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Abstract- - Network reconfiguration is a nonlinear optimization procedure which calculates a radial structure to 

optimize the power losses and improve the network reliability index while meeting practical constraints. In this paper, a 

multi-objective framework is proposed for optimal network reconfiguration with the objective functions of minimization 

of power losses and improvement of reliability index. The optimization problem is solved by multi-objective 

grasshopper optimization algorithm (MOGOA) which is one of the most modern heuristic optimization tools. To solve 

an optimization problem, the suggested algorithm mathematically mimics and formulates the behavior of grasshopper 

swarms. The modifying comfort zone coefficient needs grasshoppers to balance exploration and exploitation, which 

helps the MOGOA to find an exact approximation of global optimization and not trapped in local optima. The efficiency 

of the suggested technique is approved regarding the 33-bus and 69-bus test systems. Optimization results expressed 

that the suggested technique not only presents the intensified exploration ability but also has a better solution compared 

with previous algorithms. 

Keyword: Reconfiguration, Powe loss, Reliability, Multi-objective grasshopper optimization algorithm, Multi-objective 

optimization. 

1. INTRODUCTION 

Distribution system giving the electric energy to the 

customers under a low voltage level is the last part of a 

power system. In distribution networks, the equipment 

failure is the main reason that energy does not deliver to 

the customers. There are some useful strategies to 

enhance reliability indices in the distribution networks. 

Some of these strategies as: utilizing highly reliable 

equipment for protection, reclosing and switching, 

automation, acceleration of  restoration processes by 

employing faster crew, employing faster fault detection 

techniques and some equipment to avoid contingencies 

[1-2]. One of the most important strategies to improve 

the system reliability is distribution feeder 

reconfiguration. Network reconfiguration can be 

implemented by two types of switches, i.e. 

sectionalizing switches and tie switches, which are 

installed in the distribution network along the feeders. 

The healthy part of system can be electrically supplied 

while a sectionalizing switch separates a faulted section 

of the system. A tie switch brings the loads that have 

been disconnected by transferring some of the load to 

other supporting distribution feeders. The process of 

reconfiguration includes changing the open/close state 

of sectionalizing and tie switches in a way that radial 

structure of system is preserved [1]. Since the status of 

these switches has a vital effect on branch power flows 

as well as interruption durations in the event of a system 

failure, power losses and reliability of a distribution 

network can be effectively improved by optimal 

reconfiguration [1]. As the cost of active power losses is 

usually considerable, even a lower reduction in power 

losses is so beneficial for electric power utilities. In this 

respect, major action is performed in literatures about 

distribution network reconfiguration with the active 

power loss reduction as the objective function. In Ref. 

[2], a multi-objective optimization model has been used 

for reconfiguration of distribution networks equipped 

with fuel cells using probabilistic power flow. In Ref. 

[3], the gravitational search algorithm has been provided 

to solve the network reconfiguration problem with 

fitness functions of optimizing power losses and loads 

equilibration in feeders subject to technical and practical 

constraints. In Ref. [4], network reconfiguration has 
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been performed for power loss reduction and reliability 

enhancement with the limitations of bus voltages and 

network radiality. The genetic algorithm (GA) has been 

exploited to solve the optimization problem. The basis 

for this work is the information of a single loop and 

development of crossover and mutation operations of 

GA. In Ref. [5], quantum-inspired binary firefly 

algorithm has been exploited for the reconfiguration 

problem of distribution system to minimize the number 

of distributed voltage stages and reliability indices. This 

problem has been solved subject to constraints of 

voltage profile and network radiality. The self-adaptive 

modified optimization algorithm based on the bat 

algorithm has been used in Ref. [6] for distribution 

network reconfiguration with considering several 

objectives like average interruption frequency index, 

average energy not supplied, total power losses and 

cost. In order to perceive the effect of distributed 

generation on the reliability of electrical networks, wind 

generation has been also considered in the mentioned 

method. The formulated optimization problem has been 

solved subject to constraints of voltage profile, feeder 

ratings and network radiality. In Ref. [7], an efficient 

GA has been proposed to optimal distribution system 

reconfiguration. The objectives of the optimization 

problem are feeder power losses and system’s node 

voltage deviation reduction and improvement of 

reliability index such as ENS. The authors in Ref. [8] 

have presented a new reliability-oriented algorithm for 

distribution system reconfiguration problem. This 

method maximizes the possibility of reliability 

enhancement and loss reduction and uses the  interval 

analysis techniques to cover data uncertainties. Network 

reconfiguration has been formulated as a non-linear 

programming optimization problem that can be solved 

by a variety of methods. From viewpoints of optimality 

and accuracy, intelligent algorithms such as GA, ant 

colony optimization and particle swarm optimization 

may give better solutions compared to the classical 

methods such as lagrangian methodology. In literatures, 

some evolutionary algorithms have been used to solve 

the reconfiguration problem in distribution systems like 

GSA in Ref. [3], and shuffled frog leaping algorithm in 

Ref. [9]. 

