minimizing real power loss and 
maximizing the system voltage stability. A hybrid 
fuzzy multi objective evolutionary algorithm for 
solving complicated MO-ORPD problem is 
reported in [19], which considers voltage stability. A 
well-organized genetic algorithm method for 
solution of MO-ORPD problem is represented in 
[20], which considers fuzzy goal programming in 
uncertain environment. In [21], an advanced 
teaching learning based optimization algorithm is 
presented to solve MO-ORPD problem by 
minimizing real power loss, voltage deviation and 
voltage stability index. Chaotic improved PSO 
based multi-objective optimization and improved 
PSO-based multiobjective optimization approaches 
are prop-osed in [22], for solving MO-ORPD 
problem. The objective functions considered are 
power losses and L index. In [23], a multi objective 
chaotic parallel vector evaluated interactive honey 
bee mating optimization is presented to find the 
optimal solution of MO-ORPD problem 
considering operational restrictions of the 
generators. 

It should be noted that few references have 
considered the possible uncertainties in the MO-
ORPD problem. For example, in [24], a chance-
constrained programming formulation is proposed 
to solve the MO-ORPD problem that considers 
uncertain nodal power injections and random branch 
outages.  

 
1.2. Contributions 
It is observed from the above literature survey that 
the MO-ORPD problem has been solved so far with 
lots of intelligent algorithms, but the uncertainty of 
load demand which is key factor in MO-ORPD 
problem was not investigated so far.  

Load forecasting is usually performed based on 
the past and future information of the system such as 
weather condition, temperature and demand 
requirement. But, because of the random nature of 
load, the nonlinear relationship between the load 
and climate, and lack of precision in the prediction 
of climate, always the forecasted real and reactive 
demands are inaccurate and a certain degree of 
prediction errors exist. Therefore, it is necessary to 
consider the uncertainty of loads in the MO-ORPD 
problem.  

Since this paper focuses on the uncertainties 
associated with the load, it is assumed that the 
statistical model of loads are estimated or measured. 
Due to the composite load modeling in the ORPD 
problem, the load is modeled by normal Probability 
Distribution Function (PDF) with a known mean 
and standard deviation, which are obtained from 
historical data and load forecasting programs. 

The following well suited objective functions are 
considered in this paper for MO-ORPD: 

• Minimization of real power losses  
• Minimization of voltage deviation from the 

corresponding nominal value. 
The main contributions of this study are summa-

rized as follows: 
1- The effect of uncertain nature of loads is 

studied in the MO-ORPD problem. The 
normal PDF is used for this aim. 

2- Monte Carlo simulation (MCS) is used to 
solve the probabilistic MO-ORPD problem. 

The numerical results substantiate the superiority 
of the proposed probabilistic MO-ORPD model in 
comparison with the existing heuristic algorithms. 

 
1.3. Paper organization 
The rest of this paper is organized as follows: 
Sections 2 and 3 describe the ORPD and MO-
ORPD problem formulations, respectively. Imple-
mentation of deterministic MO-ORPD, MCS-based 
MO-ORPD problems and numerical results are 
presented in Sec. 4. Finally, the findings and 
conclusions of this paper are summarized in Sec. 5. 

 
2. RPD PROBLEM FORMULATION 

A system operator usually has various objectives 
such as minimization of sum of system transmission 
loss, and voltage deviation of load buses from their 
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desired values etc. These objective functions may 
conflict with each other.  Hence, at the first, the 
confliction between them is investigated.  
 

 
2.1. ORPD objective functions 
In this paper, the objective functions are 
minimization of real power losses and voltage 
deviations from the corresponding nominal values, 
in load buses. 
 
2.1.1. Minimization of total real power losses 
With the increasing rate of energy consumption, the 
amount of power losses are increased too, making 
the reduction of power losses as an important aim 
for system operators [25]. The active power losses 
can be expressed as follows [26]. 

