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Abstract- Virtual power plant (VPP) can be studied to investigate how energy is purchased or sold in the presence of 

electricity market price uncertainty. The VPP uses different intermittent distributed sources such as wind turbine, 

flexible loads, and locational marginal prices (LMPs) in order to obtain profit. VPP should propose bidding/offering 

curves to buy/sell from/to day-ahead market. In this paper, robust optimization approach is proposed to achieve the 

optimal offering and bidding curves which should be submitted to the day-ahead market. This paper uses mixed-integer 

linear programming (MILP) model under GAMS software based on robust optimization approach to make appropriate 

decision on uncertainty to get profit which is resistance versus price uncertainty. The offering and bidding curves of 

VPP are obtained based on derived data from results. The proposed method, due to less computing, is also easy to trace 

the problem for the VPP operator. Finally, the price curves are obtained in terms of power for each hour, which 

operator uses the benefits of increasing or decreasing market prices for its plans. Also, results of comparing 

deterministic and RO cases are presented. Results demonstrate that profit amount in maximum robustness case is 

reduced 25.91 % and VPP is resisted against day-ahead market price uncertainty. 

Keyword: Virtual power plant, Electricity market uncertainty, Robust optimization approach, Bidding and offering 

curves, Distributed energy resources. 

 

NOMENCLATURE 

DERs Distributed energy resources 

DGs Distributed generators 

EMS Energy management system 

LMP Locational marginal prices 

MILP Mixed-integer linear programming 

ODS Optimal dispatch strategy 

RO Robust optimization 

RES Renewable energy sources 

SG Stochastic generation 

VPP Virtual power plant 

1. INTRODUCTION 

Nowadays, due to the climate change and environmental 

issues caused by the using fossil fuels, as well as the 

depletion and cost of non-renewable resources, the 

electric power industry is driven towards using 

renewable energy sources (RES) such as wind, solar and 

other renewable energy resources [1]. This issue in the 

electric power industry provides the intelligent power 

system with more utilization of renewable sources 

which results as following; reduction in energy losses, 

improved reliability, optimal control and utilization of 

the power system [2]. With the proliferation of RERs, 

despite the advantages of conventional power plants, 

there are problems with exploiting these resources in the 

power system [3]. These problems, which are caused by 

high volatility production, have created technical and 

commercial problems [4]. Technical problems indicate 

that the dynamic behavior of the power system and 

commercial problems are also seen in the electricity 

market participation segment. Today, one of the 

challenges facing the world of electricity in controlling 

and operating the distributed energy resources (DERs) is 

with problems raised, so it is essential to consider 

system performance improvements. Therefore, 

developing new approaches is essential in order to 

manage production and creating the right infrastructure 

for participation in the electricity market. 
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1.1. Literature review 

Smart distribution systems use a combination of 

distributed generators (DGs) and energy storage devices 

that are effective at the peak demand. Also, these 

systems utilize renewable sources which can be 

different as geographic location changes [3]. To create a 

sustainable power system with combination of 

distributed energy resources (DERs) and RESs, several 

strategies are presented by considering the current 

system with conventional units [4]. Virtual power plant 

(VPP) is defined as a management part of the 

distribution system which includes DER, storage, 

flexible loads, plug-in hybrid electric vehicle (PHEV) 

and electricity consumers by establishing energy 

management system (EMS) center with intelligent 

strategy [5]. Minimizing generation costs and 

greenhouse gas emissions, and maximizing profits or a 

combination of these purposes can be reached by using 

VPP [6]. The planning which takes place in EMS can be 

complicated with considering uncertainties, time 

constraints and non-linearity [7]. 

It is worth noting that another solution to address the 

above problems is the word microgrid. So that the 

microgrid, like VPP, is a program for integrating 

distributed generations (DGs) and storing energy in the 

smart grid. But the difference between VPP and 

microgrid is that the microgrid is a subset of VPP or 

inside VPP that can work as an island or connected to 

VPP [8]. 

The VPP is divided into two types of commercial VPP 

(CVPP) and technical VPP (TVPP) from two different 

perspectives of economic and technical aspects. 

Participation in the market and attaining maximum 

profits from different markets is the CVPP’s goal while 

TVPP demodulates the technical limitations of the 

existing network to achieve these goals [9],[10].  

Coalition problem or DERs integration problem 

considering the VPP is studied in some researches 

which their results show the advantage of DERs 

aggregation in attaining maximum profit [11]. 

EMS in the VPP performs the optimal dispatch strategy 

(ODS) that is responsible for regulation and control of 

power dispatch. Maximizing the profit and minimizing 

VPPs cost are the ODS’s goal, The ODS feature makes 

EMS a two-way communication between real-time data 

entry from DER to EMS and the output of simultaneous 

control signals from EMS to DER [12]. ODS should be 

able to predict the pricing schedule for the electricity 

market by considering the electricity market price, retail 

electricity price, the expected load, and an error [13]. 

Using the meteorological system with the new 

meteorological data measurements to better prediction 

of stochastic generation (SG) resources in order to boost 

profits is another VPP mechanism [14]. In [15], energy 

management of renewable-based microgrid based on 

information gap decision theory is studied. Furthermore, 

bidding strategy of energy hub system is provided in 

[16]. 

In practice, all the required information for the DER 

should be transferred to the EMS control center, which 

this process will meet telecommuting problems. By 

considering relation between small scale generation, 

storages and flexible loads with control center, EMS is 

known as a heart of the VPP [17]. The cost and benefits 

arising from the formation of the VPP and the 

penetration of flexible loads and PHEV on the network 

are shown through analysis in [18]. A new mechanism 

to incentivize and encourage DG owners is prediction 

report of their generation in VPP [19]. 

While estimates are doubtful, most researches 

acknowledge the benefits of combining DERs with the 

VPP help. However, risk management is necessary for 

VPP due to market prices and uncertainties which are 

caused by renewable energy resources.  In order to self-

scheduling of VPP, a robust optimization-based 

decision-making tool is applied in [20]. In [21], robust 

planning of smart distribution network in the critical 

situation considering the load and wind energy 

generation uncertainties in the presence of demand 

response programs for customers is investigated. 

EMS has significant uncertainties due to the decisions 

made. Robust optimization (RO) approach is a non-

probabilistic method which is used to obtain market 

price uncertainties. Considering the worst-case analysis, 

this approach is a safe procedure to resist against risk 

and shows a conservative state. 

