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Abstract- An intelligent method based on wavelet neural network (WNN) is presented in this study to estimate voltage 

harmonic distortion waveforms at a non-monitored sensitive load. Voltage harmonics are considered as the main type 

of waveform distortion in the power quality approach. To detect and analyze voltage harmonics, it is not economical 

to install power quality monitors (PQMs) at all buses. The cost associated with the monitoring procedure can be 

reduced by optimizing the number of PQMs to be installed. The main aim of this paper is to further reduce the number 

of PQMs through recently proposed optimum allocation approaches. An estimator based on WNN is presented in this 

study to estimate voltage-harmonic waveforms at a non-monitored sensitive load using current and voltage at a 

monitored location. Since capacitors and distributed generations (DGs) have a special role in distribution networks, 

they are considered in this paper and their effects on the harmonic voltage waveform estimator are evaluated. The 

proposed technique is examined on the IEEE 37-bus network. Results indicate the acceptable high accuracy of the 

WNN estimator. 

Keyword: Distributed network, Power quality monitoring, Voltage harmonic, Wavelet neural network. 

1. INTRODUCTION 

Sensitive equipment such as electronic devices, which is 

now more interconnected in distribution networks and 

industrial processes, can fail or malfunction if subjected 

to a power quality (PQ) problem. One of the main 

concerns of power quality is harmonics. Harmonics result 

in an increased audible noise from motors and 

transformers, while harmonic voltage and current cause 

false trip-ping of ground fault interrupters [1]. The 

monitoring of power system identifies the PQ problems. 

PQ monitoring is often done to improve the system-wide 

PQ performance. In conventional PQ monitoring 

methods, monitors are installed at all the buses in a power 

distribution network to monitor PQ events. But reducing 

the number of monitors caused to reduce the total cost of 

monitoring systems, besides reducing redundancy of data 

being measured by monitors. New methods are required 

for selecting the minimum number and the best locations 

of monitors to reduce monitoring costs without missing 

essential waveform information [2–9]. 

A hidden Markov model was developed to classify 

power quality disturbances in [2]; similarly [3] presents a 

method to determine the optimal number and placement 

of PQMs in power systems by using genetic algorithm 

(GA) and Mallow’s Cp . Recent study [4] uses genetic 

algorithm to estimate the harmonic states of the power 

network. The methodology was shown to be effective for 

estimating voltage and current state variables. Reference 

[5] proposed a transient state estimator to detect losses 

due to poor PQ. The estimator was validated on a test 

system to detect the presence of voltage sag. Another 

estimator was proposed in [6] that improves the power 

consistency by identifying angle biases and current 

scaling errors using phasor-measurement-based state 

estimator. In [7] a novel adaptive quantum-inspired 

binary gravitational search algorithm is proposed to solve 

the optimal PQ monitor placement problem in power 

systems. In [8] a monitor positioning algorithm based on 

graph theory was developed to determine the optimal 

number and locations of PQMs in distribution system. In 

this algorithm system topology is considered to form the 

coverage matrix. Wavelet transform-based optimal PQ 

monitoring location was developed in [9]. Reference [10] 

proposes the voltage-sag waveform estimator as a virtual 

voltage-sag monitor for online remote estimation of 

voltage-sag waveforms. The optimal trade-offs between 

deployment of smart metering devices and phasor 
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measurement units for distribution system state 

estimation, meeting the state estimation accuracy limits 

at the lowest possible cost, is studied in [11,12]. Several 

methods have been proposed to identify harmonic current 

such as the methods based on the FFT in frequency 

domain and the methods based on instantaneous power 

calculation in time domain [13]. The concept of artificial 

neural networks, such as echo state networks [14] and 

adaptive wavelet neural networks [15], has been 

introduced for the detection of harmonics amplitude. But 

effects of load currents and voltage-harmonic waveform 

were not considered. These methods may be useful for 

estimation of harmonics amplitude without any sensitive 

load. 

In this paper, a voltage-harmonic waveform estimator 

is considered as an integrated part of a PQ monitor 

located upstream from the sensitive load called virtual 

voltage-harmonic monitor. PQMs have been installed 

according to suggestions in [8]. Although each sensitive 

load needs monitor, the virtual monitor can eliminate this 

monitor, thereby further reducing the optimum number 

of PQMs and costs while maintaining essential waveform 

information. The present study considers the impact of a 

distributed generation (DG) on distribution networks. 