( ) ( )2 2
1

1
,

, 2 cos              (1)
L

k

N

k i j i j i j
k
i j

J PL x u g V V VV θ θ
=
∈Ψ

⎡ ⎤= = + − −⎣ ⎦∑       

 
2.1.2 Minimization of voltage deviations at load 
bus 
The second aim of ORPD problem is to maintain a 
proper voltage level at load buses. Any electrical 
equipment is designed for optimum operation at a 
nominal voltage. Any deviation from this specified 
voltage decreases its efficiency, damages it, and 
reduces its useful lifetime. Thus, the voltage profile 
of the system should be optimized. This is 
accomplished by minimization of sum of voltage 
deviations from the corresponding rated values at 
load buses. This objective function is stated as 
follows [27]:  

( )2
1

,
DN

spc
i i

i
J VD x u V V

=

= = −∑                           (2) 

2.2. Constraints 
2.2.1. Equality constraints 
The AC active/reactive power flows equations are 
expressed as follows. 

( ) ( )

( ) ( )
1

1

cos sin

sin cos

i i

i i

NB

G D i j ij i j ij i j
j

NB

G D i j ij i j ij i j
j

P P V V G B

Q Q V V G B

θ θ θ θ

θ θ θ θ

=

=

⎡ ⎤− = − + −⎣ ⎦

⎡ ⎤− = − − −⎣ ⎦

∑

∑

        (3) 

 
2.2.2. Operational limits   
The generators reactive power output and bus 
voltages should be hold in a pre-specified interval, 
as follows: 

min max
Gi Gi GiQ Q Q≤ ≤            (4) 
min max

i i iV V V≤ ≤            (5) 

Also, the line flow limits are as follows. 
maxS S NL≤ ∀ ∈A A A          (6) 

Besides, transformers’ tap settings must be 
restricted by their lower and upper limits as follows: 

min max
i i iT T T≤ ≤            (7) 

 
3. MO-ORPID 

Various methods are available to solve multi-
objective optimization problems such as weighted 
sum approach [28], ε-constraint method [29] and 
evolutionary algorithms [30]. In this paper, the 
proposed multi-objective model of the MO-ORPD 
is solved using the weighted sum method. In this 
method, different weights are used for the 
conflicting objective functions to generate different 
Pareto optimal solutions. Hence, the overall 
objective function (which should be minimized) is 
the weighted sum of individual objective functions 
as follows: 

[ ] ( ) ( )1 1, 2 2,min ( , ) , ,pu puJ x u wJ x u w J x u= +      (8) 

where,  

1 2 1w w+ =             (9) 

The aforementioned MO-ORPD problem is 
mathematically a nonlinear constrained optimiza-
tion problem. The decision variables including the 
control variables (i.e. u) and state variables (i.e. x) 
are as follows: 

[ ] [ ] [ ]

[ ] [ ] [ ]

, ,

, ,

T T TT
G C

T T TT
L G L

u V Q T

x V Q S

⎡ ⎤= ⎣ ⎦
⎡ ⎤= ⎣ ⎦

                          (10) 

Since the objective functions Eqs. (1) and (2), do 
not have the same dimensions, in this paper, fuzzy 
satisfying method [31] is utilized to calculate the 
normalized (or per unit) form of both individual 
objective functions in Eq. (8). In the fuzzy satisfying 
method, a fuzzy membership number is defined for 
each objective function, which maps it to the 
interval [0, 1]. More generally, the ith objective 
function, Ji is  normalized as follows. 
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min

max
min max

, min max

max

1

0

i i

i i
i pu i i i

i i

i i

J J

J JJ J J J
J J

J J

⎧ ≤
⎪

−⎪= ≤ ≤⎨ −⎪
⎪ ≥⎩

   (11) 

In this paper for objective functions Eqs. (1) and 
(2), the normalized values are expressed as: 

max

1, min maxpu pu
PL PLPL J

PL PL
−

= =
−

                  (12) 

max

2, min maxpu pu
VD VDVD J

VD VD
−

= =
−

                             (13) 

After running the MO-ORPD for different values 
of weighting factors, to select the best 
compromising solution, fuzzy satisfying method 
based on logistic membership function is used. After 
normalization the objective functions best solution is 
selected by using min-max operator. 