1.2. Novelty and contributions 

Using the stochastic optimization model imposes more 

computational burden due to the high number of 

scenarios. Accordingly, a robust optimization-based 

model is proposed in this paper to manage the risk 

associated with market price uncertainty. Robust 

optimization technique is a new non-probabilistic 

method to control uncertainties. The VPP by using RO 

method can scientifically decide according to its 

contract with DG owners and how to buy or sell from or 

to the market due to uncertainties. The day-ahead 

market price knowledge is the key component to attain 

maximum revenue. Although VPP’s profit is slightly 

reduced due to uncertainties in spite of using RO, but it 

resists against market price uncertainties. In this case, 

the bidding and the offering curves are proposed for 

each hour. 
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According to the mentioned explanation, the novelty 

and contributions of proposed work are provided as 

follows: 

1. Virtual power plant (VPP) is scheduled in the 

presence of price uncertainty. 

2. Robust optimization tool is proposed to model price 

uncertainty. 

3. Locational marginal prices are used as an 

opportunity to increase profits. 

4. Robust scheduling of VPP is obtained via robust 

optimization approach in comparison with deterministic 

method. 

5. Bidding and offering curves of VPP are obtained to 

bid/offer to the market. 

1.3. Paper organization 

Rest of this paper is organized as follows: A 

deterministic formulation of the VPP is presented in 

Section 2. Robust optimization-based formulation of 

VPP is presented in Section 3. Required data are 

presented in Section 4. Comparison results between 

deterministic and robust optimization as well as optimal 

bidding and offering strategies are presented in Section 

5. Finally, this paper is concluded in Section 6. 

2. Deterministic formulation of VPP 

The VPP is modeled by using the integration of different 

generation units such as DGs, SGs and flexible loads. 

VPPs should buy energy for VPP-affiliated customers 

and sell additional generation of DG sources to the 

market by using different LMPs to attain more revenue. 

All the taken decisions are based on the VPPs 

perspective in which the DG owners have not interfered 

on the decisions. In other words, uncertainties of wind 

and sunlight, besides other environmental factors are on 

the DG owners responsibility [20]. 

The profit function of VPP is formulated in Eq. (1) 

which should be maximized. 

𝑀𝑎𝑥 𝑍𝑝𝑟𝑜𝑓𝑖𝑡
  =∑((𝑃𝑡

𝐷 + 𝐵𝐶𝑡
 ) × 𝜆𝑡

𝐷𝑆𝑂.𝑐ℎ𝑎𝑟𝑔𝑒

𝑇

𝑡=1

+ ∑ 𝑃𝑘𝑡
𝑈𝑝𝑠𝑡𝑟𝑒𝑎𝑚

𝑘𝜖𝐺𝑆𝑃

× 𝜆𝑘𝑡
𝐿𝑀𝑃

− ∑(𝑃𝑖𝑡
𝐷𝐺 × 𝜆𝑖

𝐷𝐺.𝑐𝑜𝑠𝑡 + 𝑦𝑖𝑡
𝐷𝐺.𝑠𝑡𝑎𝑟𝑡 

𝑖𝜖𝐷𝐺

× 𝜆𝑖
𝐷𝐺.𝑠𝑡𝑎𝑟𝑡𝑐𝑜𝑠𝑡 + 𝑍𝑖𝑡

𝐷𝐺.𝑠ℎ𝑢𝑡 

× 𝜆𝑖
𝐷𝐺.𝑠ℎ𝑢𝑡𝑐𝑜𝑠𝑡 ) − ∑ 𝑃𝑗𝑡

𝑆𝐺

𝑗𝜖𝑆𝐺

× 𝜆𝑗
𝑆𝐺.𝑐𝑜𝑠𝑡 

− 𝑃𝑡
𝐹𝐿 × 𝜆𝑡

𝐹𝐿.𝑐𝑜𝑠𝑡) 

(1) 

where  𝑍𝑝𝑟𝑜𝑓𝑖𝑡
  is the expected revenue from whole 

system minus operational and maintenance costs or total 

profit for a specific period. The first term is total 

revenue from sold energy to ordinary and contracted 

customers where 𝑃𝑡
𝐷 is the total active power demand of 

VPP’s customers in time period t (MW), 𝐵𝐶𝑡
  is 

bilaterally contracted energy delivery in time period t 

(MWh),  𝜆𝑡
𝐷𝑆𝑂.𝑐ℎ𝑎𝑟𝑔𝑒

 is power price that is charged to 

local VPP customers in time period t ($/MWh), and T is 

set of time periods. The second term is income/cost 

from selling/buying energy from/to the upstream grid 

with different LMPs with different market prices. In 

Eq.(1), 𝑃𝑘𝑡
𝑈𝑝𝑠𝑡𝑟𝑒𝑎𝑚

  is VPP’s active power exchange with 

the day-ahead electricity market at the GSP k in time 

period t (MW), 𝜆𝑘𝑡
𝐿𝑀𝑃   is day-ahead market price at the 

GSP k (as LMP) in time period t ($/MWh), GSP is set 

of upstream grid supply points for transaction with the 

electricity wholesale market and K is index of upstream 

grid supply or transaction points. The third term shows 

generation, start-up and shut-down costs of DG units. 

where 𝑃𝑖𝑡
𝐷𝐺  is generation of dispatchable DG unit i in 

time period t (MW), 𝜆𝑖
𝐷𝐺.𝑐𝑜𝑠𝑡 is generation cost of 

dispatchable DG unit i ($/MWh), i is index of 

dispatchable DGs, 𝑦𝑖𝑡
𝐷𝐺.𝑠𝑡𝑎𝑟𝑡  is a binary variable which 

is equal to 1 if unit i is started-up at the beginning of 

period t, 𝜆𝑖
𝐷𝐺.𝑠𝑡𝑎𝑟𝑡𝑐𝑜𝑠𝑡 is startup cost of dispatchable DG 

unit i ($), 𝑍𝑖𝑡
𝐷𝐺.𝑠ℎ𝑢𝑡  is 0/1 variable which is equal to 1 if 

unit i is shut-down at the beginning of period t, 

𝜆𝑖
𝐷𝐺,𝑠ℎ𝑢𝑡𝑐𝑜𝑠𝑡  is shut down cost of dispatchable DG unit i 

($) and DG is set of dispatchable DGs active in the VPP 

coalition. The forth section presents installing, starting 

and maintaining of SG units and the final term is related 

cost to limited flexible load or disconnection of the load. 

where 𝑃𝑡
𝐹𝐿 is the curtailment value of flexible loads in 

time period t (MW) and 𝜆𝑡
𝐹𝐿.𝑐𝑜𝑠𝑡  is cost of a flexible load 

to curtail its demand in time period t ($/MWh).  