The presented technique mathematically formulates the 

behavior of grasshoppers in nature for solving 

optimization problems. The GOA is able to effectively 

improve the initial random population of grasshoppers 

and enhance the average fitness of grasshoppers. By 

solving challenging problems considering composite 

objective functions, GOA correctly balances exploration 

and exploitation [10-12]. Considering the features 

reviewed above, the contribution of this paper is to 

perform the optimal reconfiguration of distribution 

networks using a multi-objective GOA to enhance the 

reliability index and reduce the power losses. The 

considered objective functions are minimization of 

power losses and improvement of reliability index. The 

optimal reconfiguration of distribution system would be 

obtained while the power losses are minimized and 

reliability is enhanced at the same time. It should be 

noted that the MOGOA is designed by using the unified 

framework proposed in Ref. [13] in which the primary 

steps are initialization, selection, generation and 

replacement. The contributions of the paper are:  

• Bi-objective model for minimizing power loss and 

improving reliability.  

• MOGOA solving proposed for bi-objective model. 

• Results show that the proposed algorithm is 

computationally efficient. 

Other sections are categorized as follows: In Section 2, 

the multi-objective reconfiguration problem is 

formulated as an optimization problem with the 

objective functions and constraints. In Section 3, the 

MOGOA are introduced to solve the optimization 

problem. Simulation results obtained from two test 

systems are presented in Section 4 and the results are 

compared with those of other approaches. Finally, the 

paper concludes in Section 5. 

2. PROBLEM FORMULATION 

2.1 Reliability index 

Reliability is the ability of a device or a system to 

function adequately under planned conditions for the 

intended time periods [14]. In distribution system, 

reliability is defined as the impact of system 

performance on consumer’s and component's operation 

under normal conditions. So, some reliability indices are 

defined to evaluate the efficiency of distribution 

network in order to provide uninterruptible electrical 

energy to the customers [15-17]. The energy not 

supplied to customers is measured by the ENS index as 

presented by Eq. (1) [18-20]: 
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Where, 𝐿𝑎𝑣𝑔(𝑖) is the average load connected to the load 

point  𝑖 , 𝑈𝑖  is the annual unavailability for each load 

point and N is the total number of load points.  
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2.2 Power loss minimization 

Minimizing power loss is usually the purpose of 

reconfiguring distribution networks. In system 

reconfiguration, each switch is operated many times in a 

day and each operation is associated with some 

operating costs. Hence, it is significant to select the 

comprehensive cost minimization as the fitness 

function. This cost consists of operation cost of switches 

and the power loss cost and it is calculated by Eq. (2) 

[21]: 

𝑭𝟐 = 𝑲𝟏𝑷𝑳𝒐𝒔𝒔 + 𝑲𝒔𝑨𝒔          (2) 

Where, 𝑷𝑳𝒐𝒔𝒔  is the active power loss of distribution 

network (kW), 𝑲𝟏  is the cost per kilowatt-hour, 𝑨𝑺  is 

the total operation number of all controllable switches, 

𝑲𝑺  is the cost of one ON/OFF switching operation. 

Based on the active power curve of distributed 

generators (DGs) and forecasted segmented-time load 

curve,  the whole control plans of all the switches and 

distributed generators should be considered in advance. 

During each small segment, a concrete control decision 

is executed. Here, load prediction and active power 

curves of DGs are all considered to be departed into 𝑵𝑳 

small segments. Hence, the total decision is presented as 

[21]: 

𝑋 = [𝑋1, 𝑋2, . . . , 𝑋𝑡 , . . . , 𝑋𝑁𝐿]     (3) 

Each tX can be further presented as: 

𝑋𝑡 = [𝑆𝑡 , 𝑄𝑡]                                                                (4) 

Where, tS  and 𝑄𝑡 are the status vector of all controllable 

switches and the reactive power vector of all 

controllable DGs during the time segment 𝑡 

respectively. Suppose that SN is the number of all 

controllable switches and the number of all controllable 

DGs is 𝑁𝑔, then tS and 𝑄𝑡 are represented as [21]: 

𝑆𝑡 = [𝑆𝑡,1, 𝑆𝑡,2, . . . , 𝑆𝑡,𝑁𝑠
]    (5) 

𝑄𝑡 = [𝑞𝑡,1, 𝑞𝑡,2, . . . , 𝑞𝑡,𝑁𝑔
]   (6) 

From Eqs. (3)-(7), it can be observed that the dimension 

variable of 𝑋 is 𝑁𝐿. (𝑁𝑆 + 𝑁𝑔). Based on the settings of 

𝑆𝑡 and 𝑄𝑡, the calculation of power flow during time part 

is fulfilled by the back/forward sweep technique. Then, 

the power loss of studied distribution network during 

time part can be calculated as follows [21]: 

