Input Current THD Reduction via Virtual Resistant in EV Charger

Document Type : Research paper

Authors

Department of Electrical and Computer Engineering, University of Birjand, Birjand, Iran

Abstract

This paper investigates a fundamental issue in AC-DC rectifiers that are specifically used as charger for electric vehicle (EV), i.e. the total harmonic distortion (THD) of input current waveforms. Firstly, the topology of two-stage charger along with the corresponding control scheme is reviewed. Then, the research gap namely high harmonic distortion of input current is identified and analyzed. A revision of the conventional control method with the aid of virtual resistant is proposed and investigated from the circuit perspectives. Finally, simulation results are delivered to validate the analysis and the reduction of THD in the input current waveform. this is proposed method, the steady state is studied.

Keywords


[1]    S. Haghbin, S. Lundmark, M. Alakula and O. Carlson, “Grid-connected integrated battery chargers in vehicle applications: Review and new solution”, IEEE Trans. Ind. Electron., vol. 60, pp. 459-73, 2012.
[2]    M. Yilmaz and P.T. Krein, “Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles”, IEEE Trans. Power Electron., vol. 28, pp. 2151-69, 2012.
[3]    A. Khaligh and S. Dusmez, “Comprehensive topological analysis of conductive and inductive charging solutions for plug-in electric vehicles”, IEEE Trans. Veh. Technol., vol. 61, pp. 2475-89, 2012.
[4]    S. Jeong et al., “Electrolytic capacitor-less single-power-conversion on-board charger with high efficiency”, IEEE Trans. Ind. Electron., vol. 63, pp. 7488-97, 2016.
[5]    B. Whitaker et al., “A high-density, high-efficiency, isolated on-board vehicle battery charger utilizing silicon carbide power devices”, IEEE Trans. Power Electron., vol. 29, pp. 2606-17, 2013.
[6]    D. Gautam et al., “An automotive onboard 3.3-kW battery charger for PHEV application”, IEEE Trans. Veh. Technol., vol. 61, pp. 3466-74, 2012.
[7]    S. Kim and F. Kang, “Multifunctional onboard battery charger for plug-in electric vehicles”, IEEE Trans. Ind. Electron., vol. 62, pp. 3460-72, 2014.
[8]    K. Yao, Y. Wang, J. Guo and K. Chen, “Critical conduction mode boost PFC converter with fixed switching frequency control”, IEEE Trans. Power Electron., vol. 33, pp. 6845-57, 2017.
[9]    T. Mishima, K. Akamatsu and M. Nakaoka, “A high frequency-link secondary-side phase-shifted full-range soft-switching PWM DC–DC converter with ZCS active rectifier for EV battery chargers”, IEEE Trans. Power Electron., vol. 28, pp. 5758-73, 2013.
[10]  M. Kwon and S. Choi, “An electrolytic capacitorless bidirectional EV charger for V2G and V2H application”, IEEE Trans. Power Electron., vol. 32, pp. 6792-9, 2016.
[11]  K. Yoo, K. Kim and J. Lee, “Single-and three-phase PHEV onboard battery charger using small link capacitor”, IEEE Trans. Ind. Electron., vol. 60, pp. 3136-44, 2012.
[12]  L. Wang, B. Zhang and D. Qiu, “A novel valley-fill single-stage boost-forward converter with optimized performance in universal-line range for dimmable LED lighting”, IEEE Trans. Ind. Electron., vol. 64, pp. 2770-8, 2016.
[13]  Y. Wang et al., “A single-stage LED driver based on SEPIC and LLC circuits”, IEEE Trans. Ind. Electron., vol. 64, pp. 5766-76, 2016.
[14]  G. Moschopoulos and P. Jain, “Single-phase single-stage power-factor-corrected converter topologies”, IEEE Trans. Ind. Electron., vol. 52, pp. 23-35, 2005.
[15]  S. Li, J. Deng and C. Mi, “Single-stage resonant battery charger with inherent power factor correction for electric vehicles”, IEEE Trans. Veh. Technol., vol. 62, pp. 4336-44, 2013.
[16]  J. Lee, Y. Yoon and J. Kang, “A single-phase battery charger design for LEV based on DC-SRC with resonant valley-fill circuit”, IEEE Trans. Ind. Electron., vol. 62, pp. 2195-205, 2014.
[17]  N. Trong et al., “Modified current-fed full-bridge isolated power factor correction converter with low-voltage stress”, IET Power Electron., vol. 7, pp. 861-7, 2013.