 
4. CASE STUDY 

All coding is implemented in General Algebraic 
Modeling System (GAMS) environment and solved 
by SBB solver. Simulations are carried out on the 
IEEE 30-bus and IEEE 118-bus systems. The IEEE 
30-bus system consists of 30 buses, which its 6 
buses are generator bus. The network has 41 
branches, 4 transformers and 9 capacitor banks [32]. 
Hence, according to Eq. (9), total number of control 
variables is 25. 

The IEEE 118-bus system consists of 118 buses, 
with 54 generator buses. Bus 69 is the slack bus. 
The network has 186 branches, 9 transformers and 
14 capacitor banks [32]. The total number of control 
variables is 78. The initial operating point of the 
systems are given in [33]. In order to clearly 
illustrate the effectiveness of proposed method, a 
comparison is made between the results of two 
different cases: 

 (A) Deterministic optimization (ignoring the 
uncertainty in load).  

 (B) Uncertainty characterization using Monte 
Carlo simulation. 

 The simulation results are described as follows.  
 
 
 

4.1. Case I – IEEE 30-bus test system 
4.1.1 Deterministic Optimization 
In deterministic case, the actual value of load is 
considered in the multi objective optimal reactive 
power dispatch problem. Real power loss and 
voltage deviation are considered as conflicting 
objective functions through Eq. (8). In order to solve 
the MO-ORPD problem by weighted sum method, 
maximum and minimum values of the expected real 
power loss (i.e. J1) and voltage deviation (i.e. J2) are 
calculated, which are 1.6012MW, 1.2577MW, 
0.034pu and 0.0011pu, respectively. 

These border values are achieved by maximize-
ing and minimizing J1 and J2 individually as the 
objective function of MO-ORPD. Table 1 shows the 
values of both objective functions for all 21 Pareto 
optimal solutions. As explained in Sec. 3, in order to 
select the best solution from the obtained Pareto 
optimal set, a fuzzy satisfying method is utilized 
here. It is evident from the last column of Table 1 
that the best solution is Solution#2, with the 
maximum weakest membership number of 0.8291. 
The corresponding PL and VD are equal to 1.316 
MW and 0.0056 pu, respectively. For the above 
Pareto optimal set, the Pareto optimal front is 
depicted in Fig. 1. In this figure, the optimal 
compromise solution (i.e. Solution#2) is also 
specified. 

 

 

Fig. 1. Pareto optimal front for the IEEE 30-bus test system 
(Deterministic case) 
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Table1. Pareto optimal solutions for the IEEE 30-bus test system (Deterministic case) 

Min (J1,pu, J2,pu) J2,pu J1,pu 
VD (or J2) 

(pu) 
PL or (J1)  

(MW) 

 
W2 

 