𝑃𝐿𝑜𝑠𝑠.𝑡 = ∆𝑇 ∑ (𝐼𝑖.𝑡
2 . 𝑅𝑖)

𝑁𝑏
𝑖=1                                             (7) 

     

Where, 𝛥𝑇𝑡 is the length of time segment 𝑡, 𝑁𝑏 is the 

branch number of the whole system, 𝑅𝑗 is the resistance 

of branch 𝑖  and 𝐼𝑖,𝑡  is the current of branch 𝑖  in time 

segment 𝑡. With the same procedures, the power flow 

computations of all time segments are finished and the 

total power loss 𝑃𝐿𝑜𝑠𝑠 in Eq. (2) is calculated as: 

PLoss.t = ∑ 𝑃𝐿𝑜𝑠𝑠.𝑡=
𝑁𝐿
𝑡=1 ∑ 𝛥𝑇𝑡

𝑁𝐿
𝑡=1 ∑ (𝐼𝑖.𝑡

2 . 𝑅𝑖)
𝑁𝑏

𝑖=1
             (8) 

On the other hand, the operation number of switches 𝑛 

in one day is calculated as [21]: 

∆𝑡.𝑛= ∑ |𝑆𝑛.𝑡 − 𝑆𝑛.(𝑡−1)|
𝑁𝐿
𝑡=1                                           (9) 

2.3 Constraints 

2.3.1 Radial network constraint 

∑ 𝛼𝑙 = 𝑁𝐿𝑜𝑎𝑑
𝑁𝑏
𝑙=1                                                          (10) 

𝛽𝑖𝑗 + 𝛽𝑗𝑖 = 𝛼𝑙 , 𝑙 = 1, . . . , 𝑁𝑏                           (11) 

∑ 𝛽𝑖𝑗 = 1, 𝑖 = 1, . . . , 𝑁𝐿𝑜𝑎𝑑𝑗∈𝑁(𝑖)                      (12) 

∑ 𝛽𝑘𝑓 = 0, 𝑘 = 1, . . . , 𝑁𝑅𝑜𝑜𝑡𝑓∈𝑅(𝑘)              (13) 

𝛽𝑖𝑗 ∈ {0,1} 𝑖 = 1, . . . , 𝑁𝐿𝑜𝑎𝑑 , 𝑗 ∈ 𝑁(𝑖)            (14) 

In Eq. (10) and Eq. (11), 𝛼𝑙 is a binary variable and it 

shows the status of the line 𝑙. 𝛼𝑙 equals to 1 when line 𝑙 

is connected to the radial distribution network. 𝛼𝑙 = 0 

means that the line l  is not connected to any radial 

distribution network. In Eqs. (11), (12) and (14), 𝛽𝑖𝑗 and 

𝛽𝑗𝑖  are two binary variables, respectively. 𝛽𝑖𝑗 is set to 1 

if the node 𝑗 is the parent of the node 𝑖 while 𝛽𝑗𝑖 is set to 

1 if the node 𝑖 is the parent of the node 𝑗. In Eq. (11), the 

node 𝑖 and the node 𝑗 are the terminals on line 𝑙. In Eq. 

(12) and Eq. (13), 𝑁𝐿𝑜𝑎𝑑  and 𝑁𝑅𝑜𝑜𝑡  are the number of 

load nodes and root nodes, respectively. 𝑁𝑖 is the set of 

nodes connected to the load node i  by a line and 𝑅(𝑘) 

is the set of nodes connected to the root node 𝑘 by a 

line. In Eq. (13), 𝛽𝑘𝑓 is exploited to show if node 𝑓 is 

the parent of the root node 𝑘. Eq. (10) assures that all 

the load nodes connect to the radial distribution 

networks; Eq. (12) indicates that each load node has 

only one parent and Eq. (13) indicates that each root 

node has no parent. Constraints (10)-(14) assure that the 

concerned networks are radial and all the load nodes are 

energized. 