DG is assumed in the vicinity of the sensitive load that 

makes the estimation process more difficult [16]. 

Specifically, the emerged wavelet neural network 

(WNN), which takes advantage of the self-learning 

function of neural networks and the good time-frequency 

localization characteristics of the wavelet transform 

function, is more capable of approximation and a better 

estimation performance [17]. WNN is used here as the 

voltage-harmonic waveform estimator. Three-phase 

voltages and currents at a virtual monitor are the input of 

WNN and three-phase harmonic voltages waveform are 

its output. The key features of the proposed method 

include the following: 1) The monitoring costs can be 

reduced with further reduce of the optimum number of 

power quality monitors; 2) Sensitive load needs a 

monitor to determine voltage distortions. This monitor is 

eliminated and the proposed estimator estimates the 

voltage harmonic waveforms of sensitive load. 3) Neural 

estimator based on WNN is considered as an integrated 

part of a nearest power quality monitor located upstream 

from the sensitive load.4) With a total of five parameters, 

namely, input- output layer weights, hidden-to-output 

layer weights, bias, translation, and dilation, the WNN 

offers better adaptively; 5) The WNN uses wavelet 

coefficients; therefore, when compared to the ANN, it 

provides better harmonic estimates; 6) A simple and 

reliable back propagation algorithm with adaptive 

learning rate is used for network parameter training. 

2. THE PROPOSED METHOD 

In this section, the proposed methodology to use the 

WNN as an estimator is presented. First, a brief 

description on principles and training procedure of the 

WNN is given below. 

2.1. Wawelet Neural Network (WNN)   

WNNs generally consist of a multilayer feedforward 

neural network, with one hidden layer, whose transfer 

functions are drawn from a wavelet basis function. 

WNNs have a link between network coefficients and the 

wavelet decomposition to achieve a good approximation 

quality with a reduced network size [18]. Wavelet 

decomposition follows a regular grid structure for its 

parameters; the WNN parameters are adapted from data. 

Strong self-adaptability, simple network structure, good 

fault tolerance and non-locality compared with the 

general feed-forward network and radial basis function 

network are WNNs advantages. The basic structure of a 

multiple-input multiple-output WNN is shown in Fig. 1. 

There are m nodes in the input layer, h nodes in the 

hidden layer and n nodes in the output layer. where X = 

(x1, x2, . . . , xm) is the input vector, V = (v1, v2, . . . , 

vm) is the weight matrix of connections between input 

layer and hidden layer neurons, W = (w1,w2, . . . ,wh) is 

the weight matrix of connections between hidden layer 

and output layer neurons, B = (b1, b2, . . . , bn) is the bias 

vector of the output layer neurons, and Y = (y1, y2, . . . , 

yn) is the predicted output vector of WNN. Where ɸ= 

(ɸ1, ɸ2,…, ɸh) is the output vector of the hidden layer 

node. The output of WNN can be obtained as: 

Y = W. ɸ
T + B                   (1) 

The output of hidden layer ɸ can be expressed as: 

ɸ
j

= Ψj((∑ Vijxi − dj)/m
i=1 aj)   j=1: h                         (2)  

where Ψ represents the wavelet basis function, dj is the 

translation parameter of the jth wavelon and aj  is the 

dilation parameter of the jth wavelon. There are many 

types of wavelets with different shapes and sizes. The 

selection of a suitable wavelet function is quite critical 

because the accuracy and efficiency of the WNN greatly 

depend on it. Among the variety of wavelets, the Morlet 

wavelet function is commonly used in nonlinear system 

modeling because it is computationally efficient and 

differentiable. A Morlet wavelet function can be 

expressed as: 

Ψ(x) = cos(1.75x) exp (−
x2

2
)                  (3) 



Journal of Operation and Automation in Power Engineering, Vol. 6, No. 1, Jun. 2018                                                                      15 
  

 

 
 

Fig. 1. Basic structure of a multiple-input multiple-output WNN 

In this paper, the gradient descent method is used to 

calculate the network connection weights, by which the 

parameters in WNN are more accurate than before. 

