طرح حفاظت از ماژول ANN مونو و ماژول های چندگانه ANN برای تخمین مکان خطا برای یک خط انتقال شش فاز با استفاده از تبدیل موجک گسسته

نوع مقاله : مقاله پژوهشی

چکیده

قابلیت انتقال توان افزایش یافته با سیستم انتقال شش فاز امکان پذیر است اما به دلیل عدم وجود یک طرح حفاظتی مناسب برای ایمن سازی خط از 120 نوع خطای مختلف اتصال کوتاه احتمالی محبوبیت پیدا نکرد. این کار یک طرح حفاظتی با تبدیل موجک گسسته (موجک مادر db4) و یک شبکه عصبی مصنوعی (ANN) ارائه می‌کند. الگوریتم Levenberg-Marquardt برای آموزش شبکه های عصبی مصنوعی استفاده می شود. این طرح حفاظتی فقط به اطلاعات فعلی از پیش پردازش شده گذرگاه پایانی ارسال کننده نیاز دارد. برای تشخیص و طبقه بندی خطای تمامی 120 نوع خطا، یک ماژول ANN منفرد با شش ورودی و شش خروجی پیاده سازی شده است. برای تخمین مکان خطا در هر فاز، 11 ماژول ANN با شش خروجی، یکی برای هر یک از 11 نوع ترکیبی از خطاها، پیاده سازی شده است. نتایج شبیه‌سازی MATLAB/SIMULINK تکنیک حفاظتی پیشنهادی پیاده‌سازی شده بر روی سیستم انتقال قدرت شش فاز آلگنی نشان می‌دهد که در تشخیص و طبقه‌بندی تمامی خطاها با پارامترهای خطای متغیر با دقت 99.76 درصد مؤثر و کارآمد است. مشخص شد که عملکرد ماژول‌های تخمین مکان خطا با داده‌های آموزشی بهتر و با داده‌های تست متوسط است.