2.3.2 Active power balance constraint 

Active power balance constraint is presented as 

follows: 

∑ [𝑉𝑖.𝑡𝑉𝑗.𝑡(𝐺𝑖𝑗.𝑡cos𝜃𝑖𝑗.𝑡 + 𝐵𝑖𝑗.𝑡sin𝜃𝑖𝑗.𝑡)] =𝑗∈𝑁(𝑖) 𝑃𝐷𝐺.𝑖.𝑡 − 𝑃𝐷.𝑖.𝑡 (15) 

Where,  𝑁(𝑖)  is the subset of adjacent nodes 

connected to the node 𝑖 by corresponding lines, 𝜃𝑖𝑗,𝑡  is 

the voltage angle difference between the nodes 𝑖 and 𝑗 

during the time segment  𝑡 , calculated as ( 𝜃𝑖.𝑡 −

𝜃𝑗.𝑡), 𝐺𝑖𝑗.𝑡 is the real term of elements 𝑖 and 𝑗 in the node 

admittance matrix during the time part  𝑡 , 𝐵𝑖𝑗.𝑡  is the 
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imaginary term of elements  𝑖  and 𝑗  in the node 

admittance matrix during the time part  𝑡, 𝑃𝐷𝐺.𝑖.𝑡  is the 

active power injected by generating unit at the node 𝑖 

during the time part 𝑡, 𝑃𝐷.𝑖.𝑡 is the active load demand at 

the node 𝑖 during the time part 𝑡 and 𝑉𝑖.𝑡 and 𝑉𝑗.𝑡  are the 

voltage amplitudes of the nodes 𝑖 and 𝑗 during the time 

part t , respectively. 

2.3.3 Voltage constraint 

Voltage constraint can be formulated as: 

𝑉𝑀𝑖𝑛 ≤ 𝑉𝑖.𝑡 ≤ 𝑉𝑀𝑎𝑥, ∀   𝑖 ∈ (1~𝑁𝑏)  &  ∀   𝑡 ∈ (1~𝑁𝐿)     (16) 

Where, 𝑉𝑀𝑖𝑛is the lower voltage limitation and 𝑉𝑀𝑎𝑥  is 

the upper voltage limitation and 𝑉𝑖,𝑡  is the voltage 

amplitude of the node 𝑖 during the time part 𝑡. 

2.3.4 Capacity limit constraint of reactive power of 

distributed generator 

𝑞𝑀𝑖𝑛.𝑔.𝑡 ≤ 𝑞𝑔.𝑡 ≤ 𝑞𝑀𝑎𝑥.𝑔.𝑡 , ∀  𝑔 ∈ (1, 𝑁𝑔)             (17) 

Where, 𝑞𝑔.𝑡 , 𝑞𝑀𝑖𝑛.𝑔.𝑡 , and 𝑞𝑀𝑎𝑥.𝑔.𝑡  are the control 

output, the lower limitation and the upper limitation of 

the reactive power of distributed generator 𝑔 during the 

time part 𝑡, respectively. 

𝒒𝑴𝒊𝒏.𝒈.𝒕 and 𝒒𝑴𝒂𝒙.𝒈.𝒕  are subject to physical/hardware 

constraints of different DGs [23]. 

3. OPTIMIZATION APPROACH 

The grasshopper optimization algorithm (GOA) is 

firstly introduced in this section and then the proposed 

multi-objective version of the grasshopper optimization 

algorithm (MOGOA) is presented. 

3.1 Grasshopper optimization algorithm 

Nature-inspired, the population-based algorithm is the 

most well-liked among stochastic optimization 

algorithms. The GOA has been established as a global 

optimization algorithm which is inspired by the life of 

grasshopper. Due to GOA’s efficiency in solving real-

world optimization problems, it can be used to minimize 

or maximize a target function. The optimization 

algorithm should find the best values for the decision 

variables. Slow movement and small steps of the 

grasshoppers are the main characteristics of the 

population in the larval phase. In other side, immediate 

movement and long range are the vital characteristics of 

the swarm in maturity. Another imperative characteristic 

of the swarming of grasshoppers is food source seeking. 

The search procedure is separated into two trends: 

exploitation and exploration. In the exploration stage, 

the search factors are influenced to move suddenly 

while grasshoppers want to move locally during 

exploitation state [10]. These two goals are achieved by 

the natural grasshoppers. Simulation of swarming 

behavior of grasshoppers is presented as: 

𝑋𝑖 = 𝑇𝑖 + 𝐺𝑖 + 𝐴𝑖 (18) 

Where, 𝑋𝑖 is 𝑖𝑡ℎ  grasshopper; 𝐺𝑖 is the gravity force on 

the 𝑖𝑡ℎ grasshopper, 𝑇𝑖 is the social interaction and 𝐴𝑖 

shows the wind advection. Notice that in order to make 

random behavior, the aforementioned equation can be 

written as:  

𝑋𝑖 = 𝑟1𝑇𝑖 + 𝑟2𝐺𝑖 + 𝑟3𝐴𝑖                   (19) 

Where, 𝑟1, 𝑟2and 𝑟3 are random numbers [0,1]. 