As the VPP does not have precise scheduling or 

prediction of uncertainty parameter, it is possible to face 

lack of generation which in this case, wholesalers of the 

market are one of variables for helping VPP to supply 

costumers load. This issue can be harmful to VPP due to 

bilateral contracts with appointed prices [22].  

The objective function should be maximized subject 

to technical constraints which are presented as follows:    

The amount of VPP power exchange with the upstream 

grid is limited to required amount and maximum 

capacity of connected feeder to the upstream grid. 
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𝑃𝑘𝑡
𝑈𝑝𝑠𝑡𝑟𝑒𝑎𝑚

≥ −min {max{0. (𝑃𝐷.𝑚𝑎𝑥

− ∑ 𝑃𝑖
𝐷𝐺.𝑚𝑖𝑛

𝑖𝜖𝐷𝐺

− ∑ 𝑃𝑗
𝑆𝐺.𝑚𝑖𝑛

𝑗𝜖𝑆𝐺

− 𝑃𝐹𝐿.𝑚𝑖𝑛  )} . 𝑃𝑘
𝑆𝑆𝑚𝑎𝑥}     ∀𝑘. 𝑡 

(2) 

 

𝑃𝑘𝑡
𝑈𝑝𝑠𝑡𝑟𝑒𝑎𝑚

≤ min {max{0. ( ∑ 𝑃𝑖
𝐷𝐺.𝑚𝑎𝑥

𝑖𝜖𝐷𝐺

+ ∑ 𝑃𝑗
𝑆𝐺.𝑚𝑎𝑥

𝑗𝜖𝑆𝐺

+ 𝑃𝐹𝐿.𝑚𝑎𝑥

− 𝑃𝐷.𝑚𝑖𝑛 )} . 𝑃𝑘
𝑆𝑆𝑚𝑎𝑥}     ∀𝑘. 𝑡  

(3) 

The constraint (2) is used when the VPP wants to buy 

from the grid. In Eq. (2), 𝑃𝐷.𝑚𝑎𝑥  is VPP’s customers 

maximum demand (MW), 𝑃𝑖
𝐷𝐺.𝑚𝑖𝑛  is minimum DG 

capacity limit for active power (MW),  𝑃𝑗
𝑆𝐺.𝑚𝑖𝑛  is 

minimum SG capacity limit for active power (MW), 

𝑃𝐹𝐿.𝑚𝑖𝑛  is lower limit for curtailing on flexible loads 

(MW), and  𝑃𝑘
𝑆𝑆𝑚𝑎𝑥  is the rating of the GSP k for 

exchanging power with the main grid (MVA). 

The constraint (3) is enabled when the VPP sells 

power to any of the upstream grid points. In Eq. (3), 

𝑃𝑖
𝐷𝐺.𝑚𝑎𝑥  is maximum DG capacity limit for active 

power (MW), 𝑃𝑗
𝑆𝐺.𝑚𝑎𝑥 is installed capacity of stochastic 

DG unit j (MW), 𝑃𝐹𝐿.𝑚𝑎𝑥  is upper limit for curtailing on 

flexible loads (MW) and 𝑃𝐷.𝑚𝑖𝑛  is minimum value of 

VPP’s customers demand (MW). 

The constraint (4) indicates that the required amount 

of contractual and requested power in the VPP must be 

met. 

∑ 𝑃𝑖𝑡
𝐷𝐺

𝑖𝜖𝐷𝐺

+ ∑ 𝑃𝑗𝑡
𝑆𝐺

𝑗𝜖𝑆𝐺

+ 𝑃𝑡
𝐹𝐿 − ∑ 𝑃𝑘𝑡

𝑈𝑝𝑠𝑡𝑟𝑒𝑎𝑚

𝐾𝜖𝐺𝑆𝑃

≥ 𝑃𝑡
𝐷 + 𝐵𝐶𝑡

                      ∀𝑡 
(4) 

where, 𝑃𝑗𝑡
𝑆𝐺  is generation of stochastic DG unit j and 

in time period t (MW). 

The constraints (5) and (6) show range of variation in 

flexible loads at each time period which is considered as 

reduction in demand or load interruption. 

𝑃𝑡
𝐹𝐿 ≤ 𝑃𝑡

𝐹𝐿.max             ∀𝑡 (5) 

 

𝑃𝑡
𝐹𝐿 ≥ 0          ∀𝑡 (6) 

Amount of power change in dispatchable power 

generation units is shown by constraints (7) and (8). 

𝑃𝑖𝑡
𝐷𝐺 ≤ 𝑃𝑖

𝐷𝐺.𝑚𝑎𝑥 × 𝑣𝑖𝑡
𝐷𝐺          ∀𝑖. 𝑡 (7) 

 

𝑃𝑖𝑡
𝐷𝐺 ≥ 𝑃𝑖

𝐷𝐺.𝑚𝑖𝑛 × 𝑣𝑖𝑡
𝐷𝐺           ∀𝑖. 𝑡 (8) 

where 𝑣𝑖𝑡
𝐷𝐺  is 0/1 variable which is equal to 1 if unit i 

is online in time period t. 

The constraints of (9) and (10) show the amount of 

the SG units’ capacity. 𝑃𝑗𝑡
𝑆𝐺.𝑚𝑎𝑥  is assumed as a random 

parameter which might be predicted by SG owners [18]. 

𝑃𝑗𝑡
𝑆𝐺 ≤ 𝑃𝑗

𝑆𝐺.𝑚𝑎𝑥 × 𝑣𝑗𝑡
𝑆𝐺            ∀𝑗. 𝑡 (9) 

 

𝑃𝑗𝑡
𝑆𝐺 ≥ 0                                    ∀𝑗. 𝑡 (10) 

Constraints (11) and (12) show the ramp up/down of 

dispatchable unit output. 

𝑃𝑖𝑡
𝐷𝐺 − 𝑃𝑖(𝑡−1)

𝐷𝐺 ≤ 𝑟𝑖
𝑢𝑝
              ∀𝑖. 𝑡 (11) 

 

𝑃𝑖𝑡
𝐷𝐺 − 𝑃𝑖(𝑡−1)

𝐷𝐺 ≥ −𝑟𝑖
𝑑𝑜𝑤𝑛       ∀𝑖. 𝑡 (12) 

Constraints (13) and (14) model start-up and shut-

down statuses of dispatchable units and prevent being 

simultaneously on and off. 