 
W1 

 
# 

0 0 1 0.034 1.2577 0 1 1 
0.8291 0.8632 0.8291 0.0056 1.3164 0.05 0.95 2 
0.7924 0.9149 0.7924 0.0039 1.329 0.1 0.9 3 
0.7421 0.9574 0.7421 0.0025 1.3463 0.15 0.85 4 
0.7281 0.9635 0.7281 0.0023 1.3511 0.2 0.8 5 
0.7164 0.9666 0.7164 0.0022 1.3551 0.25 0.75 6 
0.706 0.9696 0.706 0.0021 1.3587 0.3 0.7 7 
0.6964 0.9726 0.6964 0.002 1.362 0.35 0.65 8 
0.6862 0.9726 0.6862 0.002 1.3655 0.4 0.6 9 
0.6754 0.9757 0.6754 0.0019 1.3692 0.45 0.55 10 
0.6635 0.9757 0.6635 0.0019 1.3733 0.5 0.5 11 
0.6504 0.9787 0.6504 0.0018 1.3778 0.55 0.45 12 
0.5188 0.9909 0.5188 0.0014 1.423 0.6 0.4 13 
0.4967 0.9909 0.4967 0.0014 1.4306 0.65 0.35 14 
0.4713 0.9939 0.4713 0.0013 1.4393 0.7 0.3 15 
0.4416 0.9939 0.4416 0.0013 1.4495 0.75 0.25 16 
0.4047 0.9939 0.4047 0.0013 1.4622 0.8 0.2 17 
0.3531 0.997 0.3531 0.0012 1.4799 0.85 0.15 18 
0.2652 0.997 0.2652 0.0012 1.5101 0.9 0.1 19 
0.0323 1 0.0323 0.0011 1.5901 0.95 0.05 20 

0 1 0 0.0011 1.6012 1 0 21 
 

4.1.2. Uncertainty modeling using MCS 
In this section, a MCS-based procedure is 
considered to deal with the aforementioned load 
uncertainty [34]. The MCS is a numerical 
simulation procedure applied to the problems 
involving random variables with known or assumed 
probability distributions. It consists of repeating a 
deterministic simulation process, where in each 
simulation, a particular set of values for the random 
variables are generated according to their 
corresponding probability distributions. The results 
obtained in each iteration of MCS are similar to a 
deterministic simulation case. By collecting the 
results of many such MCS runs, it is possible to 
analyze the obtained results by statistical indices, 
such as mean (or average) value, standard deviation 
etc. 

In the MCS the mean value (µMCS) and standard 
deviation (σMCS) for a given variable (or parameter) 
X are calculated as follows. 

1

2

1

1

1 ( )

N

M CS i
i

N

M CS i M CS
i

X
N

X
N

µ

σ µ

=

=

=

= −

∑

∑

                    (14) 

For load buses, the random variable to be 
considered in the MCS is load demand, due to its 
stochastic behavior. It is assumed that loads are 
normally distributed with a known mean value 

(corresponding to the forecasted value) and a known 
standard deviation in each bus. It is worth to note 
that, the mean value considered for each load, is its 
forecasted value which may be the peak or non-peak 
load. The appropriate values for each random 
variable are generally achieved from its probability 
distribution function or cumulative distribution 
function. In particular, the MATLAB function 
randn provides normally distributed random 
numbers directly. In this case, 10,000 random 
samples are picked up for considering the stochastic 
behavior of loads.  

Here, for the sake of brevity just some statistical 
parameters such as mean, standard deviation and 
variance of the Pareto optimal solutions are 
reported. Table 2 gives the mean value of both 
objective functions for all 21 Pareto optimal 
solutions. Again, by using fuzzy satisfying method, 
Solution#2 is the best. The Pareto optimal front of 
the objective functions is depicted in Fig. 2. The 
numerical values on the figure are mean, Standard 
Deviation (SD) and variance (Var) of the 
compromise optimal solution (i.e. Solution#2). 

4.1.3. The obtained control variables 
For Solution#2 (i.e. the best compromise 

solution) the optimal values of control variables for 
both deterministic and probabilistic methods are 
given in Table 3. In the probabilistic case (i.e. by 
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MCS), the mean values for the control variables are 
given in this Table. One of the main advantages of 
MSC approach is that it gives the probability 
distribution of all uncertain variables. Histogram 
diagram is a proper tool for illustration of 
probability distribution. In this case, 4 randomly 
selected control variables and their corresponding 

probability distribution histograms are shown. The 
probability distributions for voltage of bus 11 (Vg11), 
real power output of generator located at bus 11 
(Pg11), reactive power compensation in bus 24 and 
transformers tap changer between bus 28-27 are 
shown in Figs.  3-6, respectively. 