𝑇𝑖 = ∑ 𝑡(𝑑𝑖𝑗)
𝑁
𝑗=1
𝑗≠𝑖

�̂�𝑖𝑗                    (20) 

𝑑𝑖𝑗 = |𝑋𝑗 − 𝑋𝑖|                (21) 

𝑡(𝑟) = 𝑓𝑒
−𝑟

𝑙 − 𝑒−𝑟               (22) 

Where, 𝑑𝑖𝑗 is the distance between the 𝑖𝑡ℎ and the 

𝑗𝑡ℎ grasshopper [10]. Also, �̂�𝑖𝑗 =
𝑋𝑗−𝑋𝑖

𝑑𝑖𝑗
is a unit vector 

from the 𝑖𝑡ℎ  to the 𝑗𝑡ℎ grasshoppers. f introduces the 

intensity of gravitation and 𝑙  is the absorptive length 

scale. The 𝐺component in Eq. (18) can be formulated 

as: 

𝐺𝑖 = −𝑔�̂�𝑔                (23) 

Where, �̂�𝑔and g  indicate unity vector toward the center 

of the earth and gravitational constant. The 𝐴𝑖 parameter 

in Eq. (18) is calculated as: 

𝐴𝑖 = 𝑢�̂�𝑤                                          (24) 

Where, 𝑢and �̂�𝑤are constant drift and unit vector in the 

direction of wind. Substituting 𝑇, G and A  in Eq. (18), 

this equation can be rewritten as follows [11]: 

𝑋𝑖 = ∑ 𝑡(|𝑋𝑗 − 𝑋𝑖|
𝑁

𝑗=1
)

𝑋𝑗−𝑋𝑖

𝑑𝑖𝑗
− 𝑔�̂�𝑔 + 𝑢�̂�𝑤             (25) 

Where, N is the number of grasshoppers in the 

population. The GOA was prepared with a factor to 

reduce the comfort zone of grasshoppers and create a 

balance between exploration and exploitation. As a final 

point, the optimal solution achieved so far by the swarm 

was considered as an objective to be looked for and 

enhanced by the grasshopper population. The 

implementation steps of GOA can be summarized as 

follows: 

Step 1: Initialize the parameters of algorithm; 

Step 2: Produce the population of grasshopper 

randomly; 

Step 3: Assess the position of each grasshopper and 

calculate its merit; 
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Step 4: Identify the best grasshopper as the target; 

Step 5: Repeat Steps 6 to 12 until the stop condition is 

established; 

Step 6: Repeat steps 7 to 11 for each grasshopper; 

Step 7: C = Cmax − 𝐼
𝐶max−𝐶min

𝐿
  

Step 8: Update the value of C; 

Step 9: Update it for each grasshopper; 

Step 10: Calculate the merit of the new grasshopper; 

Step 11: If the new grasshopper's merit is better than the 

target, set the new grasshopper as the target; 

Step 12: If the stop condition is not met, go to step 5, 

otherwise go to end; 

Step 13: End 

3.2 Multi-objective grasshopper optimization 

algorithm 

A multi-objective algorithm follows two aims for 

solving multi-objective problems. First, it should find 

very accurate approximations of the true Pareto optimal 

solutions and second, the optimal solutions should be 

well-distributed across all the objectives in the search 

space. This is necessary in a posteriori method for the 

intention making is performed after the optimization 

process. Furthermore, there is more than one solution 

for a multi-objective problem. Pareto optimal 

dominance is exploited to compare the obtained 

solutions in MOGOA. The Pareto optimal solutions are 

also reserved in an archive. The purpose is the 

fundamental component that leads the search agents 

towards promising areas of the search space, which the 

purpose is the main challenge in modeling MOGOA. In 

the past section, the similar equations were applied in 

the MOGOA and the primary discrepancy is the process 

of updating the purpose. By choosing the optimal 

solution captured so far, the target can be chosen easily 

in a single-objective search space while in the MOGOA, 

the target should be selected from a set of Pareto 

optimal solutions. Clearly, the archived value can be 

updated by the Pareto optimal solutions and the 

optimization target must be one of them in the archive. 

The challenge here is to obtain a target to enhance the 

distribution of the solutions in the archive. For this 

reason, the number of neighbouring solutions in the 

neighbourhood of every solution is firstly obtained 

considering a fixed distance [12]. Then, the number of 

neighbouring solutions is computed and supposed as the 

quantitative metric to evaluate the crowdedness of the 

area in the Pareto set. The probability of choosing the 

target from the archive can be expressed as: 

𝑃𝑖 = 1 − 𝑁𝑖  (26) 

Where,  𝑁𝑖  is the number of solutions in the 

neighborhood of the 𝑖𝑡ℎ solution. With this probability, 

a roulette wheel is exploited to select the target from the 

archive list. 

3.3 MOGOA for optimal reconfiguration e 

In this paper, a MOGOA is utilized for calculating the 

optimal performance of distribution network under 

reconfiguration. Each grasshopper is supposed to be a 

solution containing switches to be opened. Initial 

population generation is similar to all other evolutionary 

algorithms. The objective function in MOGOA 

technique for network reconfiguration includes 

reliability index improvement and minimization of 

active power loss which are evaluated for each feasible 

solution. In the next step, the population is classified by 

using non-dominated sorting method and other optimal 

solutions are produced using GOA approach. Then, the 

feasibility of each solution is investigated and analyzed. 