Descent method is simple and able to update each 

parameter simultaneously. However, this method is 

prone to slow convergence. To counter its slow 

convergence rate, adaptive learning rate and momentum 

terms are used, which ensures faster learning. The best 

structure of these parameters should be calculated for 

minimum error between the estimated and actual values, 

so mean square error E of WNN is defined as the cost 

function: 

 


n

k

yyE
1

2
0)(

2

1                   (4) 

where y and 0y  are the desired and actual responses of 

the nth output neuron, respectively, and n is the number 

of output neurons. The learning process extends to 

minimize the cost function. 

Network initialization:  

The selection of appropriate initial values of learning 

rate, momentum coefficient, weight, bias, translation and 

dilation is important. A heuristic initialization method 

[15] is used in this study. The selection of the number of 

hidden layers (wavelons) is also important. Few nodes in 

the hidden layer can prevent convergence, while 

increasing the number of hidden layers increases the 

computation complexity. A trial-and-error method has 

been used in this study to find the number of hidden 

layers. Some of the parameter values used in this study 

are given in Table 1. 

2.2. THE PROPOSED ESTIMATOR 

The proposed non-monitored voltage-harmonic 

waveform estimator (Fig. 2) comprises three WNNs.  

 
 

Fig. 2. The proposed method of voltage harmonic waveform estimaton 

 

 

Fig. 3. The proposed WNN-based voltage-harmonic waveform 

estimation method 

Table 1. Parameter values used in the proposed method 

Number of input 6 Dilation learning rate 0.2 

Number of output 1 Weights learning rate 0.4 

Number of hidden 

layer (wavelons) 

200 Bias learning rate 0.01 

Threshold cost 

function 

1e-5 Translation 

momentum coefficient 

0.1 

Wavelet function Morlet Dilation momentum 

coefficient 

0.1 

Translation  

learning rate 

0.2 Weights momentum 

coefficient 

0.2 

Maximum number 

of iteration 

100 Bias momentum 

coefficient 

0.05 

Each WNN has six inputs: locally measured three-

phase currents and voltages at the location of the PQ 

monitor. The single output of each WNN is the voltage 

of one phase of the sensitive load. Where Xi is the voltage 

bn 
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and current at the monitored bus 37: (X1 = VAM  , X2 =

VBM , X3 = VCM ,X4 = IAM , X5 = IBM , X6 = ICM where 

subscripts M, A, B, and C represent the measured signals 

at the monitored locations, Phases A, B, and C, 

respectively). The WNN is utilized to map the 

relationships between input Xi and output V in order to 

provide estimates of harmonic-voltage waveforms. The 

flowchart of the proposed WNN-based voltage-harmonic 

waveform estimation method is shown in Fig. 3. 

3. THE STUDIED DISTRIBUTION NETWORK 

The investigated distribution network is an IEEE-37 bus 

radial network [19]. The single diagram of this network 

is illustrated in Fig. 4. This network has 37 buses and 25 

loads. The loads are divided into three categories: 

commercial, residential and industrial types. Simplified 

version of the profiles shown in Fig. 5. The details of six 

loading combinations (LC1 to LC6) are given in Table 2. 

In this work current harmonic sources are selected 

according to the load profile and simulation done for 

different harmonic orders [23]. General characteristics of 

load harmonics and compensated current with three types 

of modulation systems for pure resistive and inductive 

loads are presented in [24]. 

 

 
Fig. 5 Simplified version of the load profiles 

 

Table 2. Six different load combinations from simplified hourly load 

profiles 

Load 

Category 

Loading combination 

LC1 LC2 LC3 LC4 LC5 LC6 

Residential 

(%) 

43.2

7 

43.5

8 

76.5

2 

61.8

7 

100 55.8 

Commertial(%

) 

58.3 58.3 58.3 58.3 100 69.5

3 

Industrial (%) 64.3

5 

100 100 100 71.8

6 

71.8

6 

Therefore, in this paper the current harmonic source is 

assumed as a spectrum with orders 3, 5, 7, 9, and 11 

proper to the fundamental component of current 

corresponding to Table 3 [25, 26]. 