𝑦𝑖𝑡
𝐷𝐺.𝑠𝑡𝑎𝑟𝑡 − 𝑧𝑖𝑡

𝐷𝐺.𝑠ℎ𝑢𝑡 = 𝑣𝑖𝑡
𝐷𝐺 − 𝑣𝑖(𝑡−1)

𝐷𝐺           ∀𝑖. 𝑡 (13) 

 

𝑦𝑖𝑡
𝐷𝐺.𝑠𝑡𝑎𝑟𝑡 + 𝑧𝑖𝑡

𝐷𝐺.𝑠ℎ𝑢𝑡 ≤ 1          ∀𝑖. 𝑡 (14) 

where  𝑦𝑖𝑡
𝐷𝐺.𝑠𝑡𝑎𝑟𝑡 is 0/1 variable which is equal to 1 if 

unit i is started-up at the beginning of period t and 

𝑧𝑖𝑡
𝐷𝐺.𝑠ℎ𝑢𝑡 0/1 variable which is equal to 1 if unit i is shut-

down at the beginning of period t. 

As said before, bad predictions of SG units can cause 

damage to the VPP. To cope with these problems, VPP 

will assign part of dispatchable units, in small scale, as a 

secure margin. Therefore, need for power storage will 

be increased relatively, due to increase in renewable 

units. 
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∑(𝑃𝑖
𝐷𝐺.𝑚𝑎𝑥

𝑖𝜖𝐷𝐺

− 𝑃𝑖𝑡
𝐷𝐺 + 𝑃𝑡

𝐹𝐿

≥ 𝜁 0 × (∑ 𝑃𝑗𝑡
𝑆𝐺

𝑗𝜖𝑆𝐺

) + 𝜁 𝑡𝑜𝑡𝑎𝑙

× (𝑃𝑡
𝐹𝐿 + ∑ 𝑃𝑖𝑡

𝐷𝐺

𝑖𝜖𝐷𝐺

)       ∀𝑡 

(15) 

In Eq. (15), 𝜁 0 is VPP’s surplus reserve (%), 𝜁 𝑡𝑜𝑡𝑎𝑙  is 

percentage of the total generation of dispatchable units 

and curtailment option of the flexible loads in the VPP 

coalition (%), 𝜁 0   is percentage of excessive storing 

arising from predictions of compensating damages from 

SG units which is equal to 5% and 𝜁𝑡𝑜𝑡𝑎𝑙  is small 

percentage of total generation of dispatchable units and 

flexible loads which is considered equal to 2%  [23]. 

The constraints (16) and (17) provide the minimum 

up/down time limitations for dispatchable units. 

𝑣𝑖𝑡
𝐷𝐺 − 𝑣𝑖.(𝑡−1)

𝐷𝐺 ≤ 𝑣𝑖.(𝑡+𝑇𝑈 𝑖𝑤)
𝐷𝐺  

𝑇𝑈 𝑖𝑤 = {
𝑤      𝑤 < 𝑀𝑈𝑇𝑖

𝐷𝐺

0      𝑤 > 𝑀𝑈𝑇𝑖
𝐷𝐺               ∀𝑡. ∀𝑖 

(16) 

 

𝑣𝑖.(𝑡−1)
𝐷𝐺 − 𝑣𝑖𝑡

𝐷𝐺 + 𝑣𝑖.(𝑡+𝑇𝐷 𝑖𝑤)
𝐷𝐺 ≤ 1  

𝑇𝐷 𝑖𝑤 = {
𝑤      𝑤 < 𝑀𝐷𝑇𝑖

𝐷𝐺

𝑤      𝑤 ≥ 𝑀𝐷𝑇𝑖
𝐷𝐺              ∀𝑡. ∀𝑖 

(17) 

where 𝑀𝑈𝑇𝑖
𝐷𝐺  is minimum up time of dispatchable 

unit i (h), 𝑀𝐷𝑇𝑖
𝐷𝐺  is minimum down time of 

dispatchable unit i (h) and W is index for modeling  

minimum up and down time limits  running from 1 to 

(𝑀𝑈𝑇𝑖
𝐷𝐺 − 1) and (𝑀𝐷𝑇𝑖

𝐷𝐺 − 1), respectively. 

In constraints (18) and (19), ∆BC  shows permitted 

difference between supplied energy and a contract with 

an acceptable deviation. Also according to constraints 

(20) delivered and contractual energy in 24 hours should 

be equal [2]. 

𝐵𝐶𝑡
 ≤ (1 + 𝛥𝐵𝐶

 ) × 𝐸𝑡
𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡  (18) 

 

𝐵𝐶𝑡
 ≥ (1 − 𝛥𝐵𝐶

 ) × 𝐸𝑡
𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡  (19) 

 

∑𝐵𝐶𝑡
 

24

𝑡=1

=∑𝐸𝑡
𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡

24

𝑡=1

 (20) 

where 𝐸𝑡
𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡  is energy delivered due to bilateral 

contracts in time period t (MWh). 

The upstream grid market is based on LMPs which is 

affected by line constraints and upstream grid 

components leading to different prices in different parts 

of the network. In this paper, the main goal of VPP is to 

maximize profit by using different LMPs of the 

upstream grid. In other words, buying energy from low 

price pool point and selling to high price points can 

make significant revenue. 

3. Robust optimization formulation of VPP 

There are several methods to cope with uncertainties 

which can be divided into three main groups as 

probabilistic methods, possibility methods or 

combination of them [24],[25]. All the above-mentioned 

methods require data and special characteristic or 

behavior of the system [26]. 

The robust optimization method investigates the effect 

of an uncertain parameter on optimal result, which aims 

to reduce the sensitivity of the optimal result to the 

uncertain parameter. This approach can be considered as 

a substitution for stochastic programming to address 

uncertainty in the mathematical programming model. 

Robust optimization approach is a risk management 

method that has a low computing volume in comparison 

with other methods [27]. 

When the VPP faces significant uncertainties while 

there is no data for unspecified parameters, 

abovementioned methods cannot be useful. Robust 

optimization method has been introduced as an 

interesting optimization framework to reduce sensitivity 

against disorder in parameter values. Random planning 

and robust optimization are two applicable methods 

which have been using for several years. Robust 

optimization which was introduced since the 1950s, 

uses worst analysis to cope with uncertainties. A few 

years later, random probability distribution planning 

was introduced as a method for uncertainties with high 

scenario numbers with different possibilities [28],[29]. 

In random probability distribution planning method, 

uncertainties should be recognized which probability 

distribution estimation uncertainties for power system 

problem is difficult [30]. Three main advantage of 

robust optimization can be listed as follows [30]: 

1. Reliable results because of using worst analysis 

2. No need to possibility distribution in 

comparison with random programming 

3. Better traceability of result due to fewer 

calculations. 

Robust optimization would be more flexible than 

random programming, while has very fewer calculations 
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[31]. 