[18]  C. Li, Y. Zhang, Z. Cao and X. Dewei, “Single-phase single-stage isolated ZCS current-fed full-bridge converter for high-power AC/DC applications”, IEEE Trans. Power Electron., vol. 32, pp. 6800-12, 2016.
[19]  S. Lee and H. Do, “Single-stage bridgeless AC–DC PFC converter using a lossless passive snubber and valley switching”, IEEE Trans. Ind. Electron., vol. 63, pp. 6055-63, 2016.
[20]  W. Choi, “Single-stage battery charger without full-bridge diode rectifier for light electric vehicles”, Electron. Lett., vol. 47, pp. 617-8, 2011.
[21]  W. Choi and J. Yoo, “A bridgeless single-stage half-bridge AC/DC converter”, IEEE Trans. Power Electron., vol. 26, pp. 3884-95, 2011.
[22]  D. Gautam et al., “An automotive onboard 3.3-kW battery charger for PHEV application”, IEEE Trans. Veh. Technol., vol. 61, pp. 3466-74, 2012.
[23]  P. Sinusoidal, “Non sinusoidal, balanced or unbalanced conditions”, IEEE Std., pp. 1459-2000, 2009.
[24]  K. Kim et al., “Battery charging system for PHEV and EV using single phase AC/DC PWM buck converter”,  IEEE Veh. Power Propul. Conf., 2010.
[25]  M. Pahlevaninezhad et al., “A new control approach based on the differential flatness theory for an AC/DC converter used in electric vehicles”, IEEE Trans. Power Electron., vol. 27, pp. 2085-103, 2011.
[26]  L. Huber, Y. Jang and M. Jovanovic, “Performance evaluation of bridgeless PFC boost rectifiers”, IEEE Trans. Power Electron., vol. 23, pp. 1381-90, 2008.
[27]  R. Metidji, B. Metidji and B. Mendil, “Design and implementation of a unity power factor fuzzy battery charger using an ultrasparse matrix rectifier”, IEEE Trans. Power Electron., vol. 28, pp. 2269-76, 2012.
[28]  X. Zhou et al., “Multi-function bi-directional battery charger for plug-in hybrid electric vehicle application”, IEEE Energy Convers. Congr. Exposition, 2009.
[29]  D. Erb, O. Onar and A. Khaligh, “Bi-directional charging topologies for plug-in hybrid electric vehicles. In2010 Twenty-Fifth Annual”, IEEE Appl. Power Electron. Conf. Exposition, 2010.
[30]  V. Monteiro et al., “Batteries charging systems for electric and plug-in hybrid electric vehicles”. New Adv. Veh. Technol. Autom. Eng., 2012.
[31]  O. Onar, J. Kobayashi, D. Erb and A. Khaligh, “A bidirectional high-power-quality grid interface with a novel bidirectional noninverted buck–boost converter for PHEVs”, IEEE Trans. Veh. Technol., vol. 61, pp. 2018-32, 2012.
[32]  Y. Lee, A. Khaligh and A. Emadi, “Advanced integrated bidirectional AC/DC and DC/DC converter for plug-in hybrid electric vehicles”, IEEE Trans. Veh. Technol., vol. 58, pp. 3970-80, 2009.
[33]  S. Kim, H. Song and K. Nam, “Idling port isolation control of three-port bidirectional converter for EVs”, IEEE Trans. Power Electron., vol. 27, pp. 2495-506, 2011.
[34]  J. Pinto, V. Monteiro, H. Gonçalves and J.  Afonso, “Onboard reconfigurable battery charger for electric vehicles with traction-to-auxiliary mode”, IEEE Trans. Veh. Technol., vol. 63, pp. 1104-16, 2013.
[35]  G. Choe et al., “A Bi-directional battery charger for electric vehicles using photovoltaic PCS systems”, IEEE Veh. Power Propul. Conf., 2010.
[36]  P. Dahono, “A control method to damp oscillation in the input LC filter”, IEEE 33rd Annu. Power Electron. Specialists Conf., 2002.
[37]  P. Dahono, Y. Bahar, Y. Sato and T. Kataoka, “Damping of transient oscillations on the output LC filter of PWM inverters by using a virtual resistor”, 4th IEEE Int. Conf. Power Electron. Drive Syst., 2001.
[38]  A. Adapa and V. John, “Virtual resistor based active damping of LC filter in standalone voltage source inverter”, IEEE Appl. Power Electron. Conf. Exposition, 2018.
[39]  U Erburu et al., “Parameter-independent control for battery chargers based on virtual impedance emulation”, IEEE Trans. Power Electron., vol. 33, pp. 8848-58, 2018.
[40]  Y. Fu et al., “Imbalanced load regulation based on virtual resistance of a three-phase four-wire inverter for EV vehicle-to-home applications”, IEEE Trans. Transp. Electrif., vol. 5, pp. 162-73, 2018.
[41]  A. Urtasun et al., “Parameter-independent battery control based on series and parallel impedance emulation”, IEEE Access, vol. 7, pp. 70021-31, 2019.