مبدل DC-DC با ریپل جریان ورودی کم با افزایش تنش ولتاژ پایین برای استفاده از انرژی های تجدیدپذیر

نوع مقاله : مقاله پژوهشی

چکیده

این گزارش یک توپولوژی گام به گام بالا را با استفاده از یک سلول ضرب کننده ولتاژ (VMC) و یک سلف جفت شده برای استفاده از انرژی تجدیدپذیر توسعه می دهد. راندمان بهبود یافته و ولتاژ مسدود کننده در نیمه هادی ها کاهش می یابد. ساختار پیشنهادی با استفاده از یک VMC و یک سلف جفت شده به افزایش ولتاژ بالا دست می یابد. این ساختار تنها از یک سوئیچ ماسفت استفاده می کند که هزینه مبدل را کاهش می دهد. مزایای دیگر کاهش تعداد قطعات و ولتاژ مسدود کننده پایین کلیدها/دیودها است. علاوه بر این، VMC به عنوان یک مدار گیره عمل می کند و ولتاژ پیک سوئیچ را کاهش می دهد. در نتیجه، در مبدل ارائه شده، می توان یک ماسفت ولتاژ نامی پایین را راه اندازی کرد. حالت های سوئیچینگ، تجزیه و تحلیل حالت پایدار و مطالعه مقایسه ای با مبدل های مشابه دیگر عملکرد و برتری مبدل را نشان می دهد. یک مقیاس آزمایشگاهی 200 وات که تحت فرکانس سوئیچینگ 25 کیلوهرتز و تبدیل ولتاژ 20 ولت تا 150 ولت کار می کند، برای اعتبار بخشیدن به معادلات نظری ساخته شده است. راندمان مبدل پیشنهادی در بار کامل حدود 96.3٪ است. همچنین حداکثر تنش ولتاژ نرمال شده روی کلید و دیودها برای چرخه کاری D=0.6 و نسبت دور N=2 به ترتیب حدود 0.33 و 0.8 است.