A standard MIP model for the linear optimization 

problem is defined in Eqs. (21) -(24) which are 

presented as follows: 

𝑀𝑖𝑛   ∑𝑐𝑗
 

𝑛

𝑗=1

× 𝑥𝑗
       (21) 

 

𝑠. 𝑡.   ∑𝑎𝑖𝑗
 

𝑛

𝑗=1

× 𝑥𝑗
  ≤ 𝑏𝑖

        ∀𝑖 = 1.… .𝑚 (22) 

 

𝑥𝑗
 ≥ 0        ∀𝑗 = 1.… . 𝑛 (23) 

 

𝑥𝑗
 𝜖 {0.1}       𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑗 = 1.… . 𝑛 (24) 

If 𝑐𝑗
  coefficients are recognized in known boundaries, 

a MIP formulation for robust optimization method could 

be formed. To do so, it is assumed that each 𝑐𝑗
  

coefficient is in the interval [𝑐𝑗
 − 𝑑𝑗

 . 𝑐𝑗
 + 𝑑𝑗

 ] where 𝑑𝑗
  

represents the deviation from the nominal coefficient 𝑐𝑗
 . 

In addition, for formulation a MIP robust problem, an 

integer control parameter, Γ0, is defined which is in the 

interval [0. |𝐽0
 |]. 

Let 𝐽0
 = {𝑗|𝑑𝑗

 > 0}. 

The parameter Γ0  controls the trade-off between the 

probability of the violation and its effect on the 

objective function of the nominal problem. 

If Γ0 = 0 , the robustness level in the objective 

function is ignored and if Γ0 = |𝐽0
 | , maximum cost 

deviation is considered which leads to conservative 

solution. 

Considering (21)– (24), this RMILP problem can be 

formulated as 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒∑𝑐𝑗 × 𝑥𝑗

𝑛

𝑗=1

+𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 {∑ 𝑑𝑖|𝑥𝑗|

𝑗∈𝑆0

} (25) 

 

Subject to (22) -(24) (26) 

This RMILP problem can be reformulated as another 

RMILP. Also, the problems (25) and (26) have an 

equivalent RMILP formulation, as follows: 

𝑀𝑖𝑛   ∑𝑐𝑗
 

𝑛

𝑗=1

× 𝑥𝑗
 + 𝛽.Γ0 +∑𝜁 𝑗

𝑛

𝑗=1

  
(27) 

Subject to: 

Constraints (22) -(24) (28) 

 

𝛽 + 𝜁 𝑗 ≥ 𝑑𝑗
 × 𝜔𝑗

           𝑗𝜖𝐽0
  (29) 

 

𝛽 ≥ 0 (30) 

 

𝜁 𝑗 ≥ 0             ∀𝑗 = 1.… . 𝑛 (31) 

 

𝜔𝑗
 ≥ 0       ∀𝑗 = 1.… . 𝑛 (32) 

 

𝜔𝑗
 ≥ 𝑥𝑗

        ∀𝑗 = 1.… . 𝑛 (33) 

Eqs. (27) -(33) is obtained by using duality theory 

[27] which a detailed description is presented [32],[33]. 

Market price as an uncertain parameter in the VPP 

appears in the robust objective function that can be 

formulated in Eq. (34) as follows: 

    𝑀𝑖𝑛  

−

{
 
 
 

 
 
 ∑(

𝑇

𝑡=1

(𝑃𝑡
𝐷 +𝐵𝐶𝑡

 ) × 𝜆𝑡
𝐷𝑆𝑂.𝑐ℎ𝑎𝑟𝑔𝑒

+ ∑ 𝑃𝑘𝑡
𝑈𝑝𝑠𝑡𝑟𝑒𝑎𝑚

              

𝑘𝜖𝐺𝑆𝑃

× 𝜆𝑘𝑡
𝐿𝑀𝑃 − ∑(𝑃𝑖𝑡

𝐷𝐺

𝑖𝜖𝐷𝐺

× 𝜆𝑖
𝐷𝐺.𝑐𝑜𝑠𝑡 + 𝑦𝑖𝑡

𝐷𝐺.𝑠𝑡𝑎𝑟𝑡 × 𝜆𝑖
𝐷𝐺.𝑠𝑡𝑎𝑟𝑡𝑐𝑜𝑠𝑡)

−∑ 𝑃𝑗𝑡
𝑆𝐺

𝑗𝜖𝑆𝐺

× 𝜆𝑗
𝑆𝐺.𝑐𝑜𝑠𝑡 − 𝑃𝑡

𝐹𝐿 × 𝜆𝑡
𝐹𝐿.𝑐𝑜𝑠𝑡)                                  

}
 
 
 

 
 
 

 

+ 𝛽 × Γ0 + ∑ ∑𝜁 𝑘𝑡

𝑇

𝑡=1𝑘∈𝐺𝑆𝑃

 

(34) 

Subject to:  

Constraints (2) -(17)  (35) 

 

Constraints (18) -(21) (if needed) (36) 

 

𝑃𝑡
𝐷 = 𝑎. 𝜆𝑡

𝐷𝐴.𝑚𝑎𝑥 + 𝑏          ∀𝑡 (37) 

 

𝜆𝑘𝑡
𝐿𝑀𝑃 = 𝛼𝑘 × 𝜆𝑡

𝐷𝐴.𝑚𝑎𝑥         ∀𝑘. 𝑡 (38) 

 

𝜆𝑡
𝐷𝑆𝑂.𝑐ℎ𝑎𝑟𝑔𝑒

= 𝛼0 × 𝜆𝑡
𝐷𝐴.𝑚𝑎𝑥           ∀𝑡 (39) 

 

𝛽 + 𝜁 𝑘𝑡 ≥ (𝜆𝑘𝑡
𝐿𝑀𝑃.𝑚𝑎𝑥 − 𝜆𝑘𝑡

𝐿𝑀𝑃.𝑚𝑖𝑛  ) × 𝜔𝑘𝑡
      ∀𝑡 (40) 
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𝑃𝑘𝑡
𝑈𝑝𝑠𝑡𝑟𝑒𝑎𝑚

≤ 𝜔𝑘𝑡
         ∀𝑡 (41) 

Base equations of problem are Eqs. (34)-(41), where 

𝑃𝑘𝑡
𝑈𝑝𝑠𝑡𝑟𝑒𝑎𝑚

 is related to power exchange with the 

upstream grid points,  β  and 𝜁𝑘 𝑡  are dual variables of 

main problem for considering the 𝜆𝑡
𝐷𝑆𝑂.𝑐ℎ𝑎𝑟𝑔𝑒

 variation 

range and 𝜔𝑘𝑡
  is an auxiliary expression is being used to 

get linear expressions.  Γ0  is in the interval [1,24] if 

{(𝜆𝑘𝑡
𝐿𝑀𝑃.𝑚𝑎𝑥 − 𝜆𝑘𝑡

𝐿𝑀𝑃.𝑚𝑖𝑛) > 0}  while Γ0 = 0  if 

(𝜆𝑘𝑡
𝐿𝑀𝑃.𝑚𝑎𝑥 − 𝜆𝑘𝑡

𝐿𝑀𝑃.𝑚𝑖𝑛 = 0) . 

