افزایش پایداری ولتاژ با استفاده از دستگاه های FACTS تحت شرایط اضطراری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 Department of Electrical Engineering, National Institute of Technology, Patna, Bihar, India-800005

2 Assist. Prof. with the Department of Electrical Engineering, National Institute of Technology, Patna, Bihar, India-800005

چکیده

حاشیه پایداری ولتاژ (VSM) یک شاخص مهم برای دسترسی به پایداری ولتاژ سیستم قدرت است. در این مقاله، دستگاه‌های سیستم‌های انتقال AC انعطاف‌پذیر (FACTS) مانند جبران‌کننده سنکرون استاتیک (STATCOM)، جبران‌کننده سری سنکرون استاتیک (SSSC) و کنترل‌کننده جریان برق یکپارچه (UPFC) برای افزایش VSM سیستم قدرت به کار گرفته شده‌اند. قرار دادن دستگاه های FACTS بر اساس رتبه بندی احتمالی تصمیم گیری می شود. برای پنج رویداد مهم مهم، شدیدترین باس بر اساس شاخص بحرانی پایداری ولتاژ شین و روش‌های مرکزیت درجه انتخاب می‌شود. خط بحرانی بر اساس مقادیر شاخص پایداری خط، شاخص پایداری ولتاژ سریع و ضریب پایداری خط تعیین می‌شود. STATCOM و قسمت شنت UPFC در گذرگاه بحرانی قرار می گیرند، در حالی که بخش SSSC و سری UPFC در خط بحرانی برای افزایش پایداری ولتاژ قرار می گیرند. روش پیشنهادی برای افزایش پایداری ولتاژ با استفاده از دستگاه‌های FACTS بر روی سیستم گذرگاه IEEE-14 و سیستم باس NRPG-246 در سناریوهای بارگذاری مختلف سیستم آزمایش و تأیید شده است. تأثیر قرارگیری دستگاه های FACTS از نظر بهبود VSM تأیید شده است.