Table 2. Pareto optimal solution for IEEE 30-bus test system (probabilistic case with MSC) 

Min (J1,pu, J2,pu) J2,pu J1,pu VD (or J2) (pu) PL (or J1)  MW) 

 
W2 

 

 
W1 

 
# 

0 0 1 0.033635 1.262454 0 1 1 
0.8291 0.8728 0.8291 0.005165 1.321376 0.05 0.95 2 
0.7924 0.9208 0.7924 0.003597 1.334024 0.1 0.9 3 
0.7421 0.9604 0.7421 0.002306 1.351389 0.15 0.85 4 
0.7281 0.9661 0.7281 0.002121 1.356207 0.2 0.8 5 
0.7164 0.9689 0.7164 0.002029 1.360222 0.25 0.75 6 
0.706 0.9717 0.706 0.001937 1.363836 0.3 0.7 7 
0.6964 0.9746 0.6964 0.001845 1.367148 0.35 0.65 8 
0.6862 0.9746 0.6862 0.001845 1.370662 0.4 0.6 9 
0.6754 0.9774 0.6754 0.001752 1.374376 0.45 0.55 10 
0.6635 0.9774 0.6635 0.001752 1.378491 0.5 0.5 11 
0.6504 0.9802 0.6504 0.00166 1.383008 0.55 0.45 12 
0.5188 0.9915 0.5188 0.001291 1.428379 0.6 0.4 13 
0.4967 0.9915 0.4967 0.001291 1.436008 0.65 0.35 14 
0.4713 0.9944 0.4713 0.001199 1.444741 0.7 0.3 15 
0.4416 0.9944 0.4416 0.001199 1.454979 0.75 0.25 16 
0.4047 0.9944 0.4047 0.001199 1.467727 0.8 0.2 17 
0.3531 0.9972 0.3531 0.001107 1.485494 0.85 0.15 18 
0.2652 0.9972 0.2652 0.001107 1.515808 0.9 0.1 19 
0.0323 1 0.0323 0.001015 1.596111 0.95 0.05 20 

0 1 0 0.001015 1.607253 1 0 21 

 
Fig. 2. Pareto optimal front for IEEE 30-bus test system 

(probabilistic case with MSC) 
 

 
Fig. 3. The histogram of bus 11 voltage magnitude (pu) 

 
Fig. 4. The histogram of real power output of generator located 

at bus 11 
 

 
Fig. 5. The histogram of reactive power compensation at bus 24 
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Table 3. The obtained control variables for best compromise 
deterministic and probabilistic solutions (IEEE 30-bus system) 

Control Variable Deterministic probabilistic 
Vg1(pu) 0.998 1.0002 
Vg2(pu) 0.998 1.0003 
Vg5(pu) 0.9969 0.9989 
Vg8(pu) 0.9986 1.0009 
Vg11(pu) 0.9904 0.9923 
Vg13(pu) 1.0098 1.01 
Pg1(MW) 3.507 3.5177 
Pg2(MW) 29.2979 29.8066 
Pg5(MW) 100 99.5501 
Pg8(MW) 45.3168 45.6626 
Pg11(MW) 73.4394 73.2205 
Pg13(MW) 33.1679 33.1967 

Qc10(MVar) 0 0 
Qc12(MVar) 0 0 
Qc15(MVar) 0 0 
Qc17(MVar) 10 8.05 
Qc20(MVar) 0 0.42 
Qc21(MVar) 10 10 
Qc23(MVar) 0 0 
Qc24(MVar) 10 6.2 
Qc29(MVar) 0 0 

T6-9 0.9657 0.9672 
T6-10 1.1 1.0895 
T4-12 0.9906 0.9898 
T28-27 0.9936 0.9926 

 
Fig. 6. . The histogram of tap ratio for the transformer between 

buses 27 and 28 

4.2. Case II – IEEE118 bus test system 
For the sake of brevity, in this case only the results 
obtained in probabilistic case are presented and for 
deterministic case only a summary of the obtained 
results are presented for the aim of comparison 
with MCS solutions. 