The proposed algorithm for obtaining optimal bidding 

and offering curves of VPP comprises the following 

steps: 

1) Set market prices 𝜆𝑘𝑡
𝐿𝑀𝑃 = 𝜆𝑘𝑡

𝐿𝑀𝑃.𝑚𝑖𝑛  (∀ 𝑘. 𝑡) 

and  Γ0 = 𝑇 to consider all possible deviations of market 

prices. 

2) Set  𝑑𝑘𝑡
𝑆 = 𝐺𝑆(𝜆𝑘𝑡

𝐿𝑀𝑃.𝑚𝑎𝑥 − 𝜆𝑘𝑡
𝐿𝑀𝑃.𝑚𝑖𝑛); (𝑡 =

1.… .24); (𝐾 = 1.11.16) , where 𝐺𝑆 is a coefficient that 

uses increasing values within [0,1] and 𝑆 is the counter 

of iteration. 

3) RMIP optimization (34)–(41) is solved to 

obtain the hourly scheduled power from power market 

at the iteration 𝑆.  

4) In order to cover all ranges of coefficient 𝐺𝑆, 

the steps 2 and 3 should be repeated iteratively 

(categorized by 𝑆) as illustrated in Fig. 1. 

5) Construct the optimal bidding and offering 

curves using the achieved results. The bidding and 

offering prices are computed in each iteration  𝑆  by 

𝜆𝑘𝑡
𝐿𝑀𝑃.𝑆 = 𝜆𝑘𝑡

𝐿𝑀𝑃.𝑚𝑖𝑛 + 𝑑𝑘𝑡
𝑆  (∀ 𝑘. 𝑡) . Also, the scheduled 

power for each time period and iteration 𝑆 is obtained 

from the achieved results (𝑃𝐾.𝑡
𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 

).  

Finally, optimal bidding and offering curves of VPP 

are computed using the prices and the scheduled 

energies in all iterations results  {𝜆𝑘𝑡
𝐿𝑀𝑃.𝑆 ×

(𝑃𝐾.𝑡
𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚.𝑆 

)}.  

It should be noted that 𝑃𝐾.𝑡
𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚.𝑆 

> 0  and 

𝑃𝐾.𝑡
𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚.𝑆 

< 0  are for offering and bidding powers, 

respectively. 

 For more clarification, the flowchart of proposed 

algorithm is illustrated in Fig.1. 

Step 0  Initialize

Step 1  Compute

Step 2 Solve the RMIP problem  (33)-(34)

Step 3 Update

Step 4 Build the optimal bidding and offering curves
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Fig. 1. Proposed algorithm structure. 

4. Numerical studies 

Clear In this section, a study on comparison of robust 

optimization with deterministic optimization method is 

presented. These comparisons are considered to show 

the ability of proposed algorithm in decision making of 

uncertainties. 

In this paper, 18 buses distribution system which is part 

of known IEEE 30 buses with 33 KV is used [6],[34]. 

This system has four DG at buses 2, 7, 8 and 14 as 

shown in Fig. 2. Two DG units located at buses 15 and 

18 which VPP is expected to control sum of distributed 

DGs. Also buying and selling energy from market is 

done by three stations with different LMPs which are 

located at buses 1, 11 and 16 as shown in Fig. 2. 

According to the market price at GSPs 1, 11, and, 16 

day-ahead prices are predicted as 95, 105, and 100, 

respectively with assumption 𝜆𝑡
𝐷𝐴.𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡

= 𝜆𝑡
𝐷𝐴.𝑚𝑎𝑥 . As 

result, the value of the parameter α0is considered to be 

one. The capacity of each transformer is shown at each 

substation [35],[36]. Also predicted price information is 

given in Table 1 and price and amount of flexible loads 

are presented in Table 2 for 24 hours. It should be 

denoted that price deviation from the forecasted value is 

assumed 10 percent. Amount of power demand for 

supplying costumers load and power values of bilateral 

contracts are given in Table 3. 
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Fig. 2. Schematic diagram of the 18-bus distribution system. 

Table 1. Market price forecasts for one day. 

t(h) 𝜆𝑘𝑡
𝐿𝑀𝑃($/MWH) t(h) 𝜆𝑘𝑡

𝐿𝑀𝑃($/MWH) t(h) 𝜆𝑘𝑡
𝐿𝑀𝑃($/MWH) 

1 

2 

3 

4 

5 

6 

7 

8 

46.03 

45.14 

45.50 

45.70 

55.80 

82.28 

84.80 

83.44 

9 

10 

11 

12 

13 

14 

15 

16 

76.95 

69.09 

65.84 

59.47 

56.47 

53.77 

52.90 

71.44 

17 

18 

19 

20 

21 

22 

23 

24 

108.31 

89.54 

76.83 

73.60 

59.59 

52.47 

47.77 

39.17 

Table 2. Characteristics of the flexible loads for one day. 

t(h) 
𝜆𝑡
𝐹𝐿.𝑐𝑜𝑠𝑡 

($/MWH) 
𝑃𝑡
𝐹𝐿.𝑚𝑎𝑥 

(MW) 

1 37.30 0.591 

2 40.96 0.585 

3 51.52 0.426 

4 53.83 0.589 

5 57.80 0.610 

6 74.83 1.132 

7 99.91 0.852 

8 89.50 1.217 

9 61.96 1.021 

10 66.88 0.871 

11 63.87 0.601 

12 50.12 0.643 

13 46.93 0.660 

14 51.04 0.689 

15 58.35 0.700 

16 85.61 0.799 

17 105.10 1.017 

18 84.44 0.859 

19 81.78 1.067 

20 75.91 0.696 

21 68.03 0.557 

22 44.10 0.474 

23 41.69 0.656 

24 43.90 0.533 

Table 3. Bilateral contract and demand powers. 

t(h) 𝜆𝑘𝑡
𝐿𝑀𝑃($/MWH) 𝐵𝐶𝑡

  (𝑀𝑊) 𝑃𝑡
𝐷𝑒𝑚𝑎𝑛𝑑(MW) 