 

 

Fig. 4. The IEEE 37-bus distribution network with the sensitive load and a DG
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Table 3. Harmonic currents as a percentage of the fundamental 

Harmonic current components 

Load category 

11 9 7 5 3 

5 7 13 40 75 
Commertial and 

residential 

7 4 10 21 9 Industrial 

An industrial load with high sensitivity to voltage 

harmonics is assumed at bus 40 as the component L59. A 

converter-based DG with a gas microturbine system 

(GMTS) is assumed at bus 41 in the vicinity of the 

sensitive load. Modelling of the GMTS and connection 

to the grid are adopted from [10, 20]. On the other hand, 

it is completely normal that the capacitor bank is used in 

the power systems network. In this paper it is assumed 

that a 200-kvar capacitor is located at bus 30 [10] and is 

used in the grid from 8:15 am to 22:15 pm. So there is a 

capacitor bank in LC3, LC4, and LC5 profiles. The 

optimal number of PQMs and the locations on the IEEE-

37 bus distribution network are determined in [8]. These 

results are used here. So, 25 PQMs should be placed at 

25 components including L1, L2, L4, L5, L9, L10, L15, 

L16, L17, L21, L22, L27, L28, L30, L31, L36, L39, L42, 

L45, L47, L48, L49, L54, L56 and L58. An industrial 

load with high sensitivity to voltage harmonics is 

assumed at bus 40 as the component L59.  As this load is 

sensitive, conventionally a monitor is needed to be 

installed either at its service entrance or at the component 

L58. This monitor is eliminated in our study, and voltage-

harmonic waveform of the sensitive load is estimated by 

the nearest monitor. For this, the monitor at the 

component L54 is moved to the component L55 so as to 

be upstream from the sensitive load. In this paper, the 

harmonic source is assumed as a current source which 

injects different orders of the current harmonic 

component into the power network. The harmonic 

currents flowing through the system impedance result in 

harmonic voltages at the load [21, 22]. 

It is also common to use a single quantity, the total 

harmonic distortion (THD), as a measure of the effective 

value of harmonic distortion. 

1

1

2max

M

M

THD

h

h
h




                        (5) 

where Mh is the rms value of harmonic component h of 

the quantity M.  

4. RESULTS AND DISCUSSION 

The distribution network and DG system were modeled 

in Matlab/Simulink on a desktop personal computer (PC) 

having an Intel Core i5 Duo 2.93-GHz processor and 4-

GB random-access memory.  

4.1. Simulation method  

In this paper, the harmonic source was assumed as a 

current source. The current distortion for many nonlinear 

devices is relatively constant and independent of 

distortion in the supply system. Moreover, the main aim 

of this research is to estimate the harmonic voltage 

waveform at a non-monitored sensitive load. The 

affectivity of the harmonic component orders of more 

than 11 is negligible. Thus, in this paper, orders lower 

than 11 were assumed. According to the investigated 

systems topology, the changes that may occur are as 

follows: to be or not to be the capacitor, the DG, loads, 

and lines. Harmonic source location can be determined 

with reference to harmonic intensity and THD difference 

between the monitored bus and sensitive load. It is 

important for the voltage-harmonic waveform estimator 

to discriminate between different effects of three kinds of 

harmonic distortion—one set containing all harmonic 

distortion in the area extended from the sensitive load to 

the voltage-harmonic waveform estimator including the 

DG in vicinity of the sensitive load, called here virtual 

monitoring area (VMA), and the second set comprising 

all harmonic distortions outside the VMA, and the last 

kind is harmonic pollution at a sensitive load. The VMA 

contains the bus whose measured voltages and currents 

are inputs to the voltage-harmonic waveform estimator. 

Owing to their direct effects, all the buses in the VMA are 

important for to be considered as harmonic source 

location in simulations. 

To reduce the number of simulations for harmonic 

source location outside the virtual monitoring area, a 

large number of trends of voltage THD variations at 

buses 37 and 40 were evaluated under different 

conditions. Typical results are only presented here to 

show how the final harmonic source location selections 

are achieved. The THD difference between buses 40 and 

37 varied in a certain range due to harmonic source 

location in different load demands, harmonic orders, and 

network topologies. The final selection of harmonic 

source location is achieved by a proper interpolation from 

the curve of THD difference between buses 40 and 37. 

Fig. 6 demonstrates voltage THD magnitudes at buses 37 

http://joape/
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and 40, as well as their THD differences which were 

evaluated for the current seventh harmonic source at each 

bus for LC4 including capacitor, all loads, lines, and DG. 

