[1] M. Shahidehpour et al., “Market operations in electric powersystems, forecasting, scheduling, and risk management”, John Wiley & Sons Ltd-IEEE Press, 2002.
[2] A.j. Wood and B. Wollenberg, “Power generation operation and control”, John Wiley & Sons Ltd, 2013.
[3] M. Sharafi Masouleh et al., “Mixed- integer programming of stochastic hydro self-scheduling problem in joint energy and reserves markets”, Electr. Power Compon. Syst, vol. 44, pp. 752-762,2016.
[4] L. Lakshminarasimman and S. Subramanian, “Short-term scheduling of hydro-thermal power system with cascaded reservoirs by using modified differential evolution”, IEEE. Proc. Gener.Transm.Distrib., vol. 153, pp. 693-700, 2006.
[5] A.
Esmaeily et al., “Evaluatin the effectiveness of Mixed - Integer Linear programming for day-A head hydro-thermal self-scheduling considering price uncertainty and forced outage rate”,
Energy,
vol. 122, pp. 182-193 , 2017.
[6] S. Bisanovic, M. Hajro and M. Dlakic, “Hydro-thermal Self-scheduling problem in a day-ahead electricity Market ”, Electr. Power Syst. Res, vol. 78, pp. 1579-96, 2008.
[7] A. Conejo et al., “Self-scheduling of a hydro producer in a pool-based electricity market”, IEEE Trans Power Syst. vol. 17, pp.1265-72, 2002.
[8] M. Karami et al., “Scenario-basedsecurity constrained hydro- Therm coordination with volatile wind power Generation”, Renew. Sustain. Energy Rev ,vol. 28, pp. 726-737, 2013.
[9] J. Aghaei et al., “A mixed-integer programming of generalized hydro - thermal self-scheduling of generating units”, Electr. Eng ,vol. 95, pp. 109-125, 2013.
[10] A. Ahmadi et al., “A Mixed-integer programming of multi-objective Hydro - thermal self-scheduling”, Appl. Soft Comp. ,vol. 12, pp. 2137-46, 2012.
[11] UN, World population prospects: the 2008 revision, highlights ”, New Yor : United Nations. Department of Economic and Social Affairs. Population Division. 2009.
[12] D. Connolly et al., “A review of computer tools for analyzing the integration of renewable energy into various energy systems”, Appl.Energy, vol. 87, pp. 1059-82, 2010.
[13] A. Foley et al., “A long-term analysis of pumped Hydrostorageto firm wind power”, Appl. Energy, vol. 137, pp. 638-648, 2015.
[14] P. Ilak et al., “The impact of a wind variable generation on the Hydro generation water shadow price”, Appl. Energy, vol. 154, pp. 197-208, 2015.
[15] K. Wang et al., “Optimal coordination of wind-hydro-thermal Based on water complementing wind”, Renew. Energy, vol. 60, pp.169-178, 2013.
[16] E. Castronuovo and J. Lopes, “On the optimization of the daily operation of a wind- hydro power plant”, IEEE Trans. Power Syst., vol. 19, pp. 1599-1606, 2004.
[17] Z. Jianzhong et al., “Short-term hydro-thermal-wind complementary scheduling considering uncertainty of wind power using an enhanced multi-objective bee colony optimization algorithm”, Energy Conver. Manage., vol. 123, pp. 116-29, 2016.
[18] H. Pousinho, V. Mendes and J. Catalão, “A risk-averse optimization model for trading Wind energy in a market environment under uncertainty”, Energy, vol. 36, pp. 4935-42, 2011.
[19] J. Catalão, H. Pousinho and J. Contreras, “Optimal hydro scheduling and offering Strategies considering price uncertainty and risk management”, Energy, vol. 37, pp. 237-244, 2012.
[20] L. Wu, M. Shahidehpour and T. Li, “GENCO’s risk-Based maintenance outage scheduling”, IEEE Trans. Power Syst, vol. 23, pp. 127-136, 2008.
[21] L. Wu, M. Shahidehpour and Z. Li, “GENCO’s risk-constrained hydro-thermal scheduling”, IEEE Trans. Power Syst, vol. 23, pp.1847-58 , 2008.
[22] Swedish Energy Agency, “Energy in Sweden 2010, Facts and Figures”, Swedish Energy Agency, 2010.
[23] H. Moghimi et al., “Risk constrained self-scheduling of Hydro-wind units for short-term electricity markets Considering intermittency and uncertainty”, Renew. Sustain. Energy Rev, vol. 16, pp. 4734-43,2012.
[24] G. Shrestha, S. Kai and L. Goel, “An efficient stochastic self - scheduling technique for power producers in the deregulated power market”, Elect. Power Syst. Res, vol. 71, pp. 91-98, 2004.