1 46.03 2.5 11.222 

2 45.14 2.5 11.160 

3 45.50 2.5 11.185 

4 45.70 2.5 11.199 

5 55.80 2.5 11.906 

6 82.28 2.5 13.760 

7 84.80 2.5 13.936 

8 83.44 2.5 13.841 

9 76.95 2.5 13.387 

10 69.09 4 12.836 

11 65.84 4 12.609 

12 59.47 4 12.163 

13 56.47 4 11.953 

14 53.77 7.5 11.764 

15 52.90 7.5 11.703 

16 71.44 7.5 13.001 

17 108.31 4 15.582 

18 89.54 4 14.268 

19 76.83 4 13.378 

20 73.60 4 13.152 

21 59.59 4 12.171 

22 52.47 4 11.673 

23 47.77 4 11.344 

24 39.17 2.5 10.742 

 

Prediction of day-ahead prices and technical and 

economical specification of DGs are shown in Tables 4 

and 5, respectively. This data is evaluated based on set-

up cost, maintenance cost, operation time, DGs lifetime, 

and most importantly market price from DG owners to 

VPP. In addition, control and coordination of EMS with 

DGs have some costs which should be added to 

levelized cost of electricity (LCOE) [12]. 

 

Table 4. Characteristics of dispatchable units included in VPP 

portfolio. 

DER DG2 DG7 DG8 DG14 

𝑃𝑖
𝐷𝐺.𝑚𝑖𝑛 

0 0 0 0 

𝑃𝑖
𝐷𝐺.𝑚𝑎𝑥 

4 5 5.5 7 

𝜆𝑖
𝐷𝐺.𝑐𝑜𝑠𝑡 

37 40 35 45 

𝑟𝑖
𝑢𝑝

 
1 1.25 1.375 1.75 

𝑟𝑖
𝑑𝑜𝑤𝑛 

1 1.25 1.375 1.75 

𝜆𝑖
𝐷𝐺.𝑠𝑡𝑎𝑟𝑡𝑐𝑜𝑠𝑡 

20 20 50 50 

𝜆𝑖
𝐷𝐺.𝑠ℎ𝑢𝑡𝑐𝑜𝑠𝑡 

25 25 25 25 

 

Table 5. Characteristics of stochastic unit units included in VPP 

portfolio. 

DER 𝑃𝑗
𝑆𝐺.𝑚𝑖𝑛 𝑃𝑗

𝑆𝐺.𝑚𝑎𝑥 𝜆𝑗
𝑆𝐺.𝑐𝑜𝑠𝑡 

SG15 0 9 55 

SG18 0 7 65 
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5. Results comparison and discussion 

In this section, the results comparison of deterministic 

and RO models is provided. The obtained profit for one 

day by using MIP model under GAMS software is 

$17,776.296 in deterministic approach. The results 

obtained for the deterministic case are presented in 

Table 6. 

Table 7. The profit of VPP in the robust optimization approach. 

Γ0 Profit ($) Reduced Profit (%) 

1 17317.241 2.582 

2 16919.139 4.82 

3 16545.397 6.92 

4 16194.691 8.897 

5 15883.975 10.645 

6 15601.320 12.235 

7 15344.706 13.678 

8 15114.516 14.974 

9 14907.688 16.137 

10 14717.433 17.207 

11 14539.550 18.208 

12 14382.046 19.094 

13 14262.011 19.769 

14 14154.146 20.376 

15 14047.602 20.975 

16 13943.822 21.559 

17 13841.726 22.134 

18 13739.871 22.706 

19 13640.914 22.263 

20 13544.553 23.805 

21 13449.058 24.342 

22 13354.111 24.877 

23 13260.683 25.402 

24 13170.528 25.910 

Γ0 is robustness level in RO approach which its upper 

amount increases the resistance level against 

uncertainties. Γ0 = 0 means robustness is zero and it is 

equal to deterministic approach which revenue is 

obtained as $17,776.296. 

According to its policy, VPP can change Γ0  value. 

Maximum robustness is attained when Γ0 = 24 and the 

minimum profit is as result which is equal to 

$13,170.528 $. In Table 7, profits and its difference with 

deterministic method for 24 cases are presented in 

percent. According to calculations, it can be seen that 

the maximum profit in the maximum robustness value is 

25.910% less than deterministic case. Fig. 3 shows the 

profit amount for the different robustness values. 

For analyzing three upstream grid connection points, 

the exchanged power between upstream grid and 

connection points 1, 11 and 16 are shown in Figs. 4, 5 

and 6, respectively. It is noteworthy that, positive sign 

shows the sold power and negative sign shows the 

procured power from the upstream grid. For each hour, 

it can be seen that taken power from buses 1 and 16 is 

more than costumers demand. In fact, buying from 

inexpensive bus and selling to expensive one shows the 

arbitrager of VPP. Furthermore, according to Fig. 4, it is 

seen that procured power from connection point 1 is 

reduced in robust optimization approach in comparison 

with deterministic case in order to get more robust 

scheduling of VPP. Also, according to Fig. 5, it is seen 

that sold power from connection point 11 is reduced in 

robust optimization approach in comparison with 

deterministic case. Finally, according to Fig. 6, procured 

power from connection point 16 is reduced and sold 

power in robust optimization in comparison with 

deterministic approach. 

 
Fig. 3. Profit values for the different robustness values. 

 

 
Fig. 4. Power exchange between bus 1 and the upstream grid
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Table 6: Results of VPP short-term trading in deterministic approach (MW) 

t(h) 
𝜆𝑡
𝐷𝐴.𝑓𝑜𝑟𝑒𝑐ℎ𝑎𝑠𝑡𝑖𝑐($/MWH) ∑ 𝑃𝑖𝑇

𝐷𝐺
𝑖𝜖𝐷𝐺 (MW) ∑ 𝑃𝑗𝑇

𝑆𝐺
𝑗𝜖𝑆𝐺 (MW) 𝑃𝑡

𝐹𝐿(MW) 𝐵𝐶𝑡
  (𝑀𝑊) ∑ 𝑃𝑘𝑡

𝑈𝑝𝑠𝑡𝑟𝑒𝑎𝑚
(MW)

𝐾
 ∑ 𝑃𝑗𝑇

𝑆𝐺
𝑗𝜖𝑆𝐺 (MW) 