4.2.1. Uncertainty modeling using MCS 
In this case 10,000 different samples with normal 
PDF are selected. In this case, 11 different Pareto 
optimal solutions are derived. Table 4 summarizes 
the obtained results using MCS for case II. The 
corresponding Pareto front is depicted in Fig. 7.  

 
Fig. 7. Pareto optimal front for IEEE 118-bus test system 

 
4.2.2. The obtained control variables 
Table 5 summarizes the obtained control variables 
for the best compromise solutions in the 
deterministic and probabilistic approaches. It is 
noted worthy that in the probabilistic case the mean 
values for the control variables are given in this 
Table. 
 
 

 
Table 4. Pareto optimal solution for IEEE 118-bus test system (probabilistic case with MSC) 

Min (J1,pu, J2,pu) J2,pu J1,pu VD (or J2)  (pu) PL ( or J1) (MW) 

 
W2 

 

 
W1 

 
# 

0 0 1 0.2191 115.9607 0.0 1.0 1 
0.0951 0.0951 0.9956 0.1992 116.02456 0.1 0.9 2 
0.2054 0.2054 0.9805 0.1761 116.2456 0.2 0.8 3 
0.3884 0.3884 0.9192 0.1378 117.1425 0.3 0.7 4 
0.6101 0.6101 0.7952 0.0914 118.9547 0.4 0.6 5 
0.6714 0.8022 0.6714 0.0512 120.7648 0.5 0.5 6 
0.5625 0.8581 0.5625 0.0395 122.3565 0.6 0.4 7 
0.4742 0.9102 0.4742 0.0286 123.6466 0.7 0.3 8 
0.3503 0.9589 0.3503 0.0184 125.4579 0.8 0.2 9 
0.2411 0.9885 0.2411 0.0122 127.0545 0.9 0.1 10 

0 1 0 0.0098 130.5794 1.0 0 11 
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Table 5. The obtained control variables for best compromise 
deterministic and probabilistic solutions (IEEE 118-bus system) 

Control Variable Deterministic probabilistic 
Vg1 0.9902 1.028 
Vg4 1.0237 0.9985 
Vg6 1.0137 1.0145 
Vg8 1.0325 1.041 
Vg10 1.0459 1.0482 
Vg12 1.0109 1.0141 
Vg15 1.0072 1.0079 
Vg18 1.0091 1.0095 
Vg19 1.0058 1.0062 
Vg24 1.0202 1.0225 
Vg25 1.0473 1.0512 
Vg26 1.0547 1.0552 
Vg27 1.0116 1.0222 
Vg31 1.0037 1.0045 
Vg32 1.0084 1.0096 
Vg34 1.0166 1.0215 
Vg36 1.0138 1.0211 
Vg40 0.9989 1.0882 
Vg42 1.0032 1.0085 
Vg46 1.0145 1.0215 
Vg49 1.0316 1.0385 
Vg54 1.0063 1.0021 
Vg55 1.0048 1.0085 
Vg56 1.0051 1.0251 
Vg59 1.0253 1.0524 
Vg61 1.0256 1.0595 
Vg62 1.0225 1.0925 
Vg65 1.0344 1.0352 
Vg66 1.0443 1.0487 
Vg69 1.0503 1.0821 
Vg70 1.0158 1.0165 
Vg72 1.0111 1.0194 
Vg73 1.0111 1.0185 
Vg74 0.9949 0.9954 
Vg76 0.9802 0.9882 
Vg77 1.0212 1.0338 
Vg80 1.0325 1.0327 
Vg85 1.0315 1.0419 
Vg87 1.0105 1.0228 
Vg89 1.0574 1.0612 
Vg90 1.0293 1.0298 
Vg91 1.0282 1.0325 
Vg92 1.0352 1.0654 
Vg99 1.0215 1.0502 
Vg100 1.0298 1.0315 
Vg103 1.0191 1.0223 
Vg104 1.0089 1.0199 
Vg105 1.0063 1.0092 
Vg107 0.9944 0.9904 
Vg110 1.0021 1.0121 
Vg111 1.0094 1.0099 
Vg112 0.9879 0.9808 
Vg113 1.0166 1.0187 
Vg116 1.0262 1.0254 