The parameter values of the MOGOA are presented in 

Table 1. It should be noted that the MOGOA was 

utilized about supposing the unified framework 

suggested in [23, 24] in which the primary steps are 

initialization, selection, generation and replacement. 

Actually, the MOGOA is able to obtain the Pareto 

solutions, reserve them in the archive list and ameliorate 

their distribution. 

 Table 1. MOGOA parameters 

Iteration 10 

Grosshopper number 100 

Archive size 100 

 𝐶min 0.00004 

 𝐶max 1 

4. SIMULATION RESULTS 

In this paper, the suggested approach is validated on 33-

bus [15] and 69-bus [19] radial distribution networks and 

analytical results are presented to assess its efficiency. For 

all these systems, the substation voltage is assumed to be 1 

Pu. Also, all sectionalizing and tie switches are supposed to 

be candidate switches for network reconfiguration. In this 

paper, the MOGOA is performed in MATLAB R2013a 

with DELL Core i5 M430 2.26 GHz.  

Table 2. Simulation results on 33-bus distribution system 

 
Before 

reconfiguration 

After 

reconfiguration 

Tie switches 33, 34, 35, 36, 37 7, 9, 14, 32, 37 

Power loss 208.4592 kW 138.9275 kW 

Power loss reduction - 33.355 % 

Minimum voltage 0.91075 Pu 0.94234 Pu 
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Fig. 1. Single line diagram of 33-bus radial distribution system 

4.1 Test case- 33 bus 

The first system is a 33-bus, 12.66 kV, radial 

distribution network [15] which is illustrated in Figure 

1. It consists of 32 sectionalizing and 5 tie-lines 

switches. The normally closed switches are 1 to 32 and 

the normally open switches are 33 to 37. The network 

information is obtained from Ref. [15]. The total real 

and reactive power loads on the network are 3715 kW 

and 2300 Kvar, respectively. The initial power loss of 

the network is 208.4592 kW. The lowest bus-bar 

voltage is 0.91075 Pu, which happens at bus 18. The 

optimal result for system reconfiguration acquired by 

the proposed methodology is 7, 9, 14, 32 and 37 in whi- 

Table 3. Node voltages and angles on 33-bus distribution network 

Bus 

Voltage before 

reconfiguration 

Voltage after 

reconfiguration 

Mag (Pu) Ang (deg) Mag (Pu) Ang (deg) 

1 1.000 0.000 1.000 0.000 

2 0.997 0.013 0.997 0.013 

3 0.983 0.089 0.987 0.094 

4 0.976 0.154 0.983 0.160 

5 0.968 0.216 0.978 0.225 

6 0.956 0.643 0.972 0.518 

7 0.953 0.414 0.971 0.479 

8 0.939 0.263 0.963 -0.686 

9 0.933 0.189 0.959 -0.738 

10 0.927 0.126 0.963 -0.626 

11 0.926 0.133 0.963 -0.626 

12 0.925 0.145 0.963 -0.628 

13 0.918 0.053 0.960 -0.643 

14 0.916 -0.026 0.960 -0.659 

15 0.915 -0.064 0.953 -0.894 

16 0.913 -0.087 0.951 -0.917 

17 0.911 -0.165 0.949 -1.009 

18 0.910 -0.174 0.947 -1.020 

19 0.996 0.002 0.995 -0.024 

20 0.993 -0.065 0.978 -0.307 

21 0.992 -0.085 0.974 -0.427 

22 0.992 -0.105 0.970 -0.517 

23 0.979 0.058 0.983 0.063 

24 0.973 -0.030 0.977 -0.025 

25 0.969 -0.074 0.973 -0.068 

26 0.954 0.682 0.970 0.555 

27 0.952 0.737 0.968 0.608 

28 0.940 0.819 0.957 0.692 

29 0.932 0.896 0.950 0.770 

30 0.929 0.999 0.946 0.868 

31 0.924 0.916 0.943 0.796 

32 0.924 0.893 0.942 0.777 

33 0.923 0.886 0.947 -1.024 

 

 Fig. 2. Voltage profile on 33-bus distribution network before and 

after reconfiguration 

-ch the real power loss and minimum node voltage are 

138.9275 kW and 0.94234 Pu. (at bus 32), respectively. To 

verify the efficiency of suggested algorithm, the problem 

was repeatedly solved 120 times. The best and the 

minimum values among the best solutions as well as the 

average values of these 120 runs are presented in Table 2. 