کلیدواژه‌ها


  1. Saadat, “Power systems analysis 2nd edition-psa,” 2009.
  2. W. Taylor, “Voltage stability,” Power System Voltage Stability, pp. 27–32, 1994.
  3. A. Canizares, “Voltage stability assessment: concepts, practices and tools,” IEEE/PES Power System Stability Subcommittee Special Publication, no. SP101PSS, 2002.
  4. Sao, “Voltage stability indicator at the proximity of the voltage collapse point and its implication on margin,” Asian J. Comput. Sci. Inf. Technol., vol. 5, pp. 151–154, 2011.
  5. Hatziargyriou, J. van Hecke, T. van Cutsem, I.C. on Large High Voltage Electric Systems Study Committee Power System Analysis, T.W. G.T. Force, I.C. on Large High Voltage Electric Systems. WG 38/02. Task Force 11, and I.C. on Large High Voltage Electric Systems. Working Group 38.02. Task Force 11, Indices Predicting Voltage Collapse Including Dynamic Phenomena. Brochures thématiques: International Conference on Large High Voltage Electric Systems, CIGRE, 1994.
  6. S. Kundur and O.P. Malik, Power System Stability and Control. McGraw-Hill Education, 2022.
  7. Andersson, P. Donalek, R. Farmer, N. Hatziargyriou, I. Kamwa, P. Kundur, N. Martins, J. Paserba, P. Pourbeik, J. Sanchez-Gasca, et al., “Causes of the 2003 major grid blackouts in north america and europe, and recommended means to improve system dynamic performance,” IEEE Trans. Power Syst., vol. 20, no. 4, pp. 1922–1928, 2005.
  8. Venikov, V. Stroev, V. Idelchick, and V. Tarasov, “Estimation of electrical power system steady-state stability in load flow calculations,” IEEE Trans. Power Appar. Syst., vol. 94, no. 3, pp. 1034–1041, 1975.
  9. -A. Lof, T. Smed, G. Andersson, and D. Hill, “Fast calculation of a voltage stability index,” IEEE Trans. Power Syst., vol. 7, no. 1, pp. 54–64, 1992.
  10. Gao, G. Morison, and P. Kundur, “Voltage stability evaluation using modal analysis,” IEEE Trans. Power Syst., vol. 7, no. 4, pp. 1529–1542, 1992.
  11. Konar, D. Chatterjee, and S. Patra, “V–q sensitivitybased index for assessment of dynamic voltage stability of power systems,” IET Gener. Transm. Distrib., vol. 9, no. 7, pp. 677–685, 2015.
  12. Kessel and H. Glavitsch, “Estimating the voltage stability of a power system,” IEEE Trans. Power Deliv., vol. 1, no. 3, pp. 346–354, 1986.
  13. Musirin and T.A. Rahman, “Novel fast voltage stability index (fvsi) for voltage stability analysis in power transmission system,” in Student conference on research and development, pp. 265–268, IEEE, 2002.
  14. Mohamed, G. Jasmon, and S. Yusoff, “A static voltage collapse indicator using line stability factors,” J. Ind. Technol., vol. 7, no. 1, pp. 73–85, 1989.
  15. Vu, M.M. Begovic, D. Novosel, and M.M. Saha, “Use of local measurements to estimate voltage-stability margin,” IEEE Trans. Power Syst., vol. 14, no. 3, pp. 1029–1035, 1999.
  16. Sagara, R. Shigenobu, O.B. Adewuyi, A. Yona, T. Senjyu, M.S.S. Danish, and T. Funabashi, “Voltage stability improvement by demand response,” in TENCON 2017-2017 IEEE Region 10 Conference, pp. 2144–2149, IEEE, 2017.
  17. M. Hur Rizvi, P. Kundu, and A.K. Srivastava, “Hybrid voltage stability and security assessment using synchrophasors with consideration of generator q-limits,” IET Gener. Transm. Distrib., vol. 14, no. 19, pp. 4042–4051, 2020.
  18. Mohammadniaei, F. Namdari, and M. Shahkarami, “A fast voltage collapse detection and prevention based on wide area monitoring and control,” J J. Oper. Autom. Power Eng., vol. 8, no. 3, pp. 209–219, 2020.
  19. Akbarzadeh Aghdam and H. Khoshkhoo, “Voltage stability assessment algorithm to predict power system loadability margin,” IET Gener. Transm. Distrib., vol. 14, no. 10, pp. 1816–1828, 2020.
  20. Alshareef, R. Shah, N. Mithulananthan, and S. Alzahrani, “A new global index for short term voltage stability assessment,” IEEE Access, vol. 9, pp. 36114–36124, 2021.
  21. Ismail, N.I.A. Wahab, M.L. Othman, M.A.M. Radzi, K.N. Vijayakumar, M.K. Rahmat, and M.N.M. Naain, “New line voltage stability index (bvsi) for voltage stability assessment in power system: the comparative studies,” IEEE Access, vol. 10, pp. 103906–103931, 2022.
  22. Wang, A. Scaglione, and R.J. Thomas, “Electrical centrality measures for electric power grid vulnerability analysis,” in 49th IEEE conference on decision and control (CDC), pp. 5792–5797, IEEE, 2010.
  23. P.R. Coelho, M.H.M. Paiva, M.E.V. Segatto, and G. Caporossi, “A new approach for contingency analysis based on centrality measures,” IEEE Syst. J., vol. 13, no. 2, pp. 1915–1923, 2018.