[25] M. Li, Y. Li and G. Huang, “An interval Fuzzy two-stagesto chastic programming model for planning carbon dioxide trading under uncertainty”, Energy, vol. 36, pp. 5677-89 , 2011.
[26] K. Meng et al., “Quantum inspired particle swarm optimization for valve point economic load dispatch”, IEEE Trans. Power Syst, vol. 25, pp. 215-22 , 2010.
[27] T. Li and M. Shahidehpour, “Dynamic ramping in unit commitment”, IEEE Trans. Power Syst., vol. 22, pp. 1379-81, 2007.
[28] M. Karami et al., “Mixed-integer programming of Security - constrained daily hydro - thermal generation scheduling”, Sci.Iran, vol. 20, pp.2036-50, 2013.
[29] A. Ahmadi, M. Charw and J. Aghaei, “Risk-constrained optimal strategy for retailer forward contract portfolio”, Int. J. Elect. Power Energy Syst, vol. 53, pp. 704-13, 2013.
[30] H. Wei et al., “Short-term optimal operation of hydro – wind–solar hybrid system with Improved generative adversarial networks” , Applied Energy, vol. 250 ,pp. 389-403, 2019.
[31] G. Díaz, J. Coto and J. Aleixandre, “Optimal operation value of combined wind power and energy storage in multi-stage electricity markets”, Applied Energy, vol. 235,pp. 1153-68, 2019.
[32] E. Akbari et al., “Stochastic programming based optimal bidding of compressed air energy storage with wind -thermal generation units in energy and reserve market”, Energy ,vol. 171, pp. 535-546, 2019.
[33] J. Xu et al., “Economic - environmental equilibrium Based optimal scheduling strategy towards wind - solar - thermal power generation system under limited Resources”, Appl. Energy, vol. 231, pp.355-371, 2018.
[34] S. Zabetian-Hosseini and M. Oloomi-Buygi, “How does large - scale wind power generation affect energy and reserve prices”, J. Oper. Autom. Power Eng., vol. 6, pp. 169-82, 2018.
[35] S. Mirjalili, “The Antlion Optimizer”, Adv. Eng. Soft., vol. 83, pp. 80-98, 2015.
[36] H. Dubey, M. Pandit and B. Panigrahi, “Hydro - thermal -wind scheduling employing novel Ant - lion optimization technique with composite ranking index”, Renew. Energy, vol. 99, pp. 18-34, 2016.
[37] A. Wijesinghe and L. Lai, “Small hydro power plant analysis and development (Electric Utility Deregulation and Restructuring and Power Technologies IEEE)”, 4^{th} Int. Conf., 2011.
[38] M. Baneshi and F. Hadianfard, “Techno - economic feasibility of hybrid diesel / PV / wind / battery electricity generation systems for non- residential large electricity consumers under southern Iran climate conditions”, Energy Conv. Manage., vol. 127 , pp. 233-244, 2016.
[39] F. Li and J. Qiu, “Multi-objective optimization for Integrated hydro-photovoltaic power system”, Appl. Energy, vol. 167, pp.377-84, 2016.
[40] Z. Ding et al., “Performance analysis of a wind - solar Hybrid power generation system”, Energy Conv. Manage., vol. 181, pp. 223-34, 2019.
[41] X. Wang et al., “Hydro - thermal - wind - PV Coordinated operation considering the comprehensive utilization of reservoirs”, Energy Conv. Manage., vol.198, 2019.
[42] X. Wang et al., “Short–term hydro – thermal - wind- photovoltai complementary opertation of interconnected power systems”, Appl. Energy, vol. 229,pp. 945-62, 2018.
[43] A. Zakaria et al., “Uncertainty models for stochastic optimizatio in renewable energy applications”, Renew. Energy Appl. , vol. 145, pp. 1543-71, 2020.
[44] L.Wu, M. Shahidehpour and T. Li, “Stochastic Security - constrained unit commitment”, IEEE Trans. Power Syst., vol.22, pp. 800-811,2007.
[45] L. Wu, M. Shahidehpour and T. Li, “Cost of reliability analysis based on stochastic unit commitment”, IEEE Trans. Power Syst. , vol. 23, pp.1364-74, 2008.
[46] N. Amjady, J. Aghaei and H. A . Shayanfar, “Stochastic multi - objective market clearing of joint energy and reserves auctions ensuring power system security”, IEEE Trans . on Power Syst., vol. 24, pp. 1841-54, 2009.
[47] I. Damousis, A. Bakirtzis and P. Dokopolous, “Asolution to the unit-commitment problem using integer coded genetic algorithm”, IEEE Trans. Power Syst., vol.19, pp.198–205,2003.
[48] O. Nilsson and D. Sjelvgren, “Hydro unit start-up costs and their impact on the shortterm scheduling strategies of swedish power producers”, IEEE Trans. Power Syst., vol. 12, pp. 38-44,1997.