1 
46.03 16.483 0 0.591 2.250 3.102 0 

2 
45.14 18.307 0 0.585 2.250 5.482 0 

3 
45.50 17.917 0 0 2.250 4.482 0 

4 
45.70 17.917 0 0 2.250 4.468 0 

5 
55.80 17.948 9.0 0.610 2.250 13.402 9.0 

6 
82.28 18.005 16.0 1.132 2.750 18.627 16.0 

7 
84.80 17.818 16.0 0.852 2.750 17.984 16.0 

8 
83.44 18.061 16.0 1.217 2.750 18.688 16.0 

9 
76.95 17.931 16.0 1.021 2.750 18.815 16.0 

10 
69.09 17.831 16.0 0.871 4.400 17.465 16.0 

11 
65.84 17.942 9.0 0.601 3.600 11.335 9.0 

12 
59.47 17.970 9.0 0.643 3.600 11.850 9.0 

13 
56.47 17.982 9.0 0.660 3.600 12.089 9.0 

14 
53.77 18.376 0 0.689 8.250 0.551 0 

15 
52.90 17.917 0 0 8.250 -2.036 0 

16 
71.44 17.783 16.0 0.799 8.250 13.331 16.0 

17 
108.31 17.928 16.0 1.017 3.600 15.763 16.0 

18 
89.54 17.823 16.0 0.859 4.400 16.364 16.0 

19 
76.83 17.961 16.0 1.067 3.600 17.250 16.0 

20 
73.60 17.714 16.0 0.696 3.600 17.658 16.0 

21 
59.59 17.913 9.0 0.557 3.600 11.699 9.0 

22 
52.47 18.233 0 0.474 4.400 2.634 0 

23 
47.77 16.483 0 0.656 3.600 1.395 0 

24 
39.17 13.483 0 0 2.250 0.491 0 

 

 
Fig. 5. Power exchange between bus 11 and the upstream grid. 

 
Fig. 6. Power exchange between bus 16 and the upstream grid. 

Generally, it can be considered that if internal 
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generation cannot supply internal demand, VPP can 

benefit from the upstream grid. Total exchanged power 

between the VPP and the upstream grid in deterministic 

and robust optimization approaches is shown in Fig. 7. 

It can be seen that procured power in robust 

optimization approach is reduced in comparison with 

deterministic approach because VPP wants to be more 

robust against day-ahead market price uncertainty. 

Therefore, less power is procured from upstream grids 

while more power is used to supply consumers' demand. 

 
Fig. 7. Total exchanged power with day-ahead market. 

Fig. 8 shows the load interruption in two cases. In 

robust optimization case, load interruption is less than 

deterministic one. With the precision of the Fig. 8, it can 

be concluded that when the curtailed load price is higher 

than the market price, the amount of curtailed load will 

be lower, but in other hours, by comparing market price 

to flexible load price, the amount of load curtailment 

increases. In RO approach, it can be concluded from 

Fig. 8 that due to the conservatism, the amount of 

curtailed load has been reduced, which is one of the 

reasons why the profit in RO approach will be less than 

deterministic approach. 

 
Fig. 8. Total curtailment value of flexible loads. 

According to the constraint (20), VPP is responsible 

to supply power demand of contracts with an error equal 

to 𝛥𝐵𝐶
 = 10%. For bilateral contracts in deterministic 

case, when energy price is low, VPP uses 10% of error 

as opportunity and sells less power. On the other hand, 

when market price is increased, more power will be 

delivered. Total energy delivery of bilateral contract is 

depicted in Fig. 9. According to Fig. 9, delivered power 

is almost same for both cases. 

 
Fig. 9. Total bilateral contract energy delivery. 

By comparing Table 5 and Table 3, it can be seen that 

average market price at hours 3, 4 and 24 is cheaper 

than DG units’ power price. In this case, DGs are 

reluctant to produce power and need to load interruption 

is decreased at this hour which in this case VPP buys 

powers from upstream grid. 

In this paper, VPP obtains optimal bidding and 

offering curves based on proposed robust optimization 

approach to offer and bid to the day-ahead market. 

Bidding curves indicate that increase in the market price 

will reduce purchasing power from the power market 

which in this situation internal generation will be used 

to supply power. Offering curves indicate that by 

increasing market price, sold power to the grid will be 

increased and vice versa. The optimal bidding/offering 

curve of VPP should be proposed to the market operator 

for buying/selling power from/to the upstream grid. In 

this case, to propose price and power to day-ahead 

market for each day, VPP presents bidding step curve 

instead of proposing deterministic amount [37]. Figures 

10 and 11 show the optimal bidding curves for 11th and 

16th hours in connection point 1 which are obtained 

based robust optimization approach. 
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Fig. 10. Proposed bidding step curve for 11th hour in connection point 

1 by the VPP. 

 
Fig. 11. Proposed bidding step curve for 16th hour in connection point 

1 by the VPP. 

When price increases in the grid, VPP puts internal 

generation into priority to supply costumers and sells 

power to the market. In this case, offering curve for day-

ahead market for each hour will be proposed [38]. 

Figures 12 and 13 show the optimal offering curve for 

2th and 20th hours in connection point 11 which are 

obtained based on robust optimization approach. 

 
Fig. 12. Proposed offering step curve for 2th hour in connection point 

11 by the VPP. 

 
Fig. 13. Proposed offering step curve for 20th hour in connection point 

11 by the VPP. 

In order to face uncertainties increasing Γ0 value will 

significantly decrease the VPP's profit in which 

robustness increment is not appreciated by the VPP. So, 

the VPP operators can get better Γ0  over time by 

experience [39]. 

6. CONCLUSIONS 

In this paper, robust optimization method due to less 

calculation and better accuracy is proposed by the VPP 

operators to maximize revenue with better tractability. 

VPP has contracts with costumers with predetermined 

prices while market prices have significant 

uncertainties. By considering these matters, risk 

management tool is proposed to ensure getting the least 

profit. Due to VPP’s internal generation and using 

different LMPs for selling energy to buses with 

expensive prices, VPP proposes the offering curve of 

each hour to market operators in order to sell energy. 

Also, by considering market price at low load hours 

which is more cost-effective than using the internal 

generation, the VPP proposes bidding curve to market. 

If the internal resources link is totally disconnected from 

the VPP, it can be said with certainty that VPP can 

benefit from differences in upstream grid prices. The 

amount of choice value that has a great impact on 

profits can be selected over time by the policies of each 

particular VPP. In the maximum robustness case, profit 

amount is reduced 25.910%, which shows VPP has 

resisted against pool market uncertainty. The proposed 

method can be useful for VPP management because of 

its utility and simplicity to maximize VPP profits with 

regard to the risk-taking strategy. Also, according to RO 

strategy, bidding and offering curves for each hour is 

obtained which is proposed to market with considering 

VPPs goals and policies and setting of robustness value. 
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