راه حل اهداف مدیریت انرژی سمت عرضه با ادغام استراتژی پاسخگویی به تقاضای افزایش یافته

نوع مقاله : مقاله پژوهشی

چکیده

هدف مدیریت انرژی سمت عرضه (SSEM) بهبود کارایی در عملیات و برنامه ریزی استراتژیک است. هم هزینه تولید برق و هم میزان انتشار گازهای گلخانه ای از آن تولید در SSEM به حداقل می رسد. برای دستیابی به مصالحه، لازم است یک مسئله بهینه سازی با این دو هدف رقیب فرموله شود. حل مشکلات مربوط به قابلیت اطمینان شبکه ناشی از پیک تقاضا در سیستم برق یکی دیگر از اهداف SSEM است. هدف نهایی این مطالعه کاهش مصرف انرژی در ساعات اوج مصرف و همچنین کاهش تلفات برق، هزینه‌های تولید و آلودگی ناشی از نیروگاه‌ها است. در این مقاله تمام اهداف سیستم شبکه هوشمند با استفاده از زمان‌بندی بهینه ژنراتور و تکنیک پاسخ تقاضای بهبودیافته برآورده شده و به طور بهینه مورد توجه قرار گرفته‌اند. برای تدوین این مشکل، سیستم استاندارد IEEE 30 باس به عنوان قایق آزمایشی در نظر گرفته می شود. سیستم پیشنهادی از روش جستجوی فاخته و جدیدترین نوع آن، جستجوی تطبیقی فاخته، برای حل یک مسئله بهینه‌سازی غیرخطی تصادفی استفاده می‌کند. رویکرد جستجوی تطبیقی فاخته، هنگامی که با استراتژی مدیریت سمت تقاضای پیشنهادی ترکیب می‌شود، هزینه‌های سوخت را تا 7.84 درصد، انتشار گازهای گلخانه‌ای را تا 16.35 درصد، تلفات برق را تا 10.31 درصد، و تقاضای ساعت پیک را تا 15.6 درصد کاهش می‌دهد.