کلیدواژه‌ها


  1. R. E. Agency, “Renewable capacity statistics 2021,”Renew. Renew. Capacit. Stat., 2021.
  2. B. Bhatt, S. S. Venkata, W. C. Guyker, and W. H. Booth, “Six-phase (multi-phase) power transmission systems: fault analysis,” IEEE Trans. Power Appar. Syst., vol. 96, no. 3, pp. 758–767, 1977.
  3. Venkata, W. Guyker, W. Booth, J. Kondragunta, N. Bhatt, and N. Saini, “Eppc-a computer program for six-phase transmission line design,” IEEE Trans. Power Appar. Syst., no. 7, pp. 1859–1869, 1982.
  4. Venkata, W. Guyker, W. Booth, J. Kondragunta, N. Saini, and E. Stanek, “138-kv, six-phase transmission system: fault analysis,” IEEE Trans. Power Appar. Syst., no. 5, pp. 1203–1218, 1982.
  5. Koley, A. Yadav, and A. Thoke, “Six phase to ground fault detection and classification of transmission line using ann,” Int. J. Comput. Appl., vol. 41, no. 4, 2012.
  6. Li, Y. Li, S. Rowland, J. Hu, I. Cotton, and X. Jiang, “Audible noise evaluation for six-phase overhead lines transformed from existing three-phase double circuit infrastructures with uprated voltages,” High Volt., vol. 7, no. 5, pp. 866–876, 2022.
  7. Shen, B. Cao, P. Crossley, Z. Wang, and X. Ding, “Transformation of a three-phase double-circuit overhead transmission line into a six-phase feeder to increase power transfer capability,” IET Gener. Transm. Distrib., vol. 16, no. 23, pp. 4663–4671, 2022.
  8. Abasi, M. Joorabian, A. Saffarian, and S. G. Seifossadat, “A comprehensive review of various fault location methods for transmission lines compensated by facts devices and series capacitors,” J. Oper. Autom. Power Eng., vol. 9, no. 3, pp. 213–225, 2021.
  9. Shad, M. Gandomkar, and J. Nikoukar, “An improved optimal protection coordination for directional overcurrent relays in meshed distribution networks with dg using a novel truth table,” J. Oper. Autom. Power Eng., vol. 11, no. 3, pp. 151–161, 2023.
  10. Venkata, V. Pandya, and A. Sant, “Data mining model based differential microgrid fault classification using svm considering voltage and current distortions,” J. Oper. Autom. Power Eng., vol. 11, no. 3, pp. 162–172, 2023.
  11. Tiwari, G. K. Singh, and A. B. Saroor, “Multiphase power transmission researcha survey,” Electr. Power Syst. Res., vol. 24, no. 3, pp. 207–215, 1992.
  12. C. Sekhar and P. Subramanyam, “Protection of six phase transmission system of allegheny power system, usa against shunt faults,” in 2014 International Conference on Smart Electric Grid (ISEG), pp. 1–7, IEEE, 2014.
  13. Koley, A. Jain, A. Thoke, A. Jain, and S. Ghosh, “Detection and classification of faults on six phase transmission line using ann,” in 2011 2nd International Conference on Computer and Communication Technology (ICCCT-2011), pp. 100–103, IEEE, 2011.
  14. Kumar, E. Koley, A. Yadav, and A. Thoke, “Fault classification of phase to phase fault in six phase transmission line using haar wavelet and ann,” in 2014 International Conference on Signal Processing and Integrated Networks (SPIN), pp. 5–8, IEEE, 2014.
  15. Koley, A. Yadav, and A. Thoke, “Artificial neural network based protection scheme for one conductor open faults in six phase transmission line,” Int. J. Comput. Appl., vol. 101, no. 4, pp. 42–46, 2014.
  16. Koley, A. Yadav, and A. S. Thoke, “A new single-ended artificial neural network-based protection scheme for shunt faults in six-phase transmission line,” Int. Trans. Electr. Energy Syst., vol. 25, no. 7, pp. 1257–1280, 2015.
  17. Koley, K. Verma, and S. Ghosh, “A modular neuro-wavelet based non-unit protection scheme for zone identification and fault location in six-phase transmission line,” Neural Comput. Appl., vol. 28, pp. 1369–1385, 2017.
  18. K. Shukla, E. Koley, S. Ghosh, and D. K. Mohanta, “Enhancing the reliability of six-phase transmission line protection using power quality informatics with real-time validation,” Int. Trans. Electr. Energy Syst., vol. 29, no. 9, p. e12048, 2019.
  19. Yadav and V. Ashok, “A relaying scheme for detection and classification of shunt faults in six-phase transmission system based on dft-fis approach,” J. Power Technol., vol. 98, no. 2, p. 202, 2018.
  20. Verma, E. Koley, and S. Ghosh, “Application of fuzzy logic for fault detection and classification in six phase transmission line,” in 2017 IEEE Int. Conf. Comput. Intell. Comput. Res. (ICCIC), pp. 1–5, IEEE, 2017.
  21. Stewart and I. Grant, “High phase order-ready for application,” IEEE Trans. Power Appar. Syst., no. 6, pp. 1757–1767, 1982.
  22. P. Valsan and K. Swarup, “Wavelet transform based digital protection for transmission lines,” Int. J. Electr. Power Energy Syst., vol. 31, no. 7-8, pp. 379–388, 2009.
  23. A. Hajjar, “A high speed noncommunication protection scheme for power transmission lines based on wavelet transform,” Electr. Power Syst. Res., vol. 96, pp. 194–200, 2013.
  24. R. Adly, S. H. A. Aleem, M. A. Algabalawy, F. Jurado, and Z. M. Ali, “A novel protection scheme for multi-terminal transmission lines based on wavelet transform,” Electr. Power Syst. Res., vol. 183, p. 106286, 2020.
  25. Valabhoju, A. Yadav, M. Pazoki, and R. A. El-Sehiemy, “Optimized ensemble of regression tree-based location of evolving faults in dual-circuit line,” Neural Comput. Appl., vol. 33, pp. 8795–8820, 2021.
  26. Mustafidah, S. Hartati, R. Wardoyo, and A. Harjoko, “Selection of most appropriate backpropagation training algorithm in data pattern recognition,” arXiv preprint arXiv:1409.4727, 2014.
  27. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” Journal of the society for Industrial and Applied Mathematics, vol. 11, no. 2, pp. 431–441, 1963.
  28. T. Hagan and M. B. Menhaj, “Training feedforward networks with the marquardt algorithm,” IEEE trans. neural netw., vol. 5, no. 6, pp. 989–993, 1994.
  29. Akke and J. T. Thorp, “Some improvements in the threephase differential equation algorithm for fast transmission line protection,” IEEE Trans. Power Deliv., vol. 13, no. 1, pp. 66–72, 1998.
  30. K. Shukla, E. Koley, and S. Ghosh, “A hybrid wavelet– apso–ann-based protection scheme for six-phase transmission line with real-time validation,” Neural Comput. Appl., vol. 31, pp. 5751–5765, 2019.
  31. Rao Althi, E. Koley, S. Ghosh, and S. K. Shukla, “Six phase transmission line protection using bat algorithm tuned stacked sparse autoencoder,” Electr. Power Compon. Syst., pp. 1–18, 2022.