Besides, Fig. 7 shows the above result and condition, 

without DG. For the case with DG, the seventh harmonic 

source outside the VMA and non-zero voltage THD 

differences, only few buses including buses 01 and 35 

could be selected by proper interpolations for the results 

of other locations as shown in Fig. 6. For the case without 

DG as shown in Fig. 7, the THD difference outside the 

VMA was zero.  

 
Fig. 6 Effects of locations of harmonic source on voltage THD 

magnitudes at buses 37 and 40 and their difference for LC4 (with DG) 

 
Fig. 7 Effects of locations of harmonic source on Voltage THD 

magnitudes at buses 37 and 40 and their difference for LC4 (without 

DG) 

Therefore, the selected number of buses can be even 

fewer, e.g. two buses. After the evaluation and 

investigation of a large number of voltage THD 

difference trends, the final selection includes buses 01, 

08, 12, 13, and 35 as current harmonic source locations 

outside the VMA for cases with DG and without DG. It 

is noted that the buses inside the VMA are also 

considered harmonic source locations for simulations. 

However, bus 40 is ignored because this bus is the 

location of sensitive load and should be prevented from 

any harmonic distortion.  

The current harmonic sources were placed at buses 01, 

08, 12, 13, 35, 41, 11, 37, and 38 inject harmonic 

distortion with orders 3, 5, 7, 9, and 11. Figure. 8 

illustrates voltage THD difference between monitored 

and non- monitored buses (37, 40) for load profiles LC1 

to LC6 (a 200-kvar capacitor is considered at LC3, LC4, 

and LC5 profiles). It must be noted that, in Fig. 8, the 

voltage THD difference profile is located between those 

of LC4 and LC5for LC3, and between those of LC1 and 

LC2for LC6. Therefore, according to the interpolation 

concept, the voltage THD difference curve for LC3 and 

LC6 can be attained from other profiles. 

Considering the above points, current harmonic 

sources were placed at buses 01, 08, 12, 13, 35, 41, 11, 

37, and 38, and load profiles at LC1, LC2, LC4, and LC5, 

i.e. two without the capacitor and two with the capacitor. 

The waveforms of currents and voltages at the bus 37 and 

voltages at the bus 40 were collected for the purpose of 

training, validating and testing the WNN.   

 
Fig. 8 Voltage THD difference profiles for LC1-LC6 at buses 37 and 

40 for the described harmonic spectrum 

4.2. Testing the proposed estimator 

For the purpose of training, validating and testing the 

WNN, the currents and voltage waveforms at the 

monitored bus (L55) and voltage waveforms at the non-

monitored sensitive load (L59) of the nominal frequency 

of 60 Hz were collected with the sampling frequency of 

3 kHz. 80% of the data is used for training and validation 

purposes while the rest is used for testing. For purposes 

of evaluation, the proposed method’s minimum square 

error MSE is used: 

 


n

k

yy
n

MSE
1

2
0 )(

1
         (6) 
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output; n is the number of data. 

In this paper, input data were arranged as an n*6 matrix 

where matrix columns are phase voltages and current 

samples at monitored bus 37. Besides, n, the number of 

matrix row, is the number of simulated data after 

sampling. The desired output was arranged as an n*3 

matrix where matrix columns are phase voltages sampled 

at non-monitored bus 40. The MSE and mean absolute 

error (MAE) results of the proposed WNN technique for 

test signals are given in Table 4. MAE can be expressed 

as: 

 


n

k
oyy

n
MAE

1

1
                        (7) 

Also, the proposed wavelet neural network is tested in 

buses 10, 24, 29. We assume the nearest PQ monitor to 

these buses are placed at buses 34, 20 and 3 respectively. 

For training and testing purposes, voltages and currents 

of the monitor location and voltages of buses 10, 24, 29 

are collected. The total numbers of each signal is 200. 

These 200 signals are divided into two sets for training 

and testing purposes. The MSE results of the proposed 

WNN technique for estimation of harmonic voltage 

waveform of buses 10, 24, 29 are given in Table 5. 

