[1] X. Zhang, G. Karady and S. Ariaratnam, “Optimal allocation of CHP-based distributed generation on urban energy distribution networks”, IEEE Trans. Sustainable Energy, vol. 5, pp. 246-53, 2014.
[2] D. Xie, A. Chen, C. Gu and J. Tai, “Time-domain modeling of grid-connected CHP for its interaction with the power grid”, IEEE Trans. Power Syst., vol. 33, pp. 6430-40, 2018.
[3] L. Ma et al., “Energy management for joint operation of CHP and PV prosumers inside a grid-connected microgrid: a game theoretic approach”, IEEE Trans. Ind. Inf., vol. 12, pp. 1930-42, 2016.
[4] J. Tang et al., “Operational flexibility constrained intraday rolling dispatch strategy for CHP microgrid”, IEEE Access, vol. 7, pp. 96639-49, 2019.
[5] P. Ivanova, A. Sauhats and O. Linkevics, “District heating technologies: Is it chance for CHP plants in variable and competitive operation conditions?”, IEEE Trans. Ind. Appl., vol. 55, pp. 35-42, 2018.
[6] J. Morales, A. Hellmers, M. Zugno and A. Skajaa, “Operational strategies for a portfolio of wind farms and CHP plants in a two-price balancing market”, IEEE Power Energy Soc. Gen., 2016.
[7] D. Xie et al., “Optimal operation of a combined heat and power system considering real-time energy prices”, IEEE Access, vol. 4, pp. 3005-15, 2016.
[8] T. Sun et al., “Modeling combined heat and power systems for microgrid applications”, IEEE Trans. Smart Grid, vol. 9, pp. 4172-80, 2018.
[9] M. Benam, S. Madani, S. Alavi and M. Ehsan, “Optimal configuration of the CHP system using stochastic programming”, IEEE Trans. Power Del., vol. 30, pp. 1048-56, 2015.
[10] G. Zhang, Z. Shen and L. Wang, “Online energy management for microgrids with CHP co-generation and energy storage”, IEEE Trans. Control Syst. Technol., vol. 28, pp. 533-41, 2020.
[11] R. Kazemzadeh and M. Moazen, “Unit commitment by a fast and new analytical non-iterative method using IPPD table and “λ-logic” algorithm”, J. Oper. Autom. Power Eng., vol. 7, pp. 27-39, 2019.
[12] V. Amir, S. Jadid and M. Ehsan, “Operation of multi Carrier microgrid (MCMG) considering demand response”, J. Oper. Autom. Power Eng., vol. 7, pp. 119-28, 2019.
[13] A. Dizaji, M. Saniei and K. Zare, “Resilient operation scheduling of microgrid using stochastic programming considering demand response and electric vehicles”, J. Oper. Autom. Power Eng., vol. 7, pp. 157-67, 2019.
[14] H. Fateh, A. Safari, and S. Bahramara, “A bi-level optimization approach for optimal operation of distribution networks with retailers and micro-grids”, J. Oper. Autom. Power Eng., vol. 8, pp. 15- 21, 2020.
[15] E. Shahryari et al., “Optimal energy management of microgrid in day-ahead and intra-day markets using a copula-based uncertainty modeling method”, J. Oper. Autom. Power Eng., vol. 8, pp. 86-96, 2020.
[16] M. Behnamfar, H. Barati and M. Karami, “Stochastic short-term hydro-thermal scheduling based on mixed integer programming with volatile wind power generation”, J. Oper. Autom. Power Eng., vol. 8, pp. 195-208, 2020.
[17] H. Siahkali, “Operation planning of wind farms with pumped storage plants based on interval type-2 fuzzy modeling of uncertainties”, J. Oper. Autom. Power Eng., vol. 8, pp. 182-94, 2020.
[18] R. Billinton and R. Allan, “Reliability evaluation of power systems”, 2nd edition, New York, NY, USA and London, U.K.: Plenum, 1994.
[19] R.
Billinton et al., “A reliability test system for educational purposes-basic data”,
Power Eng. Rev., vol.9, pp. 67-68, 1989.
[20] R. Billinton and W. Li, “Reliability assessment of electric power system using monte carlo”, Plenum Press, New York, 1994.