[49] H. Daneshi et al., “Mixed- integer programming method to solve constrained unit commitment with restricted operating zone limits”,
IEEE.Int. Conon. EIT, pp. 92-187, 2008.
[50] M. AlRashidi and M. El-Hawary, “Hybrid particle swarm optimization approach for solving the discrete OPF problem considering the valve loading effects”, IEEE Trans. Power Syst. vol. 22, pp. 2030-38,2007.
[51] T. Li and M. Shahidehpour, “Price-based unit commitment : a case of lagrangian relaxation versus mixed-integer programming”, IEEE Trans. Power Syst.,vol. 20, pp.2015-25,2005.
[52] J. Arroyo and A. Conejo, “Optimal response of a thermal unit to an electricity spot market”, IEEE Trans. Power Syst., vol. 15, pp. 1098-1104, 2000.
[53] Generalized Algebraic Modeling Systems (GAMS), [Online] Available : http://www.gams.
com.
[54] http: //motor.ece.iit. edu / data / PBUC data .pdf. Also market price is from http://motor.ece.iit.edu. /data/PBUC data.pdf.
[57] X. Yuan et al., “An extended NSGA-III for solution of multi-objective hydro-thermal-wind scheduling considering wind power cost”, Energy Conv. Manage, vol. 96, pp. 568-578, 2015.
[58] P. Biswas, P. Suganthan and G. Amaratunga, “Optimal power flow solutions incorporating stochasticwind and solar power”, Energy Conv. Manage., vol.148, pp. 1194-1207, 2017.
[59] M. Behnamfar, H. Barati and M. Karami, “Stochastic short - term hydro - thermal scheduling based on mixed integer programming with volatile wind power generation”, J. Oper. Autom. Power Eng. , vol. 8, pp. 195-208, 2020.
[60] X. Wang et al., “Improved multi - objective model and analysis of the coordinated operation of a hydro-wind-photovoltaic System”, Energy, 2017.
[61] S. Mandal, B. Das and N. Hoque, “Optimum sizing of a stand-alone hybrid energy system for rural electrification in bangladesh”, J. Cleaner Prod., 2018.
[62] Z. Movahediyan and A. Askarzadeh, “Multi-objective optimization framework of a Photovoltaic-diesel generator hybrid energy System considering operating reserve”, Sustain. Citiesand Soc., vol. 41, pp. 1-12, 2018.
[63] E. Rakhshani, H. Mehrjerdi and A. Iqbal, “Hybrid Wind-Diesel- Battery System Planning Considering Multiple Different Wind Turbine Technologies Installation”, J. Cleaner Prod., 2019.
[64] X. Shi et al., “Impacts of photovoltaic / wind turbine / Microgrid turbine and energy storage system for bidding model in power system”, J. Cleaner Prod., vol. 226, pp. 845-857, 2019.
[65] O. Abedinia et al., “Optimal offering and Bidding Strategies of renewable energy based large consumer using a novel hybrid robust- stochastic approach”, J. Cleaner Prod., vol. 215, pp. 878-889, 2019.
[66] L. Li et al., “Short -term wind power forecasting based on support vector machine with improved dragonfly algorithm”, J. Cleaner Prod., vol. 242, 2020.
[67] H. Khaloie et al., “Co-optimized bidding strategy of an integrated wind-thermal-photovoltaic system in deregulated electricity market under uncertainties”, J. Cleaner Prod. , vol. 242, 2020.
[68] A. Panda et al., “Hybrid power systems with emission Minimization : Multi-objective optimal operation”, J. Cleaner Prod., vol. 268 , 2020.
[69] J. Lee, K. Aviso and R. Tan, “Multi-objective optimisation of hybrid power systems under uncertainties”, Energy, 2019.
[70] Y. Yin, T. Liu and C. He, “Day-ahead stochastic coordinated scheduling for thermal-hydro-wind–pv Systems”,
Energy, 2019.
[71] A. Ioannou et al., “Multi-Stage stochastic optimization framework for power generation systems planning integrating hybrid uncertainty modelling”, Energy Eco., vol. 80, pp. 760-76,2019.
[72] F. Zhu et al., “Short-term stochastic optimization of a hydro-wind-pv hybrid system under multiple uncertainies”, Energy Conv. Manage., 2020.
[73] F. Alazemi and A. Hatata, “Ant-lion optimizer for optimum economic dispatch considering demand response as a visual power plant”, Electr. Power Compon. Syst., 2019.
[74] F. Jabari et al., “Optimal short-term coordination of desalination, hydro and thermal units”, J. Oper. Autom. Power Eng., vol. 7, pp. 141-147,2019.
[75] H. Siahkali, “Operation planning of wind farms with pumped storage plants based on interval type-2 fuzzy modeling of uncertainties”, J. Oper. Autom. Power Eng., vol. 8, pp.182 -194,2020.