A smaller standard deflection indicates that the most of 

optimal solutions are close to the average value. The 

voltage magnitudes and their angles at each bus are 

presented in Table 3. The voltage profiles of the 

distribution network before and after reconfiguration are 

illustrated in Fig. 2. The real power flows in each branch of 

the system before and after reconfiguration is presented in 

Fig. 3. It can be seen from Fig. 3, that the power flow in 

each branch is decreased after network reconfiguration. 

Actually, feeder capacity is relieved from the overloading 

condition which makes it possible to load the feeders 

further. The power loss in every branch before and after 

reconfiguration is presented in Fig. 4. It is considered that 

the losses in almost each branch are reduced, except at 16, 

17, 18, 19, 20, 21, 25, 26 and 30 where the losses are 

increased because of displacement of loads. 

Table 4. Comparison of simulation results in 33-Bus system 

Item 
Initial 

configuration 

Final configuration 

HSA[4] ITS[18] MOGOA 

Tie switches 
33, 34, 35, 37, 

36 
7, 10, 14, 

37, 36 
7, 9, 14, 
37, 36 

7, 9, 14, 32, 
37 

Power loss 

reduction 

(%) 

- 31.89 31.29 33.355 

Minimum 

voltage (Pu) 
0.91075 0.9342 0.9315 0.94234 

ENS (MW) 3.846 - - 3.3268 
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Fig. 3. Power flow in 33-bus distribution network before and after 

reconfiguration 

 

Fig. 4. Power loss in 33-bus distribution network before and after 

reconfiguration 

To compare with the proposed method, improved TS 

[18] and HSA [4] are exploited to solve this 

optimization problem. For the HSA, population size, 

crossover and mutation rates are selected to be 85, 0.8, 

and 0.05, respectively, and for ITS, the parameters are 

chosen from Ref. [18]. Power losses in 33-bus system 

before and after reconfiguration for these 120 runs are 

compared with the best objective function values 

obtained by the HAS, ITS, and MOGOA which are 

listed in Table 4. It can be observed from Table 4 that 

the optimal power loss obtained by the suggested 

approach is 2.06% and 1.46% less than that of ITS and 

HSA, respectively. 

5.2 Test case-69 bus 

To prove the applicability and performance of the 

suggested algorithm in large-scale distribution 

networks, the studied problem was investigated in 69-

bus system [18] as presented in Fig 5. It includes 5 tie-

switches (normally opened) and 68 sectionalizing 

switches (normally closed). The network information is 

obtained from [18]. The initial real power loss is 

414.6595 kW. The lowest bus-bar voltage is 0.843 Pu. 

In this case, the MOGOA parameter and maximum 

number of iterations are considered to be 38 and 106. 

The other values of the algorithm are the similar as the 

first test case. The optimal configuration is calculated 

which is 45, 59, 69, 70 and 72. The optimal power loss 

after reconfiguration is 158.4283 kW. Actually, after 

reconfiguration, the percentage of reduction in active 

power loss is approximately 61.7931%. The minimum 

voltage is enhanced to 0.9509 Pu. Simulation results of  

Table 5. Simulation results of the 69-bus distribution network 

 
Before 

Reconfiguration 

After 

Reconfiguration 

Tie switches 69, 70, 71, 72, 73 45, 59, 69, 70, 72 

Power loss (kW) 414.6595 158.4283 

Power loss reduction 

(%) 
- 61.7931 

Minimum voltage (Pu) 0.843 0.9509 

ENS (MW) - 0.96363 

1 2 3 4 5 6 7 8 9 10 11 12 1314 1516 1718
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Fig. 5. Single line diagram of the 69-bus radial distribution 

network 

69-bus distribution network are presented in Table 5. To 

test this case, Fuzzy [9], PSO [17] are exploited to solve 

this optimization for comparison and simulation results 

are illustrated in Table 6. It can be seen from the Table 6 

that the proposed algorithm has a better performance. 

The optimal response is determined after 120 iterations. 

The bus voltages and their angles are presented in Table 

7. 

Table 6. Comparison of base case and optimal solution of the 

69-bus distribution system 

 Base case 

Optimal reconfiguration 

Fuzzy [9] PSO[17] MOGOA 

Open 
branches 

69, 70, 71, 
72, 73 

56, 70, 63, 
69,14 

59, 71, 62, 
70,15 

45, 59, 69, 
70, 72 

Minimum 

voltage (Pu) 
0.843 0.9483 0.94247 0.9509 

Real power 

loss (kW) 
414.6595 183.596 183.66 158.4283 
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Fig. 6. Voltage profile on 69-bus distribution network 

Table 7. Node voltages and angles on 69-bus distribution system 

Bus 

Voltage before 

reconfiguration 

Voltage after 

reconfiguration 

Mag (Pu) Ang (deg) Mag (Pu) Ang (deg) 