کلیدواژه‌ها


  1. Rajaei, M. Haddadi, and N. Nord, “A new approach of optimal appliance scheduling for peak load reduction of an off-grid residential building,” Journal of Building Performance Simulation, vol. 16, no. 2, pp. 131–143, 2023.
  2. Makhdoomi and J. Moshtagh, “Optimal scheduling of electrical storage system and flexible loads to participate in energy and flexible ramping product markets,” Journal of Operation and Automation in Power Engineering, vol. 11, no. 3, pp. 203–212, 2023.
  3. R. Goyal and S. Vadhera, “Smart home appliances’ scheduling by two-stage optimization with real-time price model,” Electric Power Components and Systems, vol. 51, no. 6, pp. 604–618, 2023.
  4. Mellouk, M. Boulmalf, A. Aaroud, K. Zine-Dine, and D. Benhaddou, “Genetic algorithm to solve demand side management and economic dispatch problem,” Procedia computer science, vol. 130, pp. 611–618, 2018.
  5. Jalilian, A. Rastgou, S. Kharrati, and S. Hosseini-Hemati, “Frequency stability of hybrid power system in the presence of superconducting magnetic energy storage and uncertainties,” Journal of Operation and Automation in Power Engineering, vol. 11, no. 4, pp. 230–239, 2023.
  6. Shewale, A. Mokhade, N. Funde, and N. D. Bokde, “An overview of demand response in smart grid and optimization techniques for efficient residential appliance scheduling problem,” Energies, vol. 13, no. 16, p. 4266, 2020.
  7. Goyal and S. Vadhera, “Solution of combined economic emission dispatch with demand side management using meta-heuristic algorithms,” Journal Européen des Systemes Automatisés, vol. 52, no. 2, pp. 143–148, 2019.
  8. R. Goyal and S. Vadhera, “Challenges of implementing demand side management in developing countries,” Journal of Power Technologies, vol. 100, no. 1, p. 43, 2020.
  9. Dutta and K. Mitra, “A literature review on dynamic pricing of electricity,” Journal of the Operational Research Society, vol. 68, no. 10, pp. 1131–1145, 2017.
  10. Mohebbi-Gharavanlou, S. Nojavan, and K. Zareh, “Energy management of virtual power plant to participate in the electricity market using robust optimization,” Journal of Operation and Automation in Power Engineering, vol. 8, no. 1, pp. 43–56, 2020.
  11. R. Goyal and S. Vadhera, “Multi-interval programming based scheduling of appliances with user preferences and dynamic pricing in residential area,” Sustainable Energy, Grids and Networks, vol. 27, p. 100511, 2021.
  12. Afraz, B. Rezaeealam, S. SeyedShenava, and M. Doostizadeh, “Generation scheduling of active distribution network with renewable energy resources considering demand response management,” Journal of Operation and Automation in Power Engineering, vol. 9, no. 2, pp. 132–143, 2021.
  13. Mohammad and Y. Mishra, “Demand-side management and demand response for smart grid,” Smart grids and their communication systems, pp. 197–231, 2019.
  14. Chandra, S. Banerjee, K. K. Radhakrishnan, and S. K. Panda, “Transactive energy market framework for decentralized coordination of demand side management within a cluster of buildings,” IEEE Transactions on Industry Applications, vol. 57, no. 4, pp. 3385–3395, 2021.
  15. Shewale, A. Mokhade, N. Funde, and N. D. Bokde, “An overview of demand response in smart grid and optimization techniques for efficient residential appliance scheduling problem,” Energies, vol. 13, no. 16, p. 4266, 2020.
  16. Jo and J. Park, “Demand-side management with shared energy storage system in smart grid,” IEEE Transactions on Smart Grid, vol. 11, no. 5, pp. 4466–4476, 2020.
  17. Poudel and R. Gokaraju, “Optimal operation of smr-res hybrid energy system for electricity & district heating,” IEEE Transactions on Energy Conversion, vol. 36, no. 4, pp. 3146–3155, 2021.
  18. Basu, “Fuel constrained dynamic economic dispatch with demand side management,” Energy, vol. 223, p. 120068, 2021.
  19. Samuel, S. Javaid, N. Javaid, S. H. Ahmed, M. K. Afzal, and F. Ishmanov, “An efficient power scheduling in smart homes using jaya based optimization with time-of-use and critical peak pricing schemes,” Energies, vol. 11, no. 11, p. 3155, 2018.
  20. D. Sen, J. Sharma, G. R. Goyal, and A. K. Singh, “A multiobjective pso (mopso) algorithm for optimal active power dispatch with pollution control,” Mathematical Modelling of Engineering Problems, vol. 4, no. 3, pp. 113–119, 2017.
  21. Lokeshgupta and S. Sivasubramani, “Multi-objective dynamic economic and emission dispatch with demand side management,” International Journal of Electrical Power & Energy Systems, vol. 97, pp. 334–343, 2018.
  22. Liu and J. Li, “A bi-level energy-saving dispatch in smart grid considering interaction between generation and load,” IEEE Transactions on Smart Grid, vol. 6, no. 3, pp. 1443–1452, 2015.
  23. P. Mathur, A. Arya, and M. Dubey, “Impact of emission trading on optimal bidding of price takers in a competitive energy market,” in Harmony Search and Nature Inspired Optimization Algorithms: Theory and Applications, ICHSA 2018, pp. 171–180, Springer, 2019.
  24. Shayeghi and M. Alilou, “Multi-objective demand side management to improve economic and environmental issues of a smart microgrid,” Journal of Operation and Automation in Power Engineering, vol. 9, no. 3, pp. 182–192, 2021.
  25. Derakhshan, H. A. Shayanfar, and A. Kazemi, “The optimization of demand response programs in smart grids,” Energy Policy, vol. 94, pp. 295–306, 2016.
  26. Hasan and M. El-Hawary, “Economic dispatch at peak load using load reduction for smart grid network,” in 2016 IEEE Electrical Power and Energy Conference (EPEC), pp. 1–5, IEEE, 2016.
  27. Tariq, S. Alelyani, G. Abbas, A. Qahmash, and M. R. Hussain, “Solving renewables-integrated economic load dispatch problem by variant of metaheuristic batinspired algorithm,” Energies, vol. 13, no. 23, p. 6225, 2020.
  28. Kakran and S. Chanana, “Operation management of a renewable microgrid supplying to a residential community under the effect of incentive-based demand response program,” International Journal of Energy and Environmental Engineering, vol. 10, pp. 121–135, 2019.
  29. P. Biswas, P. N. Suganthan, B. Y. Qu, and G. A. Amaratunga, “Multiobjective economic-environmental power dispatch with stochastic wind-solar-small hydro power,” Energy, vol. 150, pp. 1039–1057, 2018.
  30. Suresh, S. Sreejith, S. K. Sudabattula, and V. K. Kamboj, “Demand response-integrated economic dispatch incorporating renewable energy sources using ameliorated dragonfly algorithm,” Electrical Engineering, vol. 101, pp. 421–442, 2019.
  31. -S. Ryu and M.-K. Kim, “Combined economic emission dispatch with environment-based demand response using wu-abc algorithm,” Energies, vol. 13, no. 23, p. 6450, 2020.
  32. Guerrero, O. Castillo, and M. García, “Cuckoo search via lévy flights and a comparison with genetic algorithms,” Fuzzy Logic Augmentation of Nature-Inspired Optimization Metaheuristics: Theory and Applications, pp. 91–103, 2015.
  33. Cheng, J. Wang, M. Zhang, H. Song, T. Chang, Y. Bi, and K. Sun, “Improvement and application of adaptive hybrid cuckoo search algorithm,” IEEE Access, vol. 7, pp. 145489–145515, 2019.
  34. Kaushik, M. Goswami, M. Manuja, S. Indu, and D. Gupta, “A binary pso approach for improving the performance of wireless sensor networks,” Wireless Personal Communications, vol. 113, pp. 263–297, 2020.
  35. R. Chinda and R. D. Rao, “A binary particle swarm optimization approach for power system security enhancement,” International Journal of Electrical & Computer Engineering, vol. 12, no. 2, pp. 1929–1936, 2022.