Moreover, the actual and estimated voltages of 

sensitive load are presented in Figs. 9–10 for further 

comparisons: 

Assuming the LC1 profile (without DG) with the 

sustained disconnection of the lines L4, L9 and L7, three 

phase harmonic source, comparison between estimated 

and actual voltages of phase a is depicted in Fig. 9(a). In 

this case MSE is
4*873.6 e . Figure. 9(b) illustrates the 

error. For further comparisons, Fig. 9(c) shows the 

enlarged phase a voltage-harmonic waveform.  

Assuming the LC4 profile (with DG) with the 

sustained disconnection of the lines L7, L9 and load L45, 

the single-phase harmonic source, estimated and actual 

voltages of phase a are depicted in Fig. 10(a). Fig. 10(b) 

shows the enlarged phase a voltage-harmonic waveform 

with depicted high accuracy of the estimated waveform, 

in this case MSE is
5*1579.1 e . 

Assuming the LC4 profile (with DG) with the 

sustained disconnection of the lines L27, L9 and load 

L30, the two-phase harmonic source, comparison 

between estimated and actual voltages of phase a are 

depicted in Fig. 11(a). In this case MSE is
5*3040.1 e . 

For more comparison, Fig. 11(b) shows the enlarged 

phase a voltage-harmonic waveform and Fig. 11(c) 

illustrates the error.  

Assuming the LC5 profile (with DG) with the 

sustained disconnection of the lines L9, L29 and L48, 

two-phases harmonic source, estimated and actual 

voltages of phase a is depicted in Fig. 12 (a), also Figs. 

12(b) and 12(c), show enlarged phase a voltage-harmonic 

waveform and estimated error. In this case MSE is

5*1104.3 e . 

Table 4. MSE and MAE evaluated for the proposed WNN-based 
voltage-harmonic waveform estimation method 

Training MSE 

error 

Training MAE 

error 

Test MSE 

error 

Test MAE 

error 

2.6683e-006 0.0011 0.0067 0.0169 

 

Table 5. MSE evaluated for estimation of harmonic voltage waveform 
of buses 10, 24, 29 

Bus no. Training MSE error Test MSE error 

10 1.9582e-006 0.0096 

24 2.7951e-006 0.0091 

29 2.9911e-006 0.0084 

Multilayer perceptron neural network (MLPNN) and 

radial basis function neural network (RBFNN) were 

trained, validated and tested with the same training, 

validating and testing data sets of this study. The numbers 

of hidden layer neurons in the case of RBFNN and 

MLPNN were respectively 200 and 250. The MSE values 

of training and validating are 0.0011, and for testing the 

value is 0.0761 for MLPN. MSE values of training and 

validating are 6.02e-4, and for testing the value is 0.0541 

for RBFNN. Obviously, the ESNs present more accurate 

estimations. 

5. CONCLUSIONS 

To further reduce the number of PQMs, an intelligent 

method based on WNN model was proposed in this paper 

as a virtual voltage-harmonic monitor for the estimation 

of voltage harmonic waveforms at a non-monitored 

sensitive load with a grid-connected DG in its vicinity. 

The estimator is considered as an integrated part of a PQ 

monitor placed at another component of the distribution 

network upstream from and near the sensitive load. The 

proposed method was examined on the IEEE 37-bus 

network and showed a high accuracy of estimations. 

Thus, using the proposed method, the optimal number of 

PQMs where obtained by recently proposed approaches 

will be reduced. 
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(a) 

 

(b) 

 

(c) 

Fig. 9 Waveforms for simulation result of one test sample: (a) 

comparison between estimated and actual sampled voltages of 

phase A, (b) estimation error, (c), enlarged phase A voltage 

harmonic waveform 
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 (b) 

 

(c) 

Fig. 10 Waveforms for simulation result of one test sample: (a) 

comparison between estimated and actual sampled voltages of 

phase A, (b) enlarged phase A voltage harmonic waveform, (c) 

estimation error. 
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(a) 

 

(b) 

 

(c) 

Fig. 11 Waveforms for simulation result of one test sample: (a) 

comparison between estimated and actual sampled voltages of 
phase A, (b) enlarged phase A voltage harmonic waveform, (c) 

estimation error. 

 
 

 

 

(a) 

 

(b) 

 

(c) 

Fig. 12 Waveforms for simulation result of one test sample: (a) 

comparison between estimated and actual sampled voltages of 
phase A, (b) enlarged phase A voltage harmonic waveform, (c) 

estimation error. 
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