1 1.000 0.000 1.000 0.000 

2 1.000 -0.002 1.000 -0.002 

3 1.000 -0.004 1.000 -0.004 

4 1.000 -0.010 1.000 -0.008 

5 0.998 -0.034 0.999 -0.014 

6 0.983 0.064 0.996 0.014 

7 0.967 0.169 0.992 0.042 

8 0.963 0.195 0.991 0.049 

9 0.961 0.208 0.991 0.051 

10 0.953 0.333 0.986 0.127 

11 0.951 0.360 0.985 0.143 

12 0.946 0.435 0.984 0.176 

13 0.941 0.492 0.952 -0.489 

14 0.936 0549 0.953 -0.491 

15 0.932 0.606 0.953 -0.494 

16 0.931 0.616 0.953 -0.494 

17 0.930 0.633 0.953 -0.499 

18 0.930 0.633 0.953 -0.499 

19 0.929 0.641 0.954 -0.509 

20 0.928 0.646 0.954 -0.516 

21 0.928 0.653 0.955 -0.528 

22 0.928 0.653 0.955 -0.529 

23 0.928 0.651 0.956 -0.539 

24 0.927 0.648 0.957 -0.561 

25 0.927 0.644 0.960 -0.604 

26 0.927 0.643 0.961 -0.622 

27 0.927 0.642 0.962 -0.632 

28 1.000 -0.005 1.000 -0.004 

29 1.000 -0.008 1.000 -0.008 

30 1.000 -0.006 1.000 -0.006 

31 1.000 -0.006 1.000 -0.005 

32 0.999 -0.004 0.999 -0.004 

33 0.999 0.001 0.999 0.001 

34 0.999 0.013 0.999 0.013 

35 0.999 0.015 0.999 0.015 

36 1.000 -0.005 1.000 -0.008 

37 1.000 -0.015 0.998 -0.064 

38 0.999 -0.019 0.997 -0.090 

39 0.999 -0.020 0.996 -0.098 

40 0.999 -0.020 0.996 -0.098 

41 0.998 -0.038 0.986 -0.270 

42 0.998 -0.045 0.982 -0.344 

43 0.998 -0.046 0.981 -0.354 

44 0.998 -0.047 0.981 -0.357 

45 0.997 -0.050 0.980 -0.387 

46 0.997 -0.050 0.980 -0.388 

47 1.000 -0.013 1.000 -0.016 

48 0.998 -0.085 0.994 -0.210 

49 0.991 -0.309 0.976 -0.862 

50 0.991 -0.341 0.971 -1.018 

51 0.963 0.195 0.991 0.049 

52 0.963 0.195 0.991 0.049 

53 0.956 0.242 0.990 0.052 

54 0.950 0.283 0.990 0.053 

55 0.943 0.340 0.990 0.054 

56 0.935 0.396 0.990 0.054 

57 0.896 1.085 0.990 0.054 

58 0.877 1.447 0.951 -1.529 

59 0.870 1.593 0.951 -1.529 

60 0.861 1.784 0.954 -1.394 

61 0.848 1.911 0.950 -1.305 

62 0.848 1.916 0.964 -0.499 

63 0.847 1.923 0.964 -0.500 

64 0.844 1.956 0.964 -0.503 

65 0.843 1.966 0.968 -0.537 

66 0.951 0.362 0.985 0.145 

67 0.951 0.362 0.985 0.145 

68 0.945 0.445 0.983 0.185 

69 0.945 0.445 0.983 0.185 

The voltage profiles of the test case before and after 

reconfiguration are presented in Figure 6. After 

reconfiguration, the minimum voltage in the network is 

improved 2.6%. The real power flow in each branch 

before and after network reconfiguration is presented in 

Figure 7. It can be seen from Figure 7 that the power 

flow is decreased in each branch after reconfiguration. 

Also, the power loss in every branch before and after 

reconfiguration is presented in Figure 8. It can be 

observed that the losses in almost each branch are 

reduced except at 40, 42, 45, 48, 50, 51, 72 and 73, 

where the losses are increased because of displacement 

of loads.  

 

Fig. 7. Power flow in 69-bus distribution network before and 

after reconfiguration 

 

Fig. 8. Power loss in 69-bus distribution network before and 

after reconfiguration 
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6. CONCLUSIONS 

In this study, a multi-objective framework for optimal 

reconfiguration problem in distribution networks is 

presented. The objective functions include minimization 

of power losses and reliability index (energy not 

supplied). A non-dominating sorting technique is 

employed to adopt GOA for solving the multi-objective 

problem. Results obtained from testing the proposed 

reconfiguration problem on 33-bus and 69-bus test 

systems are analyzed and compared with other previous 

algorithms. The simulation results show that the 

suggested algorithm is so efficient to obtain the global 

optimum configuration and it can produce a Pareto set 

solution containing high quality results. 
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