Pg69(MW) 500.7689 550.8577 
Qc5(MVar) 0 0 
Qc34(MVar) 2.8801  
Qc37(MVar) 0 0 
Qc44(MVar) 10  

Qc45(MVar) 10  
Qc46(MVar) 10  
Qc48(MVar) 4.1331  
Qc74(MVar) 12  
Qc79(MVar) 20  
Qc82(MVar) 20  
Qc83(MVar) 10  
Qc105(MVar) 18.5654  
Qc107(MVar) 0 0 
Qc110(MVar) 10  

T8-5 0.9982 0.9987 
T26-25 1.056 1.058 
T30-17 1.0025 1.0029 
T38-37 0.9994 0.9995 
T63-59 1.0022 1.0028 
T64-61 1.0023 1.0151 
T65-66 1.0023 1.0098 
T68-69 1.0121 1.0138 
T81-80 1.0102 1.0115 

 

4.3. Discussion on the obtained results 
Since the probabilistic MO-ORPD considering the 
load uncertainty is not reported in the previous 
literature, investigation of the performance of the 
proposed method is only possible by comparison of 
the obtained results in the deterministic case with the 
previously reported results in the literature. 

Table 6 compares the obtained deterministic 
results for Cases I and II with the previously 
published works. In this table the results for 
minimization of both objective functions (J1 and J2) 
are compared with the heuristic methods.  

In Tables 1, 2 and 4 the solution#1 is the case in 
which the only real power loss is minimized. 
Solution #11 is the case where the voltage deviations 
are minimized. It is observed from Table 6 that in 
both cases the probabilistic MCS-based approach 
results better solutions than the previously published 
methods. 

 

Table 6. Comparison of obtained results for deterministic cases 
with previously published methods 

J1 Real Power Loss (MW) 

Method Proposed 
DE 
[13] 

CPVEIHBMO 
[23] 

QOTLBO 
[21] 

Case I 1.3164 4.8623 5.3243 5.2594 

Case II 119.7686 129.579 124.0983 134.4059 

J2 Voltage Deviation (pu) 

Method Proposed 
DE 
[13] 

CPVEIHBMO 
[23] 

QOTLBO 
 [21] 

Case I 0.0056 0.0911 0.87664 0.121 

Case II 0.0498 --- 0.7397 0.24 
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5. CONCLUSIONS 
This paper proposes a probabilistic approach for 
MO-ORPD problem. In this model, the technical 
constraints as well as the load uncertainty are taken 
into consideration. The stochastic nature of load is 
modeled using Monte Carlo simulations. Mixed 
integer nonlinear programming is used to solve the 
proposed probabilistic MO-ORPD problem. In order 
to evaluate the effectiveness of the proposed model, 
it is implemented on the IEEE 30-bus and IEEE-118 
bus test systems. The numerical results demonstrate 
the effectiveness of the proposed methodology. The 
main advantages of this study are summarized as 
follow: 
• Using MCS for load uncertainty modeling is a 

help system operator to have realistic decisions.  
• The solutions obtained in the deterministic case, 

are better than the results attained by heuristic 
algorithms. 

• The MCS approach gives the probability 
distribution of all output variables such as bus 
voltages, line flows etc. This is an important 
result, since the probability distribution of any 
uncertain parameter shows the statistical 
behavior of it. Hence, system operator can use 
the proposed MCS-based MO-ORPD problem 
for determination of optimal probability 
distribution of important variables such as power 
losses, voltage levels etc. “” 
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