  24. Hussian, G.R. Goyal, A.K. Arya, and B.P. Soni, “Contingency ranking for voltage stability in power system,” in 2021 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), pp. 1–4, IEEE, 2021.
  25. G. Werkie and H.A. Kefale, “Optimal allocation of multiple distributed generation units in power distribution networks for voltage profile improvement and power losses minimization,” Cogent Eng., vol. 9, no. 1, p. 2091668, 2022.
  26. Kazeminejad, M. Banejad, U. Annakkage, and N. Hosseinzadeh, “The effect of high penetration level of distributed generation sources on voltage stability analysis in unbalanced distribution systems considering load model,” J. Oper. Autom. Power Eng., vol. 7, no. 2, pp. 196–205, 2019.
  27. Gerbex, R. Cherkaoui, and A.J. Germond, “Optimal location of multi-type facts devices in a power system by means of genetic algorithms,” IEEE Trans. Power Syst., vol. 16, no. 3, pp. 537–544, 2001.
  28. G. Hingorani and L. Gyugyi, Understanding FACTS: concepts and technology of flexible AC transmission systems. Wiley-IEEE Press, 2000.
  29. -C. Chang, “Multi-objective optimal svc installation for power system loading margin improvement,” IEEE Trans. Power Syst., vol. 27, no. 2, pp. 984–992, 2011.
  30. -Y. Lee, S.-H. Tsai, and Y.-K. Wu, “A new approach to the assessment of steady-state voltage stability margins using the p–q–v curve,” Int. J. Electr. Power Energy Syst., vol. 32, no. 10, pp. 1091–1098, 2010.
  31. Kumar, B. Tyagi, V. Kumar, and S. Chohan, “Optimization of phasor measurement units placement under contingency using reliability of network components,” IEEE Trans. Instrum. Meas., vol. 69, no. 12, pp. 9893–9906, 2020.
  32. S. Wibowo, N. Yorino, M. Eghbal, Y. Zoka, and Y. Sasaki, “Facts devices allocation with control coordination considering congestion relief and voltage stability,” IEEE Trans. Power Syst., vol. 26, no. 4, pp. 2302–2310, 2011.
  33. Sode-Yome, N. Mithulananthan, and K.Y. Lee, “Comprehensive comparison of facts devices for exclusive loadability enhancement,” IEEJ Trans. Electr. Electron. Eng., vol. 8, no. 1, pp. 7–18, 2013.
  34. P. Roselyn, D. Devaraj, and S.S. Dash, “Multi-objective genetic algorithm for voltage stability enhancement using rescheduling and facts devices,” Ain Shams Eng. J., vol. 5, no. 3, pp. 789–801, 2014.
  35. B. Adetokun, C.M. Muriithi, and J.O. Ojo, “Voltage stability assessment and enhancement of power grid with increasing wind energy penetration,” Int. J. Electr. Power Energy Syst., vol. 120, p. 105988, 2020.
  36. Q. Zhou, U.D. Annakkage, and A.D. Rajapakse, “Online monitoring of voltage stability margin using an artificial neural network,” IEEE Trans. Power Syst., vol. 25, no. 3, pp. 1566–1574, 2010.
  37. Zheng, V. Malbasa, and M. Kezunovic, “Regression tree for stability margin prediction using synchrophasor measurements,” IEEE Trans. Power Syst., vol. 28, no. 2, pp. 1978–1987, 2012.
  38. Ajjarapu and C. Christy, “The continuation power flow: a tool for steady state voltage stability analysis,” IEEE Trans. Power Syst., vol. 7, no. 1, pp. 416–423, 1992.
  39. Moghavvemi and F. Omar, “Technique for contingency monitoring and voltage collapse prediction,” IEE P-Gener. Transm. D., vol. 145, no. 6, pp. 634–640, 1998.
  40. Prabhakar and A. Kumar, “Voltage stability boundary and margin enhancement with facts and hvdc,” Int. J. Electr. Power Energy Syst., vol. 82, pp. 429–438, 2016.
  41. Sodhi, S. Srivastava, and S. Singh, “A simple scheme for wide area detection of impending voltage instability,” IEEE Trans. Smart Grid, vol. 3, no. 2, pp. 818–827, 2012.
  42. Ieee 14-bus system, [Available: http://www.ee.washington. edu/research/pstca/pf14/pg_tca14bus.htm].
  43. A. Kamarposhti, M. Alinezhad, H. Lesani, and N. Talebi, “Comparison of svc, statcom, tcsc, and upfc controllers for static voltage stability evaluated by continuation power flow method,” in 2008 IEEE Canada Electric Power Conference, pp. 1–8, IEEE, 2008.
  44. Nrpg 246-bus data, [Available: https://www.iitk.ac.in/eeold/ facilities/Research_labs/Power_System/NRPG-DATA.pdf].
  45. Sahu and M. Verma, “Optimal placement of pmus in power system network for voltage stability estimation under contingencies,” in 2017 6th International Conference on Computer Applications In Electrical Engineering-Recent Advances (CERA), pp. 365–370, IEEE, 2017.