کلیدواژه‌ها

موضوعات


  1. M. Hashemzadeh, V. Marzang, S. Pourjafar, and S. H. Hosseini, “An ultra high step-up dual-input single-output dc–dc converter based on coupled inductor,” IEEE Trans. Ind. Electron., vol. 69, no. 11, pp. 11023–11034, 2021.
  2. -B. Park, G.-W. Moon, and M.-J. Youn, “Nonisolated high step-up boost converter integrated with sepic converter,” IEEE Trans. Power Electron., vol. 25, no. 9, pp. 2266–2275, 2010.
  3. Pourjafar, H. Shayeghi, S. M. Hashemzadeh, F. Sedaghati, and M. Maalandish, “A non-isolated high step-up dc–dc converter using magnetic coupling and voltage multiplier circuit,” IET Power Electron., vol. 14, no. 9, pp. 1637–1655, 2021.
  4. Shayeghi, S. Pourjafar, S. M. Hashemzadeh, and Blaabjerg, “A high efficiency soft-switched dc–dc converter with high voltage conversion ratio,” Int. J. Circuit Theory Appl., vol. 49, no. 2, pp. 244–266, 2021.
  5. M. Hashemzadeh, E. Babaei, S. H. Hosseini, and M. Sabahi, “Design and analysis of a new coupled inductorbased interleaved high step-up dc-dc converter for renewable energy applications.,” Int. Trans. Electr. Energy Syst., 2022.
  6. M. Hashemzadeh, S. H. Hosseini, E. Babaei, and M. Sabahi, “Design and modelling of a new three winding coupled inductor based high step-up dc–dc converter for renewable energy applications,” IET Power Electron., vol. 15, no. 13, pp. 1322–1339, 2022.
  7. -M. Chen, M.-L. Lao, Y.-H. Hsieh, T.-J. Liang, and K.-H. Chen, “A novel switched-coupled-inductor dc–dc step-up converter and its derivatives,” IEEE Trans. Ind. Appl., vol. 51, no. 1, pp. 309–314, 2014.
  8. Marzang, S. M. Hashemzadeh, P. Alavi, A. KhoshkbarSadigh, S. H. Hosseini, and M. Z. Malik, “A modified triple-switch triple-mode high step-up dc–dc converter,” IEEE Trans. Ind. Electron., vol. 69, no. 8, pp. 8015–8027, 2021.
  9. Kim and S. Choi, “A fully soft-switched single switch isolated dc–dc converter,” IEEE Trans. Power Electron., vol. 30, no. 9, pp. 4883–4890, 2014.
  10. M. Hashemzadeh, S. H. Hosseini, and V. Marzang, “Increase of the photovoltaic resources power using multiinput dc–dc converter and model-based mppt algorithm,” Int. J. Ambient Energy, vol. 43, no. 1, pp. 7501–7512, 2022.
  11. Kumar and P. Sensarma, “Ripple-free input current high voltage gain dc–dc converters with coupled inductors,” IEEE Trans. Power Electron., vol. 34, no. 4, pp. 3418–3428, 2018.
  12. Nouri and M. Shaneh, “A new interleaved ultra-large gain converter for sustainable energy systems,” IET Power Electron., vol. 14, no. 1, pp. 90–105, 2021.
  13. Shayeghi, S. Pourjafar, and F. Sedaghati, “A buck-boost converter; design, analysis and implementation suggested for renewable energy systems.,” Iran. J. Electr. Electron. Eng., vol. 17, no. 2, 2021.
  14. Shayeghi, S. Pourjafar, M. Maalandish, and S. Nouri, “Non-isolated dc–dc converter with a high-voltage conversion ratio,” IET Power Electron., vol. 13, no. 16, pp. 3797–3806, 2020.
  15. -J. Liang, J.-H. Lee, S.-M. Chen, J.-F. Chen, and L.-S. Yang, “Novel isolated high-step-up dc–dc converter with voltage lift,” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1483–1491, 2011.
  16. Shayeghi, S. Pourjafar, S. M. Hashemzadeh, and F. Sedaghati, “Presenting of the magnetic couplingbased transformer-less high step-up dc-dc converter for renewable energy applications,” Int. Trans. Electr. Energy Syst., vol. 2022, pp. 1–15, 2022.
  17. Hassan, D. D.-C. Lu, and W. Xiao, “Single-switch high step-up dc–dc converter with low and steady switch voltage stress,” IEEE Trans. Ind. Electron., vol. 66, no. 12, pp. 9326–9338, 2019.
  18. Sedaghati and S. Pourjafar, “Analysis and implementation of a boost dc–dc converter with high voltage gain and continuous input current,” IET Power Electron., vol. 13, no. 4, pp. 798–807, 2020.
  19. Sadaghati, H. Shayeghi, S. Pourjafar, and S. Hashemzadeh, “A high step-up transformer-less dc-dc converter with continuous input current,” in 2020 11th Power Electron. Drive Syst. Technol. Conf. (PEDSTC), pp. 1–6, IEEE, 2020.
  20. Shayeghi, S. Pourjafar, and S. M. Hashemzadeh, “A switching capacitor based multi-port bidirectional dc–dc converter,” IET Power Electron., vol. 14, no. 9, pp. 1622– 1636, 2021.
  21. Pourjafar, F. Sedaghati, H. Shayeghi, and M. Maalandish, “High step-up dc–dc converter with coupled inductor suitable for renewable applications,” IET Power Electron., vol. 12, no. 1, pp. 92–101, 2019.
  22. Saadatizadeh, E. Babaei, F. Blaabjerg, and C. Cecati, “Three-port high step-up and high step-down dc-dc converter with zero input current ripple,” IEEE Trans. Power Electron., vol. 36, no. 2, pp. 1804–1813, 2020.
  23. -M. Chen, T.-J. Liang, L.-S. Yang, and J.-F. Chen, “A boost converter with capacitor multiplier and coupled inductor for ac module applications,” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1503–1511, 2011.
  24. -P. Hsieh, J.-F. Chen, T.-J. Liang, and L.-S. Yang, “Novel high step-up dc–dc converter with coupled-inductor and switched-capacitor techniques,” IEEE Trans. Ind. Electron., vol. 59, no. 2, pp. 998–1007, 2011.
  25. Gules, W. M. Dos Santos, F. A. Dos Reis, E. F. R. Romaneli, and A. A. Badin, “A modified sepic converter with high static gain for renewable applications,” IEEE Trans. Power Electron., vol. 29, no. 11, pp. 5860–5871, 2013.
  26. Hasanpour, A. Baghramian, and H. Mojallali, “A modified sepic-based high step-up dc–dc converter with quasi-resonant operation for renewable energy applications,” IEEE Trans. Ind. Electron., vol. 66, no. 5, pp. 3539–3549, 2018.
  27. Tang, T. Wang, and D. Fu, “Multicell switchedinductor/switched-capacitor combined active-network converters,” IEEE Trans. Power Electron., vol. 30, no. 4, pp. 2063–2072, 2014.
  28. Saadatizadeh, P. C. Heris, X. Liang, and E. Babaei, “Expandable non-isolated multi-input single-output dc-dc converter with high voltage gain and zero-ripple input currents,” IEEE Access, vol. 9, pp. 169193–169219, 2021.
  29. Maalandish, E. Babaei, P. Abolhasani, M. Gheisarnejad, and M.-H. Khooban, “Ultra high step-up soft-switching dc/dc converter using coupled inductor and interleaved technique,” IET Power Electron., 2023.
  30. Shayeghi, S. Pourjafar, S. Hashemzadeh, and F. Sedaghati, “A dc-dc converter with high voltage conversion ratio recommended for renewable energy application,” J. Oper. Autom. Power Eng., vol. 12, no. 3, pp. 186–194, 2024.
  31. Yaqoub Hamza and F. Jumaa, “A new transformerless dc-dc converter for renewable energy applications,” J. Oper. Autom. Power Eng., vol. 12, no. 1, pp. 35–41, 2024.